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Abstract 

Research on d8-d8 complexes is being actively pursued, owing, in part, to newly developed time-

resolved optical, IR, and X-ray methods that directly interrogate bonding changes upon 

excitation. Our review covers work on the ground- and electronic excited states, as well as the 

oxidized and reduced forms, of these complexes. Recent experimental and theoretical results 

add a new chapter to the rich history of d8-d8 spectroscopic and chemical behavior. 
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1. Introduction 

Many complexes of d8 transition metals have square planar geometries. Stacking of the 

planar units often occurs in the solid state, producing columnar structures as in Magnus Green 

Salt [Pt(NH3)4]2+[PtCl4]2–, known since 1828 [1]. The relatively short Pt-Pt distance of ca. 3.2 Å 

[2] indicates the presence of attractive Pt-Pt interactions. The 1975 report of concentration-

dependent dimer and trimer formation in acetonitrile solutions of [Rh(CNPh)4]+ ushered in the 

modern era of d8-d8 spectroscopy and chemistry [3]. To describe orbital interactions, a generic 

d8-d8 MO scheme (Figure 1) was developed [3], where the 4dz2 orbitals on the two rhodium 

atoms interact with each other producing dσ bonding (a1g) and antibonding (a2u) orbitals that 

are both occupied. A similar combination of 5pz orbitals produces empty pσ (a1g) and pσ* (a2u) 

orbitals at higher energies. [Rh(CNPh)4]+ dimerization is accompanied by emergence of a strong 

absorption band at 568 nm that was attributed to an allowed dσ*→pσ (1a2u→2a1g) transition 

[3]. Indeed, such a strong band in the visible or near UV region is a signature feature of 

electronic absorption spectra of all d8-d8 species. Subsequently, a great many self-assembled 

dimers and higher oligomers of PdII, PtII, RhI, IrI, and AuIII d8 complexes with interesting 

structural, spectroscopic, and photoluminescence properties were characterized [4]. 



  

3 
 

 

Figure 1. A generic d8-d8 MO scheme originally developed for Rh2(CNPh)8
2+ [3]. 4dz2 orbitals on 

the two metal centers combine in-phase and out-of-phase to produce dσ (1a1g) bonding and 

dσ* (1a2u) antibonding orbitals, respectively. Formally, no net M-M bonding arises as both 
orbitals are occupied. 5pz orbitals combine in the same way, producing higher-lying pσ (2a1g) 
and pσ* (2a2u) orbitals, which are both empty. Reproduced with permission from ref. [3]. 
Copyright (1975) American Chemical Society. 
 

As an alternative to self-assembled dimers and oligomers, the use of designed bridging 

ligands enabled construction of binuclear complexes with well-defined and controllable 

structures (Figure 2). Diisocyanide ligands "bridge" (1,3-diisocyanopropane) and TMB (2,5-

dimethyl-2,5-diisocyanohexane) were used to make Rh2(bridge)4
2+ (Rh(bridge)) and Rh2TMB4

2+ 

(Rh(TMB)) that have relatively short metal-metal distances (3.24 Å in Rh(bridge); 3.26 Å in 

Rh(TMB) [5], 3.12 Å in Ir(TMB) [6]). Each of these complexes exhibits a strong dσ*→pσ visible 

absorption band that arises from the metal-metal interaction. Emission spectra of Rh(bridge) 

and Rh(TMB) measured in fluid solutions show fluorescence (656, 614 nm) and 

phosphorescence (865, ~780 nm) from dσ*pσ singlet and triplet states, respectively [7]. 

Observation of dual emission is very unusual for heavy metal complexes. The 1dσ*pσ lifetime is 
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surprisingly long, ca. 1 ns for both Rh complexes [7]. The corresponding triplet lifetimes were 

determined to be 8.3 (bridge) and 0.03 µs (TMB), increasing with decreasing temperatures 

(12.5 and 20.5 µs at 77 K, respectively) [7]. Similar behavior was observed for diiridium 

complexes with bridging pyrazolyl (pz) and 3,5-dimethylpyrazolyl (pz*) ligands Ir2(µ-pz)2(COD)2 

and Ir2(µ-pz*)2(CO)2(PR3)2 [8-12]. Dirhodium and diiridium complexes undergo interesting 

photochemistry. Remarkably, visible-light irradiation of Rh(bridge) in aqueous HCl produces H2 

[13, 14] and its 3dσ*pσ state is quenched reductively as well as oxidatively with nearly 

diffusion-controlled rates [15]. Relatively long singlet and triplet excited state lifetimes opened 

the way for investigations of their properties and chemical reactivity. Indeed, it was found that 

both singlet and triplet dσ*pσ states of the Ir2 unit in Ir2(µ-pz*)2(CO)2(Ph2PO(CH2)2A+)2 are 

oxidized by the appended pyridinium acceptor A+ [11, 12]. These excited-state electron transfer 

reactions were one of the early demonstrations of the Marcus inverted region; and a 

theoretical treatment [16] pointed to the importance of structural fluctuations and discussed 

possible differences in electronic coupling to singlets and triplets.  

The use of the dimen bridging ligand (1,8-diisocyanomenthane, Figure 2) [6, 17-20] led 

to an interesting new twist in d8-d8 chemistry: A long distance between the -N≡C ligating groups 

and one dangling –CH2-N≡C moiety keep the metal atoms farther apart while introducing 

structural flexibility. As a consequence, the M-M distances in M2(dimen)4
2+ (further abbreviated 

M(dimen)) are highly variable and, in the solid state, depend on the counter anion. X-ray values 

range from 3.6 to 4.4 Å for Ir and 3.9 – 4.5 Å for Rh [6, 21], attesting to a shallow potential 

energy minimum along the M-M coordinate. Importantly, the dimen ligand dimensions alone 

require the two metal atoms to be ca. 5 Å apart; shorter bond distances are achieved only at 
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the expense of ligand distortions [21]. The long metal-metal distance and fluctional ground-

state geometry strongly broaden and shift the dσ*pσ absorption band [19, 21] of dimen 

complexes, while preserving well-defined and long-lived fluorescence (230 ps at 295 K for Rh) 

and phosphorescence (21 µs at 77 K) [19]. 

The electrochemistry of dirhodium isocyanide complexes has received relatively little 

attention. Oxidation is irreversible, coupled with dimerization or ligand coordination (solvent, 

halide) in the axial positions [18, 22]. Reversible reduction reported [23] for Ir(dimen) occurs in 

two subsequent 1-electron steps whose products were characterized by IR 

spectroelectrochemistry. The first reduction produces a symmetrical Ir(dimen)+ species with a 

(dσ*)2(pσ)1 electronic configuration. The second step leads to an asymmetric Ir(dimen)0 

complex for which a mixed-valence IrI-Ir–I d8-d10 configuration was proposed [23]. 

 



  

6 
 

 
Figure 2. Schematic structures of the bridging ligands and selected d8-d8 complexes discussed in 
this review. "Historic" ligand abbreviations consistent with original papers are used. Simplified 
abbreviations of the type M(bridging ligand) are used throughout this paper. 
 

A very important entry in d8-d8 chemistry, spectroscopy, and photophysics was the 

binuclear Pt(II) µ-diphosphito complex [Pt2(P2O5H2)4]4–, abbreviated Pt(pop) (Figure 2) [24-29]. 

In 1977, intense green emission from a product of a reaction between K2PtCl4 and phosphorous 

acid was reported [30]. (It is likely that this compound was made first in 1957 [31, 32]. The 

structure of the emissive species was determined in 1980 [33, 34].) Detailed spectroscopic 

studies followed immediately [35-44]. Each Pt atom occurs in square-planar coordination with 

four P atoms; and the two PtP4 planes are held parallel by four P-O-P links at a Pt-Pt distance of 

2.93 Å (Bu4N+ salt, [45]). The complex exhibits strong (37500 M–1cm–1) dσ*→pσ near-UV 
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absorption at 372 nm, weak short-lived fluorescence (0.7-30 ps, depending on solvent [46-48]), 

and long-lived (9.4 µs [42, 49]) strong phosphorescence in fluid solution. Several weak UV 

absorption bands were attributed to LMMCT (ligand to metal-metal CT) transitions of strongly 

mixed singlet-triplet character [50]. Pt(pop) undergoes interesting photoreactivity from the 

3dσ*pσ excited state, including: H-atom abstraction from main-group metal hydrides whose 

kinetics point to radical-like behavior [51-53]; catalytic dehydrogenation of secondary alcohols 

[26, 28, 53]; and inner-sphere electron transfer with [Co(CN)5X]3– complexes accompanied by 

transfer of the halide ligand X [54, 55]. The 3dσ*pσ state is quenched by energy transfer as well 

as by oxidative (e.g. methylviologen) and reductive (aromatic amines) electron transfer, with 

nearly diffusion-controlled rates (depending on driving force) and ≥80% cage-escape yields [49, 

56]. An interesting perfluoroborated derivative of Pt(pop) containing no hydrogen atoms, in 

which the pop ligands are covalently linked by BF2 groups, was prepared recently: 

[Pt2(P2O5(BF2)2)4]4–, abbreviated Pt(pop-BF2) [57]. This complex preserves all the structural and 

spectroscopic features of Pt(pop) while the ligand cage is much more rigid and the Pt2(POP)4 

core is better shielded from the environment by BF2 groups, with eight F atoms on the outer 

surface (Figure 2). Absorption spectral features are shifted to higher energies relative to 

Pt(pop): the 1dσ→*pσ absorption peaks at 365 nm; and the UV LMMCT bands undergo larger 

shifts [57]. Of interest is that the fluorescence following excitation of Pt(pop-BF2) is much 

stronger and more than 2000-times longer-lived (1.6 ns at room temperature) than in Pt(pop). 

With the overall emission quantum yield approaching unity, the complex behaves as a dual 

emitter [57, 58] that has potential application as a luminescence oxygen sensor [59]. 
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Like dirhodium(I) and diiridium(I) isocyanide complexes, electrochemical oxidation of 

Pt(pop) and Pt(pop-BF2) is an irreversible 2-electron process coupled with axial ligand 

coordination [60, 61]. Although electrochemical reduction of Pt(pop) has not been reported, 

electrochemiluminesce was observed in MeCN upon fast potential switching [62, 63]. In 

contrast, Pt(pop-BF2) undergoes two successive 1-electron reductions producing Pt(pop-BF2)5– 

(dσ*)2(pσ)1 and superreduced Pt(pop-BF2)6– with a unique (6pσ)2 bond [61]. 

A different class of d8-d8 diplatinum compounds includes [Pt(ppy)(µ-tBu2pz)]2 (ppy = 2-

phenylpyridine, tBu2pz = 3,5-di-tert-butylpyrazolate) and its derivatives. Introducing the 

electron-accepting ppy ligand changes the nature of the lowest excited state to dσ*→π*(ppy) 

MMLCT (metal-metal to ligand charge transfer). The corresponding triplet exhibits interesting 

photophysics [64-69]. 

Research on binuclear d8-d8 complexes is booming, fueled by the quest for new 

molecular photonic materials as well as the desire for fundamental understanding of metal-

metal bonding and excited-state dynamics. Synthesis and characterization of new types of d8-

based self-assembled oligomers has produced strongly luminescent materials with interesting 

applications in molecular recognition, as OLED dopants, sensors, and bioimaging agents, as well 

as in molecular electronics. As the chemistry of self-assembled d8 systems has recently been 

reviewed in great depth [4], we will focus attention on bridged d8-d8 complexes, namely Pt(pop) 

/Pt(pop-BF2) and Ir(dimen), where current work involving state-of-the-art laser spectroscopic 

techniques and quantum chemical calculations has shed new light on metal-metal bonding and 

excited-state dynamics. Qualitative MO considerations (Figures 1, 3) suggest that metal-metal 

interactions will be strengthened upon electronic excitation and reduction that populate the pσ 
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bonding orbital. Describing such redox- and excitation-induced bonding changes is particularly 

challenging for theory; and, on the experimental side, new ultrafast time-resolved 

spectroscopic techniques in the UV-visible [47, 48, 70] and X-ray [71-73] spectral ranges can be 

employed to examine structural effects of electronic excitation as well as to reveal molecular 

dynamics on corresponding potential energy surfaces. Combining spectroscopic studies with 

DFT calculations [21, 61] provided still deeper insights, especially when spin-orbit coupling [50] 

and molecular dynamics [48, 74-76] were included. Electrochemical and spectroelectrochemical 

techniques together with DFT calculations revealed new types of metal-metal bonding in the 

reduced states of d8-d8 complexes [23, 61]. The emerging understanding of excited-state and 

redox behavior of d8-d8 systems opened the way for exploration of photo- and electrocatalysis 

as well as molecular photonics. The Pt(pop) / Pt(pop-BF2) and Ir(dimen) systems that will be 

discussed in detail represent structural extremes: The Pt complexes are compact and rigid, with 

short metal-metal distances, whereas Ir(dimen) features an exceptionally long Ir-Ir bond that 

can be manipulated by interactions with the medium.  

 

2. Electronic ground states: bonding and spectra 

 The generic MO scheme (Figure 1) originally developed [3] for self-assembled 

[Rh2(CNPh)4]2+ is a good starting point to discuss metal-metal interactions in d8-d8 complexes. 

Formation of the dσ* HOMO and pσ LUMO accounts for the strong 1dσ*→pσ absorption 

signature of d8-d8 systems. However, there is no net bonding, since both the HOMO and LUMO 

are fully occupied. Accordingly, a theoretical analysis of Rh2(CNPh)8
2+ gave only a very small 

(0.018) Rh-Rh Wiberg bond order [77]. Notably, the work emphasized that London dispersion 
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forces between the phenyl rings more than compensate for the repulsive interactions between 

positively charged Rh(CNPh)4
+ fragments [77]. In this analysis, only 10-15 % of the attractive 

forces resulted from metal-metal (d8-d8) interactions attributed to "medium-range" electron 

correlation effects [77]. 

 

Figure 3. Qualitative MO schemes of Pt(pop-BF2) and Ir(dimen). In the Pt complex, the dσ* and 
dσ orbitals are the HOMO and HOMO-16, respectively. They are separated by a large energy 
gap, in which there is a manifold of occupied pop-localized orbitals, usually mixed with Pt-Pt dπ, 

dπ* and pπ, pπ*. The long/eclipsed M(dimen) isomer exhibits a relatively small dσ* – dσ 
splitting. In the short/twisted isomer, this splitting increases and the dσ*, dσ  orbitals are 
separated by a manifold of Ir-Ir dπ, dπ* orbitals with a 20-30% π(CN) admixture. MO shapes are 
shown in Figure 4. 
  

Structures of Rh(bridge), Rh(TMB), Pt(pop), Pt(pop-BF2), and M(dimen) (M = Rh, Ir) are 

dictated by the geometries of the bridging ligands, or more precisely, by the balance between 

the weak M-M attractive interactions and the strain imposed on the bridge. This strain likely is 

small in the ligand cages of Pt(pop) and Pt(pop-BF2) that fix the Pt atoms 2.93 (solid Bu4N+ salt 

as well as EtOH solution [45, 71, 78, 79]) and 2.887 Å (solid Ph4As+ salt [57]) apart, respectively, 

essentially preserving planar coordination around each Pt center. (We say "ligand cages" since 
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the bridging ligands are stitched together by H-bonds or BF2 groups.) Eclipsed and staggered 

conformers of Pt(pop) were identified by DFT calculations [50, 80]. They differ mainly by the 

relative orientations of O···H–O' motifs. (The two PtP4 units are nearly eclipsed (P-Pt-Pt-P 

dihedral angle of 7.2o) even in the O···H–O' staggered conformation.) The eclipsed 

conformation was calculated to be more stable by 0.012 eV (in vacuum). On the other hand, 

Pt(pop-BF2) occurs only in the eclipsed conformation. The Mayer-Millikan bond order of 0.173 

calculated for Pt(pop-BF2) indicates a weak Pt-Pt covalent interaction [61]. (See [81] for bond-

order definitions.) 

The situation is more complicated for M(dimen). Whereas unperturbed dimen would 

hold the metal atoms ~5.2 Å apart [6, 21], experimentally determined Ir–Ir bond lengths are 

shorter, varying between 3.6 and 4.4 Å, depending on the counter anion [6, 21]. To account for 

the structural and spectroscopic data, it was proposed [6] and later supported by DFT analyses 

[21, 70, 82] that there are two Ir(dimen) deformational isomers, long/eclipsed and 

short/twisted. Their presence in MeCN solution was confirmed by X-ray scattering that 

determined Ir–Ir distances of 4.3(1) and 3.60(9) Å, respectively [72]. A twist angle between the 

IrC4 planes of 14.6-38.4° was calculated by DFT for the latter [70, 82]). A detailed DFT structural 

analysis of dimen [21] attributed the structures of the two isomers to a balance between metal-

metal bonding, ligand deformation, and twisting in the horizontal symmetry plane required to 

accommodate the short M-M bond. Two minima on the ground-state potential energy surface 

of Ir(dimen) corresponding to the two deformational isomers were predicted: ~4.1 Å, 0° and 

~3.6 Å / 12° – very close to experimental values. Importantly, it was shown experimentally [21] 

that the two isomers are in thermal equilibrium in solution (2:1 MTHF/EtCN) that shifts toward 
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the short/twisted isomer as the temperature decreases. On the other hand, a single Rh(dimen) 

long/eclipsed isomer (Rh–Rh: 4.6 Å)  featuring a highly anharmonic potential energy surface 

was predicted by DFT calculations of the whole molecule [83] as well as by a DFT dimen-ligand 

analysis [21], in agreement with the lack of temperature dependence of UV-vis absorption 

spectra [19]. Apparently, the weaker Rh-Rh interaction (relative to Ir–Ir) is not sufficient to 

overcome the dimen ligand strain required to populate a short/twisted isomer in solution [21]. 

On the other hand, two isomers were identified in the solid state, depending on the counter 

anion: PF6
– (4.48 Å, 0°) and BPh4

– (3.86  Å, 16.2°) [19]. 

 The metal-metal stretching vibration (ν(M-M), a1g symmetry) is Raman-active; its 

frequency reflects the strength of M-M bonding together with the resilience of the bridging 

ligands. The Pt-Pt vibration in Pt(pop) occurs at 118 (H2O solution) and 110 cm–1 (solid Ba2+ and 

Bu4N+ salts) [37, 84]; it is 123 cm–1 for solid (Bu4N)4[Pt(pop-BF2)] [58]. Very similar experimental 

values were obtained from resonance [37] and non-resonance Raman spectra [58], from 

vibronic structures of phosphorescence and fluorescence bands [35, 36, 43, 58], and from 

impulsive stimulated Raman scattering observed after femtosecond dσ*→pσ excitation [47, 

48, 85]. Experimental values are in excellent agreement with DFT calculations [58, 80]. Lower 

values were reported for Rh(bridge) (79 cm–1 in MeCN [86]), Rh(TMB) (55 cm–1, [19])  and 

Rh(dimen) (28 cm–1 in MeCN, [19]). The long/eclipsed and short/twisted Ir(dimen) isomers are 

clearly distinguished by very different ν(Ir-Ir) values: 11 and 48 cm–1, respectively, determined 

by impulsive stimulated Raman scattering using two different excitation wavelengths that 

selectively excite the two isomers [70]. 
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Although metal-metal orbital interactions shown in Figures 1 and 3 lead only to weak M-

M bonding, they determine the chemistry, photochemistry, spectroscopy, and photophysics of 

d8-d8 complexes. Several properties of the molecular orbitals are worth mentioning in this 

respect: (i) The dσ* HOMO is axially directed outwards (Figure 4) with an electron density 

available for interactions with Lewis acidic cations (Ag+, Tl+, Au+) [87, 88] as well as for oxidative 

addition of halogens or alkyl halides [25, 27], which is more favorable for Pt(pop) than for 

Pt(pop-BF2) [89]. (ii) The pσ LUMO is partly localized between the Pt atoms (~43 % 6pz) [50] and 

partly delocalized over the planar faces of the molecule (Figure 4), owing to the involvement of 

3pz orbitals of the four phosphorus atoms. The Ir(dimen) LUMO is delocalized in a somewhat 

different way [82]. In both isomers, it is 34-36% Ir 6pz that overlaps with the πz*(C≡N) orbitals 

that are oriented along the z axis and contribute ca. 60%. The pσ LUMO thus acquires π-

bonding and π-antibonding character with respect to Ir–C and C≡N bonds, respectively, 

whereas outward localization is less pronounced than in Pt(pop)/Pt(pop-BF2) (Figure 4); (iii) A 

manifold of occupied ligand-localized orbitals, some with dπ and pπ Pt-Pt admixtures, falls 

between the dσ* HOMO and dσ HOMO-16 in Pt(pop) and Pt(pop-BF2) [50]. A similar manifold 

of mixed dπ-π(C≡N) MOs lies between dσ and dσ* orbitals in the short/twisted Ir(dimen) 

isomer and below dσ in the long/eclipsed one [82]. Electronic excitation from these orbitals to 

the LUMO gives rise to higher-lying excited states and UV absorption bands; (iv) The LUMO is 

separated from LUMO+1 (Pt(dδ)/σ*(PtP)) by large energy gaps (16530 and 18710 cm–1 for 

Pt(pop) and Pt(pop-BF2), respectively). For Ir(dimen), the gap between LUMO and LUMO+1 

(pσ*/π*(C≡N)) depends on the isomer: 14520 (short/twisted) and 6130 cm–1 (long/eclipsed), 

reflecting the strength of the metal-metal interaction. 



  

14 
 

 

 

Figure 4. DFT-calculated molecular orbitals involved in metal-metal σ-bonding in Pt(pop-BF2) 
and the short/twisted isomer of Ir(dimen). (DFT: GD3, PBE0/PCM-MeCN; this work). Similar MO 
shapes were reported for Pt(pop) [50, 87, 90, 91] and Rh(bridge) [92]. 
 

The lowest absorption bands in the UV-vis absorption spectra of d8-d8 complexes are 

attributable to dσ*→pσ transitions. For Pt(pop) and Pt(pop-BF2), the triplet and singlet 

dσ*→pσ transitions were observed as weak and strong bands, respectively, both with 

symmetrical shapes (Figure 5) [24, 35, 36, 42, 57]. Assignments of these absorptions, which 

have no counterpart in the spectra of monomeric PtII complexes, were confirmed by analysis of 

single-crystal polarized spectra [36, 42], MCD spectra [93], as well as by spin-orbit DFT 

calculations [50]. The 1dσ*→pσ peak energy is nearly solvent-independent (varying within a 

~300 cm–1 range in MeCN, DMF, H2O, EtOH, ethylene glycol [46, 48]; and the 1dσ*→pσ band 
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shifts by only ~400 cm–1 to higher energy on going from Pt(pop) to Pt(pop-BF2), although the 

3dσ*→pσ energy is constant. Diiridium(I) and dirhodium(I) isocyanide complexes exhibit 

1dσ*→pσ transitions at lower energies, with asymmetric bands in the visible spectral region. 

Ir(dimen) is a particularly interesting case, as it has two bands (470 and 580 nm) in solution 

(Figure 6) attributed to long/eclipsed and short/twisted isomers, respectively [21] (the intensity 

ratio changes with temperature due to the equilibrium between the two isomers). On the other 

hand, the 1dσ*→pσ band shape and peak position of Rh(dimen) are very similar in room-

temperature MeCN solution and in MeTHF/MeCN glass at 77 K [19], indicating that a single 

species is present. The Rh(dimen) spectrum has a sharp peak at 423 nm with a low-energy 

shoulder at ~480 nm that tails beyond 500 nm. As the intensity of the shoulder is too high for a 

triplet transition, the unusual band shape was explained by a combination of a very shallow 

ground-state potential energy surface with an anharmonic excited-state surface whose 

minimum occurs at a shorter Rh-Rh distance. In this model, absorbance around the peak 

maximum would correspond to excitation to higher vibrational levels of the 1dσ*pσ state, 

whereas the shoulder would arise from vibronic transitions closer to the excited-state energy 

minimum [19]. (Newer calculations [21, 83] found both ground- and excited-state highly 

anharmonic with very different shapes, which is in agreement with the above qualitative 

explanation.) The spin-forbidden 3dσ*→pσ transition likely is obscured by the red shoulder; it 

was identified only in the polarized single-crystal spectrum of [Rh(dimen)](BPh4)2, occurring 

about 3000 cm–1 below the singlet absorption [19]. Complexes with shorter bridging ligands, 

Rh(bridge), Rh(TMB), and Ir(TMB), exhibit 1dσ*→pσ absorption bands at 553, 517, and 625 nm, 

respectively [13, 94]. Symmetrical band shapes suggest harmonic ground- and excited-state 
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potentials whose minima are shifted with respect to each other. Molar absorptivities are in the 

11000-14500 M–1cm–1 range, 30-50% of the Pt(pop) values. 

 

Figure 5. UV-vis spectra of Pt(pop) and Pt(pop-BF2) in MeCN. 

 

Figure 6. Temperature dependence of UV-vis spectra of Ir(dimen) in 2:1 2-MeTHF/EtCN. 
Reproduced with permission from ref. [21]. Copyright (2012) American Chemical Society. 

200 300 400 500 600
0.0

1.0E4

2.0E4

3.0E4

 

 

M
o
la

r 
a

b
s
o

rp
ti
v
it
y
 /

 M
-1
c
m

-1

Wavelength / nm

x10

x50

0.0

1.3E4

2.5E4

3.8E4

 

 

 

M
o
la

r 
a

b
s
o
rp

ti
v
it
y
 /

 M
-1
c
m

-1

x50

x10

3dσ∗ pσ

pσ
1
dσ∗

LMMCT
Pt(pop)

Pt(pop-BF2)



  

17 
 

 

The nature of higher electronic transitions in the UV is different for PtII and IrI/RhI 

isocyanide complexes. Pt(pop) shows three relatively weak UV peaks that shift to higher 

energies by up to 1300 cm–1 as the solvent changes from MeCN and DMF to H2O, EtOH and 

ethylene glycol [42, 46, 48]. Pt(pop-BF2) exhibits the same UV spectral pattern, the three bands 

occurring on average at energies 2750 cm–1 higher than in the Pt(pop) spectrum (Figure 5) [57]. 

As the corresponding transitions have mixed-spin character, assigning the UV bands requires 

taking into account spin-orbit (SO) coupling [50]. SO-TDDFT calculations revealed a dense 

manifold of triplet and mixed-spin states with zero and moderate oscillator strengths, 

respectively, with origins 4200 (Pt(pop)) and 5800 cm–1 (Pt(pop-BF2)) above the 1dσ*pσ state. 

These states involve LMMCT excitations from pop-localized orbitals to the pσ LUMO; and some 

of them have small (~10 %) pπ→pσ and, at higher energies, larger dπ→pσ contributions [50]. 

(The pπ contributions arise from small Pt 6px,y admixtures to predominantly pop-localized 

orbitals.) The first and second UV absorption systems of both Pt(pop) and Pt(pop-BF2) are due 

to several LMMCT/pπ→pσ Eu transitions with 2-13% singlet and ~86% singlet character, 

respectively. (In addition, a ~2% singlet A2u transition contributes to the second UV band as 

well.) The highest UV band originates from several closely spaced (two LMMCT/dπ→pσ and 

one LMMCT) transitions (60-80% singlets). 

The UV spectrum of Ir(TMB) in MeCN exhibits sharp, intense bands at 372 and 318 nm 

(340 and 314 nm for Rh(TMB)) assigned to triplet and singlet dπ→pσ Eu transitions, 

respectively, based on single-crystal polarized spectra and MCD spectra [94]. The lower spin-

forbidden transition gains intensity through SOC that is rather strong among dπpσ states [50]. 
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This assignment is supported by the relative intensities, whereby the molar absorptivity of the 

3dπ→pσ 372 nm band (9750 M–1cm–1) is ~2.3× weaker than the spin-allowed 1dπ→pσ 318 nm 

band. Also, it is 2.3× stronger than the 3dπ→pσ 340 nm band of Rh(dimen), since Rh has lower 

SOC than Ir. Owing to large dxz,dyz participation in the dπ molecular orbital (~70%) and π*(C≡N) 

participation in the pσ LUMO, the two UV transitions of Ir(TMB) (and other Rh and Ir di-

isocyanides) should be described as predominantly (M)MLCT. Experimentally, the delocalization 

over the C≡N– groups is manifested by a ν(C≡N) vibronic satellite on the 3dπ→pσ Ir(TMB) band 

[94]. Broad weaker bands observed in the Ir(TMB) spectrum around and below 300 nm were 

tentatively attributed to singlet and triplet dδ→pσ and singlet MMCT transitions. The latter 

would produce zwitterionic states MIIM0, predicted by valence-bond analysis by exciting a dxz,yz 

electron from one metal atom to the pz orbital at the other [94]. UV spectra of Rh(dimen) [19] 

and Ir(dimen) [23] are very similar to those of their TMB counterparts. In particular, the UV 

spectrum of Ir(dimen) [23] exhibits triplet and singlet dπ→pσ bands at 375 (ε = 18000 M–1cm–1) 

and 327 (36600 M–1cm–1) nm, respectively. 

Computational studies of d8d8 systems have focused on Pt(pop) in the ground and 

3dσ*pσ states. Initial calculations on Pt(pop) in vacuum well reproduced the crystallographic 

structural parameters [80, 90], revealed the occurrence of energetically close staggered and 

eclipsed conformations (see above), assigned Raman and IR active vibrations [80], partitioned 

contributions to the Pt-P and Pt-Pt interactions, and predicted bonding changes upon excitation 

[90]. Gas-phase excitation energies and calculated bond-length changes were found to be 

strongly dependent on the functional. Energies of the HOMO and other occupied MOs were 

calculated to be highly positive, apparently due to the lack of electrostatic screening of the 4– 
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charge of the complex. A following study [91] clearly demonstrated the importance of including 

solvent (H2O, continuum dielectric model CPCM) into DFT (B3LYP) calculations. Negative 

energies of occupied orbitals, a reasonable HOMO-LUMO energy gap, and the correct 

1dσ*→pσ assignment of the lowest allowed transition were obtained only in PCM-described 

H2O [91]. (PCM-H2O calculations correctly produced a pσ-type LUMO, partly delocalized over 

the P,O ligand atoms. In contrast, a predominantly Pt 6s antibonding LUMO was calculated in 

the gas phase [91].) This study [91] also predicted that the lowest UV transition would have 

LMMCT character. Solvent effects on the ground-state structure also were investigated by 

quantum mechanics/molecular mechanics (QM/MM) simulations in H2O, DMF, and EtOH, with 

the aim of demonstrating how solvation influences EXAFS spectra [79]. QM/MM average Pt-Pt 

distances were slightly longer (3.06 – 3.08 Å) than when the solvent was treated by continuum 

models (~3.04 Å in H2O [91]; 2.924 Å in MeCN [50]) whereas Pt-P lengths (2.41-2.42 Å) were 

calculated comparable in H2O (~2.40 Å [91]) and longer than in MeCN (2.332 Å [50]). (For 

comparison, Pt–Pt distances of 2.88-2.93 (EtOH) and 2.98 Å (H2O) were determined 

experimentally in solution by EXAFS [71, 78, 79] and X-ray scattering [95], respectively.) 

Electronic structures of Pt(pop) and Pt(pop-BF2) were compared using SO-TDDFT calculations 

that also accounted for spin-forbidden 3dσ*→pσ transitions and assigned UV absorption bands, 

revealing their mixed-spin character [50] (see above). These calculations reproduced the 

experimentally observed shortening of Pt-Pt and Pt-P bonds and blue shifts of electronic 

transitions upon perfluoroboration. Electronic structures of the two complexes are  

qualitatively very similar (stronger Pt-Pt and Pt-P bonds together with increased rigidity were 

demonstrated by ν(Pt-Pt) and ν(Pt-P) stretching frequencies that increased from ~116 and 232 
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cm–1, respectively, in Pt(pop) [37, 80] to 123 and 283 cm–1 in Pt(pop-BF2) [58]; the experimental 

and calculated values matched very well). Less attention has been devoted to computational 

investigations of bridged IrI and RhI complexes. DFT-calculated (gas-phase) Rh(bridge) and 

Rh(dimen) HOMO and LUMO shapes are shown in [92] and [83], respectively. Dimen-ligand [21] 

and Ir(dimen) whole-molecule [70, 82] calculations addressed the structures and relative 

stabilities of the two isomers, as discussed above. 

The relative importance of covalency and dispersion to the ground-state metal-metal 

interaction is another interesting question. As was discussed above, dispersion is the main 

attractive force in unbridged assemblies such as Rh2(CNPh)8
2+ [77], where it is aided by the 

nearly parallel large π-delocalized ligand systems at each metal center. Structural and bonding 

effects of including the dispersion correction in the DFT calculations are given in Tables 1 and 2. 

Dispersion strengthens the Ir-Ir interaction in Ir(dimen), presumably due to the presence of 

C≡N– π electrons. Including dispersion into the calculation through a GD3 correction [96] 

shortens the Ir–Ir distance in the long/eclipsed isomer by 0.4 Å (Table 1) and increases the 

Mayer-Mulliken bond order from 0.044 to 0.072. The GD3-calculated Ir–Ir distance is very close 

to the experimental value of 4.3 Å measured in MeCN solution [70]. The GD3 correction 

enabled optimization of the short/twisted isomer that did not converge when dispersion was 

not included. The calculated Ir-Ir distance is in a reasonable agreement with the experimental 

value of 3.60 Å. On the other hand, dispersion forces are relatively unimportant in Pt(pop-BF2) 

where the metal-ligand planes are formed by more electronegative phosphorus atoms with 

relatively localized electron density and no π-electrons. Accordingly, GD3 had only negligible 

effect on the Pt–Pt distance that was calculated (Table 1) close to the experimental (solid state) 
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value of 2.887 Å [50]. Of interest is that the Pt-P distances contract slightly upon correcting for 

dispersion (from 2.308 to 2.295 Å). The Pt–Pt and Pt–P bond orders are little affected by the 

GD3 correction, regardless of Pt(pop-BF2) redox- and electronic state (Table 2). The only real 

difference was found for the parent complex, where the Pt-Pt bond order increases by 35% 

upon GD3 correction. This finding could be related to the involvement of bridging O atoms in 

the dσ orbital (Figure 4) that would be larger in a "flatter" GD3-corrected structure. 

 

Table 1. Metal–metal distances in Ir(dimen)n and Pt(pop-BF2)n in various redox and electronic 
states calculated by solvent-corrected DFT without and with the GD3 correction of dispersion 
forces [this work]. Not converging optimization is denoted x.  
 

Ir(dimen) / n 
2+ 1+ 0 2+ / 

3
dσσσσ*pσσσσ 

long short a eclipsed twisted a 
no dispersion 4.752 x 3.936 3.709 3.124 2.910 
GD3 correction 4.319 3.251 3.087 3.088 2.988 2.857 
 
Pt(pop-BF2) / n 4- 5- 6- 4- / 

3
dσσσσ*pσσσσ 

no dispersion 2.904 2.803 2.739 2.708 b 
GD3 correction 2.901 2.815 2.740 2.715 

a A single stable structure was found by DFT. b A value of 2.725 Å was reported in [50]. The 
difference is caused by a different basis set used in the present calculation. See the Appendix 
for details. 
 

Table 2. DFT-calculated (GD3, PBE0/PCM-MeCN) Mayer-Mulliken bond orders for Pt(pop-BF2)n 
[this work]. Values calculated without the GD3 dispersion correction in parenthesis. Pt–P values 
are averaged over the two Pt centers. 
 

bond   /   n 4- 5- 6- 4- / 
3
dσσσσ*pσσσσ  

Pt – Pt 0.233 (0.173) 0.268 (0.268) 0.341 (0.340)  0.521 (0.523) 
Pt – P1 1.118 (1.119) 1.181 (1.181) 1.178 (1.175)  1.083 (1.082) 
Pt – P2 1.118 (1.119)  1.173 (1.173) 1.309 (1.309)  1.086 (1.086) 
Pt – P3 1.118 (1.122) 1.173 (1.173) 1.701 (1.167)  1.083 (1.082) 
Pt – P4 1.118 (1.119) 1.181 (1.182) 1.309 (1.312)  1.086 (1.086) 
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3. Excited states: structures and bonding 

Interactions between d8 metal centers give rise to unique excited-state structures and 

behavior, including: M-M bond formation upon excitation, long lifetimes (ps-ns) of the lowest 

singlet excited state [7, 8, 11, 19, 46-48, 57, 58, 70, 97], dual emission [7, 19, 57, 58], µs-lived 

phosphorescence, and rich photochemistry including electron and energy transfer, as well as 

radical-like atom-transfer reactions [8, 11, 13-15, 24-28, 49, 51-55, 89, 98]. Although d8-d8 

excited states have been studied by powerful experimental and theoretical techniques, 

photophysical properties are still not sufficiently understood, as for example the mechanism of 

(symmetry forbidden) intersystem crossing and its dependence on structure, solvent, and 

temperature. Other areas of great current interest include coherent motions induced by 

femtosecond excitation, comparing the structures and reactivities of singlet and triplet excited 

states, relaxation pathways of higher excited states, as well as possible applications in 

photocatalysis.  

 In agreement with qualitative MO theory (Figures 1, 3), SO-TDDFT calculations of 

Pt(pop) and Pt(pop-BF2) confirmed [50] that the lowest singlet (1A2u) and triplet (3A2u) excited 

states arise almost exclusively (95 %) from dσ*→pσ (HOMO→LUMO) excitation. The 1A2u state 

has additional (albeit small) contributions from high-lying LMMCT/pπpσ and LMMCT/dπpσ 

triplet states, admixed through spin-orbit coupling. The 3A2u state splits into three SO 

components (Au, aBu, bBu) in the correct (C2h) symmetry. However, the aBu-bBu splitting is too 

small to be distinguished experimentally and low-temperature high-resolution spectra 

therefore were interpreted in terms of A1u + Eu SO states, assuming D4h Pt2P8 core symmetry. 

The A1u state is a pure triplet: 98% 3dσ*pσ, with minor contributions from higher triplets; and 
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Eu is 98% 3dσ*pσ, with minor contributions from higher triplets (~1.3%) and LMMCT/dπpσ 

singlets (0.6-0.7%) [50].  

The predominant dσ*→pσ origin of the lowest excited singlet as well as triplet states 

suggests that there is substantial strengthening of the metal-metal bond upon excitation. It is 

worth noting that metal-metal bond strengthening in dσ*pσ excited states was first predicted 

and documented in the early days of d8-d8 spectroscopy when experiments confirmed changes 

of ν(M-M) stretching frequencies and bond lengths calculated from Franck-Condon (FC) 

analyses of absorption and emission bands [35-37, 41-43]. In the case of Pt(pop), the 3A2u ν(Pt-

Pt) frequency of ~155 cm–1 was extracted from a vibrational progression of the spin-forbidden 

3A2u absorption band of the Ba2+ salt; and the Pt-Pt bond distance was calculated to be 2.71 Å 

[36]. Comparison with respective ground-state values of ~110 cm–1 (determined from the 

phosphorescence vibrational progression and non-resonant Raman spectrum [36, 84]) and 

2.949 Å [44] supports the expected strengthening of Pt–Pt bonding. Measuring vibrational 

progressions of both the spin-allowed and spin-forbidden dσ*pσ absorption bands of solid 

(Bu4N)4[Pt(pop)] yielded ν(Pt–Pt) values for the 1dσ*pσ (145-147 cm–1) and 3dσ*pσ (~150 cm–1) 

states, indicating slightly stronger bonding in the excited triplet. (The ground-state ν(Pt-Pt) 

frequency was 116 cm–1 [84].) A stronger Pt-Pt interaction in 3dσ*pσ than 1dσ*pσ also was 

indicated for (Bu4N)4[Pt(pop-BF2)], where values of 168 and 160 cm–1, respectively, were 

determined from vibronic structures in the corresponding excitation spectra [58] as well as by 

impulsive Raman scattering upon femtosecond excitation [85]. (Ground state: 123 cm–1 [58]) 

Ground- and 3dσ*pσ excited-state ν(Pt–Pt) values of Pt(pop) also were obtained in aqueous 

solution using transient Raman spectroscopy: 118 and 156 cm–1, respectively [37]. Similar 
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behavior was reported for Rh(bridge): the ground-state Raman ν(Rh–Rh) band at 79 cm–1 (in 

MeCN) shifted upon nanosecond laser-pulsed excitation to 144 cm–1 [99], in agreement with 

the ~150 cm–1 vibrational progression of the lowest absorption band corresponding to the spin-

forbidden 3(dσ*→pσ) transition [86]. FC analysis of the absorption system yielded a 0.3 Å Rh-

Rh contraction upon excitation, from 3.24 to 2.94 Å [86].  

The change of the M-M force constant upon excitation reflects the bond 

strengthening/shortening that is, however, limited by the bridging ligand geometry and 

flexibility. The Pt-Pt force constant in Pt(pop) increases 1.8-times upon excitation while the Rh-

Rh force constant in Rh(bridge) increases 3.3-times [37]. In absolute values, however, both 

ground- and excited-state Pt-Pt force constants (0.80, 1.40 mdyn Å–1) are larger than the Rh 

ones (0.19, 0.63 mdyn Å–1). It appears that the pop ligand cage restricts changes in the M-M 

distance more than "bridge", while keeping the two Pt atoms closer together both in the 

ground and excited states [37]. The effect of the bridging ligand on metal-metal stretching 

frequencies can be seen by comparing the changes of ν(Rh-Rh) upon excitation of Rh(bridge) 

and Rh2(CNPh)8
2+: +65 vs. +102 cm–1, respectively [37, 99]. (The force constant increases by 0.44 

a 0.69 mdyn Å–1, respectively.) The higher values for Rh2(CNPh)8
2+ indicate greater 

strengthening of Rh-Rh bonding when the metal atoms are unconstrained by the bridging 

ligand. 

When experimental techniques combining UV or visible pulsed laser excitation with X-

ray probing made it possible to study excited-state structures directly, d8-d8 systems quickly 

became testbeds for these new methods as the presence of heavy atoms, high photostability 

(photoreversibility), and long triplet lifetimes greatly aided data collection and analyses. It was 
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no surprise that the first time-resolved optical pump / monochromatic X-ray probe diffraction 

[100] and X-ray scattering experiments involving a polyatomic molecule [95] were performed 

on Pt(pop). 

A Pt-Pt bond contraction of 0.28(9) Å was determined from work on (Et4N)3H[Pt(pop)] 

crystals at 17 K using 355 nm nanosecond laser pulsed excitation probed by diffraction of 

synchrotron-generated X-ray pulses 33 µs long [45]. This estimated bond contraction value is 

near that (0.24 Å) obtained from X-ray diffraction on (Bu4N)4[Pt(pop)] crystals under continuous 

442 nm irradiation at 54 K [101]. The structure of excited Pt(pop) in solution was determined by 

time-resolved X-ray scattering [95] and absorption (EXAFS, Figure 7) [71], which yielded Pt-Pt 

contractions of 0.24 and 0.31(5) Å, respectively. In both techniques, structural parameters 

together with percentage photoexcitation yields were varied until the best match between 

calculated and experimental data was achieved. X-ray scattering data obtained on an aqueous 

K4[Pt(pop)] solution at 100 ps and 1 µs after 2 ps, 267 nm excitation were corrected for terms 

arising from bulk- and solvation-shell solvent molecules that change upon excitation due to the 

temperature rise caused by excited-state energy dissipation. Changes in axial solvent 

coordination and specific solvation appeared to be negligible. EXAFS spectra of Pt(pop) in the 

3dσ*pσ state were measured in ethanol over the first 150 ns after 390 nm laser pulsed 

excitation [71]. The best fit of the transient EXAFS spectrum (Figure 7) was obtained assuming a 

0.31 Å Pt-Pt contraction and an unchanged distance between the two P4 planes. This analysis 

would suggest that the Pt atoms move upon excitation inwards from the P4 planes and the Pt-P 

bonds elongate by 0.010(6) Å. The experimentally determined Pt-Pt and Pt-P bond-length 

changes on going to the 3A2u state in Pt(pop) solutions are somewhat longer than the values 
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calculated by DFT in a MeCN solution: -0.196 and +0.005 Å, respectively [50] (Table 1). (It 

should be noted that the experimental values sensitively depend on several parameters, such 

as the excitation yield, which may be in error. Positions of lighter atoms and solvent molecules 

were not varied in the fitting procedure.) In addition to the EXAFS structural information, X-ray 

absorption spectra (XAS) in the XANES region (X-ray absorption near edge structure) report on 

changes in the electronic structure [71, 73]. Pt(pop) XAS was measured at the L3 edge that 

corresponds to electron excitation from the Pt 2p3/2 core orbital. The main peak ("white line") 

in the ground-state spectrum is due to excitation into 5dx2-y2 orbitals that are Pt-P σ-

antibonding and δ, δ* with respect to the Pt-Pt bond. The peak broadened upon excitation at its 

blue side presumably due to 2p3/2→6s transitions and increased δ-δ* splitting at a shorter Pt–Pt 

distance. Most importantly, a new band at 11.574 eV, which was attributed to the 2p3/2→dσ* 

transition, emerged below the absorption edge (Figure 7). This feature, which was not present 

in the ground-state spectrum (with dσ* fully occupied), is attributable to the 3dσ*pσ excited-

state spectrum (dσ* hole). 
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Figure 7. Static (black) and 3dσ*pσ excited-state (red) X-ray absorption spectra of Pt(pop) in 
EtOH. The red spectrum was measured in a difference mode (excited – unexcited), integrated 
up to 150 ns after 100 fs, 390 nm excitation. Reproduced with permission from [71]. Copyright 
(2009) Wiley-VCH. 
 

M(dimen) complexes (M = Rh, Ir) exhibit much larger metal–metal bond contraction 

than Pt(pop) upon dσ*pσ excitation. Rh(dimen) has a very shallow ground-state energy 

minimum [21] with a Rh–Rh distance of 4.50 Å measured on a [Rh(dimen)](PF6)2·CH3CN crystal 

at 17 K [102]. The Rh-Rh bond contracts to 3.64(5) Å upon 355 or 532 nm excitation, as 

determined by time-resolved X-ray diffraction [102]. The observed bond shortening (0.86(5) Å) 

is much smaller than the DFT-calculated value (1.54 Å), a discrepancy presumably caused by 

restrictive crystal packing forces. (It should be noted that the Rh(dimen) unit rotates in the 

crystal by 13° upon excitation.) Ir(dimen) is even more interesting, as two deformational 

isomers are present in solution (long/eclipsed and short/twisted, see above and ref. [21]) with 

Ir–Ir distances of 4.3(1) and 3.60(9) Å, respectively, determined by X-ray scattering in MeCN 
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[72]. Femtosecond pulsed laser excitation at 390 nm localizes the structure into a single 

short/twisted conformation with Ir-Ir distances of ~2.93(2) Å in 1dσ*pσ and 2.90(2) Å in 3dσ*pσ 

excited states (MeCN solution, time-resolved X-ray scattering [72]). For the triplet state, this 

corresponds to 0.7 and 1.4 Å Ir–Ir contractions relative to the short/twisted and long/eclipsed 

ground-state isomers, respectively. Another X-ray scattering study with femtosecond time 

resolution [75] determined the Ir–Ir distance in 1dσ*pσ as 2.95(5) Å and the twist angle 

increase by 15(3)° relative to the long/eclipsed ground-state isomer. In combination with 

QM/MM calculations, the experiment also indicated that MeCN preferentially solvates the Ir 

atoms in the excited state through the N-end [75] with an Ir-NCMe distance of around 3 Å, 

whereas Ir⋅⋅⋅MeCN orientation is preferred in the ground state. Comparing the two classes of 

complexes, Pt(pop) and M(dimen), we note that the largest metal-metal contractions occur 

when there is a sufficiently flexible bridging ligand. The cage of four pop ligands, which places 

the two metal atoms at a much shorter ground-state distance than diisocyanide ligands, 

restricts structural changes caused by dσ*→pσ excitation – a conclusion that was drawn above 

from Raman data. 

 Deeper insight into electron density redistribution and origins of the structural changes 

upon dσ*→pσ excitation was obtained by excited-state DFT calculations on lowest excited 

singlet and triplet states of Pt(pop-BF2), Ir(dimen), and Rh(bridge) [50, 70, 82, 90, 92]. Since 

singlet and triplet dσ*pσ excited states arise predominantly (≥95%) from dσ*→pσ 

(HOMO→LUMO) one-electron excitation, inspecting the (de)localization of these two orbitals is 

usually sufficient to understand the excited-state character. Since the HOMO is invariably an 

antibonding combination of metal (n-1)dz2 orbitals with ns and np contributions (Pt(pop-BF2): 
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64% 5dz2, 14% 6s, 5% 6p [50]; short/eclipsed Ir(dimen) isomer: 56% 5dz2, 14% 6s, 18% 6p; 

long/eclipsed Ir(dimen) isomer 61% 5dz2, 18% 6s, 15% 6p  [82]; Rh(bridge): 56% 4dz2, 13% 5s) 

[92]), structural variations of excited-state character are mostly caused by variations in LUMO 

delocalization. In the case of Pt(pop) and Pt(pop-BF2), the LUMO consists of ca. 43% 6pz and 53-

56% of pop-localized orbitals, (Figure 4). The dσ*pσ states have partial MMLCT character and 

the outward positioning of excited electron density at the PtP4 faces could be of importance in 

excited-state reactivity [51, 52] and solvent interactions. (Note that the singly-occupied dσ* 

orbital also points out of the excited molecule along the Pt-Pt axis, Figure 4.) Excited electron 

density in isocyanide complexes is mostly distributed over the πz*(C≡N) orbitals: 34-36% 5pz, 

66% CN in Ir(dimen) [82]; 22% 4pz, 70% CN in Rh(bridge) [92]. dσ*→pσ excitation of isocyanide 

complexes thus involves pronounced charge transfer (MMLCT) to the C≡N groups, where the 

excited electron density distribution is anisotropic, oriented in the z-direction (parallel to the 

metal-metal axis). Accordingly, electron depopulation of Rh atoms in Rh(bridge) on going to the 

3dσ*pσ state was documented by DFT-calculations [92]; and the increased "π-back donation" 

was manifested experimentally by a ~16 cm–1 downshift of the C≡N stretching frequency [103]. 

(It is interesting to note the difference from the textbook case of π back donation. In dσ*pσ 

states, electron density is transferred to the π* ligand orbital from a metal np orbital, instead of 

the usual dπ-π* overlap.) 

 Experimentally documented metal–metal bond shortening has been qualitatively 

reproduced by many DFT calculations, optimizing the 3dσpσ excited state in the gas phase [83, 

90, 92] or solution [50, 70, 104]. The quantitative match with experimental values varies, 

depending on the functional, basis set, solvent model, etc. Most of the calculations also 
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correctly predict that metal-ligand bonds will be slightly lengthened. Recent DFT results on 

Pt(pop-BF2) and Ir(dimen) are shown in Table 1. Metal-metal bond shortening in the 3dσ*pσ 

state is accompanied by increasing bond order that reflects partial σ bond formation (Tables 2, 

5). 

Although excited-state potential energy surfaces have not been calculated for d8-d8 

complexes (except Rh(dimen) in the gas phase [83]), it is reasonable to expect that the singlet 

and triplet dσ*pσ surfaces are nearly nested, as they have the same orbital origin. Indeed, 

nearly identical Pt–Pt bond-lengths were calculated [50] in singlet and triplet dσ*pσ states of 

Pt(pop) and Pt(pop-BF2). Their minima are shifted to shorter metal-metal distances relative to 

the ground state (see above) and their shapes are more constricted because of higher 

stretching force constants. Essentially parabolic (harmonic) shapes of ground-state and dσ*pσ 

excited-state potential energy surfaces along the metal-metal coordinate are well established 

spectroscopically for Pt(pop), Pt(pop-BF2), Rh(bridge), Rh(TMB) and Ir(TMB), usually by 

observing ν(M-M) progressions in absorption and/or emission spectra, with high vibrational 

quantum numbers (up to 20) occurring with equal spacing [35, 36, 42, 43, 58, 86]. (In some 

cases, the evidence also comes from symmetric spectral band shapes or observation of ν(M–M) 

Raman progression [7, 37, 99].) In contrast, Rh(dimen) and Ir(dimen)  have strongly anharmonic 

ground- and excited-state energy surfaces (documented experimentally as well as 

computationally) [19, 21, 70, 74]. 

 Large dσ*pσ singlet-triplet splittings (3000 - 3700 cm–1 for bridged RhI complexes [7, 

19]; 5200-5400 and 5750 cm–1 for Pt(pop) and Pt(pop-BF2), resp.  [36, 42, 58]; 3450 and 5100 

cm–1 calculated for long/eclipsed and short/twisted Ir(dimen), resp.) and energy separations 
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from higher-lying excited states are other photophysically relevant features. The gaps between 

1dσ*pσ and the next higher state in Pt(pop) and Pt(pop-BF2) were calculated [50] as 4200 and 

5800 cm–1, respectively. Even larger gaps (8-10000 cm–1) can be estimated for Rh(TMB) and 

Ir(TMB) from their MCD spectra [94], ~11000 cm–1 for Rh(bridge) [7] and ~5600 cm–1 for 

Rh(dimen) [19]. A gap of 6020 cm–1 was calculated for Ir(dimen). 
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Table 3. Photophysical properties of selected d8-d8 complexes. 

 τS  φFl τT φPh Remarks Ref. 

Pt(pop) a 

0.7 ps 1.5×10–4 9.4 µs 0.61 in MeCN, 293 K [42, 48] 

11.0 ps - - - DMF, 293 K 

[42, 47] 
13.7 ps 1.6×10–4 9.8 µs 0.52 H2O, 293 K 

25.6 ps - - - EtOH, 293 K, 293 K 

30.3 ps - - - Ethylene Glycol, 293 K 

53.8 ps 
(740) 

- - - 
1:2 H2O:Glycerol, 293 K 

(80 K) 

[46] 

66.4 ps 
(1860) 

- - - 
1:2 D2O:d3-Glycerol 

(80 K) 
44.1 ps 
(850) 

- - - 4:1 EtOH:MeOH 

46.3 
(1900) 

- - - 4:1 EtOD:MeOD 

18.4 ps 
(660) 

- - - 2-MeTHF/EtCN 

101.5 ps 
(620) 

- - - 
PMMA film 

(80 K) 

Pt(pop-BF2) a 
1.6 ns 

τISC=2.1 ns h 
0.27 8.0 µs 0.49 in MeCN, 293 K [57] 

Rh(bridge) b 
1.3 ns 0.07 8.3 µs 0.32 

~295 K, 2MeTHF/EtCN, 

τFl in MeCN [7, 15] 
- 0.08 12.5 µs 0.6 77 K, 2MeTHF/EtCN 

Rh(TMB) b 

900 ps 0.055 30 ns ~10–3 
~295 K, 2MeTHF/EtCN, 

τFl in MeCN, EtOH/MeOH 
or PMMA 

[7, 8, 
19] 

820 ps    MeCN, room T 

1.4 ns 0.09 20.5 µs 0.5 
77 K, 2MeTHF/EtCN, 

τFl in EtOH/MeOH or 
PMMA (1.8 ns) 

Rh(dimen) c 
230 ps 0.0016 <1 ns <10–4 

295 K, 2MeTHF/MeCN, 

τFl in PMMA,  

φFl is exc.-wavelength 
dependent 

[19] 
 

1.5 ns 0.016 21 µs 0.17 
77 K, 2MeTHF:MeCN, τFl 

in PMMA 

Ir(dimen) c 63 - 0.41 µs - MeCN, room T [72] 

Ir(pz)(CO)(cod) d 
<20 ps ~10–4 0.25 µs 7.8×10–3 

295 K, MeCN, τfl in 
cyclohexane 

1,2-C2H2Cl2 enhances ISC 

[8, 10, 
105] 

- - 2.68 µs - 77 K, MeCN [10] 
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Ir(pz*)(CO)2 e 
~100 ps 0.0051 3.3 µs 0.096 300 K, 2-Methylpentane 

[9] 
  10.9 µs  77 K 

Ir(pz*)(CO)(PPh2

OCH2CH3) f 
100 ps 0.0023 1.1 µs 0.025 MeCN, room T [11] 

[Pt(µ-pz')(ppy)]2 g 145 fs - 0.85 µs 0.03 toluene, room T [66] 
a Bu4N+ salts; b PF6 or O3SCF3 salts; c PF6 salt; d Ir2(µ-pyrazolyl)2(1,5-cyclooctadiene)2 (Fig. 2); e 
Ir2(µ-3,5-Me2-pyrazolyl)2(CO)4; f [Ir2(µ-3,5-Me2-pyrazolyl)2(CO)2(PPh2OCH2CH3)2 (Fig. 2); g Pt2(µ-

3,5-tBu2-pyrazolyl)2(2-phenylpyridine)2 (Fig. 14); h Because of large φfl, the nonradiative decay 
lifetime τISC differs from total decay lifetime. 
 

Table 4. Temperature dependence of 1dσ*pσ excited-state decay kinetics. Parameters were 
obtained by fitting nonradiative decay rate constants to a 2-channel equation [46]  kISC = ko + 
(A/(√kBT))exp(-Ea/kBT). 
 

 kISC  (s–1) a 
ko (s–1) A (s–1cm1/2) Ea (cm–1) Remarks Ref. 

Pt(pop) 

1.4×1012 - - - ~294 K, MeCN [48] 

5.4×1010 1.5×109 2.6×1014 1190 2-MeTHF/EtCN 

[46] 

1.9×1010 1.5×109 6.0×1014 1590 1:2 H2O:Glycerol, 293 K  

1.5×1010 5.8×108 2.7×1015 1930 1:2 D2O:d3-Glycerol 

2.3×1010 1.3×109 2.2×1014 1340 4:1 EtOH:MeOH 

2.2×1010 6.3×108 3.7×1014 1450 4:1 EtOD:MeOD 

9.9×109 1.7×109 9.2×1012 890 PMMA film 

Pt(pop-BF2) 

4.7×108 8.5×107 3.0×1014 2230 MeCN [57] 

7.6×108 3.4×107 
1.9×1013 1600 

solid [58]} 
5.6×1010 450 

Rh(bridge) 7×108 - - - 2-MeTHF/EtCN [7] 

Rh(TMB) 
1.1×109 7.2×108 1.0×1012 1070 

4:1 EtOH:MeOH 
 

[7] 

1.2×109 7.0×108 1.6×1012 1110 
4:1 EtOD:MeOD 

(Ea in PMMA : 1110 cm–1) 

Rh(dimen) b 4.5×109 6.8×108 8.6×1012 1030 PMMA [19] 
a At 293 – 300 K. b Data were fitted to ko + A'exp(–Ea/kBT) [19]. The A' value was converted to A 
by multiplying by 14.27 cm1/2 (T = 293 K). 
 

4. Excited states: photophysics  

4.1. 
1
dσ*pσ lifetimes and intersystem crossing 
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The 1dσ*pσ states have lifetimes in the pico-nanosecond range (Table 3) that are much 

longer than those (femto-picosecond range) of most transition metal complexes [66, 106-119]. 

1dσ*pσ states decay radiatively to the ground state and nonradiatively to the lowest triplet 

(3dσ*pσ). The rate of intersystem crossing (ISC) to 3dσ*pσ is solvent-, temperature-, and 

structure- dependent [7, 19, 46-48, 57, 58]. The most striking example of the latter is the 

dramatic increase in the 1dσ*pσ lifetime (~2290×) and fluorescence yield upon 

perfluoroboration of Pt(pop) to Pt(pop-BF2) (Table 3) [57].  

For symmetry reasons, first-order spin-orbit coupling (SOC) between 1dσ*pσ and 

3dσ*pσ is forbidden, while large energy gaps to higher states limit 2nd order (indirect) SOC. As 

a result, 1dσ*pσ and 3dσ*pσ are nearly pure singlets and triplets (96 and 98% singlet and triplet 

character, respectively, was calculated [50] for Pt(pop) and Pt(pop-BF2)). The ISC rate, which is 

nearly temperature independent up to 80-100 K, increases exponentially at higher 

temperatures (Table 4). Such temperature dependence is usually interpreted in terms of a two-

pathway model consisting of slow direct ISC along with a thermally activated pathway [7, 19, 

46, 58]. Considering the large singlet-triplet energy gap and nearly nested potential energy 

surfaces, the direct pathway can be explained by weak coupling [120] to higher vibrational 

levels of the triplet. The small SO coupling between singlet and triplet dσ*pσ states could arise 

from second-order interactions via high-lying Eu states of partial pπpσ and dπpσ character 

predicted by SO-TDDFT calculations [50]. The activated ISC pathway was originally interpreted 

[46] as thermal population of a higher-lying intermediate triplet state that would undergo 

ultrafast conversion to the lowest triplet (3dσ*pσ). The activation barrier would then 

correspond to crossing between 1dσ*pσ and intermediate-state potential energy surfaces (i.e., 
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the high-temperature limit of a quantum mechanical nonradiative transition between two 

strongly coupled states [120], see also ref. [46]). However, experimental activation energies 

(Table 4) are much smaller than the energy gaps between 1dσ*pσ and any of the higher triplet 

states (5670 and 3810 cm–1 for Pt(pop-BF2) and Pt(pop), respectively, at the optimized 1dσ*pσ 

geometry [50]). Still, an intermediate state could be present, provided that its energy falls 

sharply along a coordinate that is not coupled to the spectroscopic dσ*pσ singlet and triplet 

transitions (and, hence, not observed in the vibronic structure of emission or absorption 

spectra). A crossing between 1dσ*pσ with such a state could then occur along this ISC-active 

coordinate even if the vertical energy gap at the 1dσ*pσ minimum is too large. Evidently, 

vibrational activation along this coordinate would be needed to bring the excited molecule to 

the state-crossing region. In fact, some kind of distortion is the basis of all alternative 

explanations of the temperature-activated ISC pathway considered so far. In general, it can be 

assumed that 1dσ*pσ → 3dσ*pσ ISC requires a structural (vibronic) distortion that either makes 

the two states directly SO-coupled by symmetry lowering or transiently brings down a higher-

lying excited state (presumably of 3Eu origin with a pπpσ or, better, a dπpσ component) that 

can mediate ISC either by enhancing 2nd-order SOC between dσ*pσ singlet and triplet states or 

by acting as an intermediate [47, 48, 50, 57, 58]. For example, an antisymmetric twist around 

the metal-metal bond would disrupt π-interaction and decrease the energies of pπpσ and dπpσ 

excited states. More extensive transient distortions also involving fluctuating interactions 

between the excited binuclear complex and solvent molecules that would temporarily destroy 

the symmetry between the two metal centers and mix electronic states were recently indicated 

by QM/MM simulations of Pt(pop) in MeCN [48]. Such distortions would lead to large 
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fluctuations in excited-state energies and frequent energy crossings between the lowest excited 

dσ*pσ singlet and the second triplet that in turn could provide an ultrafast ISC pathway. In this 

model, experimental activation energies do not correspond to energy gaps between 1dσ*pσ 

and upper intermediate states but, instead, to energies required to reorganize 1dσ*pσ-excited 

systems (the binuclear complex + solvent molecules + counterions) to ISC-active configurations. 

Or, it may be argued that higher temperatures enhance structural fluctuations and increase the 

frequency of populating ISC-active configurations that is directly related to the ISC rate. Faster 

ISC would then be expected for structurally more flexible d8-d8 molecules; and, note that the 

fluorescence lifetime decreases and the nonradiative decay rate constant kISC increases (Tables 

3, 4) on going from Rh(bridge) to Rh(TMB) and Rh(dimen) [7, 19]. Even more pronounced is the 

change in the ISC rate upon perfluoroboration of Pt(pop) to Pt(pop-BF2) in MeCN, where kISC 

drops ~3000-times [48, 57] as the structural rigidity increases, owing to covalent BF2 links 

between pop ligands. Moreover, energy gaps between 1dσ*pσ and higher states are larger in 

Pt(pop-BF2) [50], which also would disfavor ISC. (More extensive structural 

distortions/fluctuations would be required if the coupling/intermediate states lie high in 

energy.) The solvent dependence of the Pt(pop) ISC rate [46-48] (Table 3) supports this 

hypothesis, since the ISC rate decreases as the energy gap between the 1dσ*pσ absorption 

band and the first UV band increases [46, 48]. It also appears that the ISC rate is faster in low-

viscosity media, which may be related to solvent-induced structural fluctuations. 

The ISC rate has been measured in microcrystalline (Bu4N)4[Pt(pop-BF2)] over a very 

broad temperature range 5 – 310 K [58]. The fluorescence lifetime and kISC were found to be 
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nearly temperature-independent up to ca. 80 K (3.2-3.1 ns; 3.7-3.6×107 s–1), followed by a 

smooth rise at higher temperatures (Figure 8). 

 

Figure 8. Temperature dependence of the 1dσ*pσ nonradiative (ISC, green), radiative (red), and 
total (black) decay rate of solid (Bu4N)4[Pt(pop-BF2)]. Inset: proposed ISC mechanism. 
Reproduced with permission from ref. [58]. Copyright (2016) American Chemical Society. 

 

The temperature dependence of kISC was fitted over the 5 – 310 K range to a Boltzmann-

type equation assuming a temperature-independent direct ISC due to weak 1dσ*pσ - 3dσ*pσ 

coupling along with two thermally-activated processes with activation energies of 450 and 1600 

cm–1 (Table 4) that were tentatively attributed to separate pathways leading to the A1u and Eu 

spin-orbit components of the 3dσ*pσ state, likely involving multiphonon activation and spin-

vibronic interactions [58]. The observed Boltzmann-like behavior indicates an important role for 

low-frequency phonons in promoting ISC. Further physical insight into this type of ISC 

temperature dependence could be obtained [121] by treating it as a vibrationally activated 

quantum-mechanical nonradiative process [46, 89, 120]. Acceptable fits to the Pt(pop-BF2) data 

using equations based on the Fermi Golden Rule required the presence of an intermediate 
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excited state energetically close to the 1dσ*pσ state [121]. As was discussed above, the energy 

of such a state would have to decrease rapidly along the normal coordinate corresponding to 

the activating vibration.  

It is worth noting that different ISC models proposed so far point in the same direction: 

a thermally induced distortion that brings the singlet-excited d8-d8 species to a configuration 

where ISC is activated either by enhanced SOC or by crossing involving an intermediate state. 

Such distortion could be caused by solvent fluctuations, low-frequency phonons, and/or 

skeletal vibrations, depending on particular conditions. 

 

4.2. 
3
dσ*pσ decay mechanism 

Weak SOC with high-lying Eu singlets splits the dσ*pσ triplet state to higher Eu and lower 

A1u SO states (sublevels). Zero-field splitting (zfs) values were determined by measuring 

phosphorescence lifetimes at low temperatures, where Boltzmann populations of the individual 

SO states are temperature-dependent. Values of 41-50 and 40 cm–1 were obtained for Pt(pop) 

[35, 36, 38, 41] and Pt(pop-BF2) [58], respectively. A smaller zfs of about 11 cm–1 was 

determined for Rh(bridge) [122]. In general, zfs in the lowest triplet is too small to influence 

experimental results obtained above ca. 120 K, where equal population of all SO states can be 

assumed. Eu phosphorescence is symmetry-allowed through ca. 1% admixture of higher singlets 

[50]). On the other hand, phosphorescence from A1u is symmetry forbidden. Still, 

phosphorescence from A1u can be activated by simultaneous excitation of a vibrational mode of 

eg symmetry (A1u⊗Eg = Eu(x,y)). (This is in D4h core symmetry. bg is the equivalent mode in C2h.) 

Lifetimes of the Eu (4.5 µs) and A1u (8.6 ms) triplet sublevels of Pt(pop-BF2) differ by more than 3 
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orders of magnitude, reflecting the symmetry allowed and forbidden nature of their respective 

radiative decays [58]. The vibronic activation of A1u  radiative decay is manifested by the shift of 

the phosphorescence band by ~220 cm–1 to lower energy as the temperature drops below 10 K 

(and Eu emission frozen out), see Figure 9. 

 

Figure 9. High-resolution phosphorescence (black, red) and excitation (blue) spectra of solid 
(Bu4N)4[Pt(pop-BF2)] measured at 10 and 1.3 K. 0−0 − 40 − 180 cm−1 in the lower (enlarged) 
figure denotes the false phosphorescence origin of the A1u ↔ A1g(ground state) transition that 
is shifted by 220 cm−1 to lower energy with respect to the Eu ↔ A1g 0−0 transi^on (at 20460 
cm−1), see the text. Reproduced with permission from ref. [58]. Copyright (2016) American 
Chemical Society. 

 

Of this shift, 40 cm–1 is due to zfs and the remaining 180 cm–1 is the energy of the promoting 

vibration. Indeed, several eg (bg) deformation modes were identified [58] by Raman 

spectroscopy and DFT calculations in the 120 – 200 cm–1 range. The same behavior was found 

for Pt(pop) whose Eu and A1u SO states have lifetimes of 1.58 and 880 µs, respectively, [35] and 
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A1u radiative decay is promoted by a ~200 cm–1 vibration [35, 38, 41, 43]. This decay mechanism 

is expected to be general for d8-d8 complexes although the parameter values will differ. 

Phosphorescence lifetimes and quantum yields for Pt(pop) [35, 38], Pt(pop-BF2) [58] and 

Rh(bridge) [7] are nearly temperature independent above ca. 100 K, indicating that 

nonradiative decay to the ground state occurs primarily in the weak-coupling limit [120]. In 

contrast, Rh(dimen) [19] and Rh(TMB) [7] exhibit temperature-dependent phosphorescence 

lifetimes at higher temperatures that were interpreted in terms of a two-pathway model (a 

temperature-independent weakly coupled nonradiative transition along with an activated 

process). An activation barrier of 2610 cm–1 was determined for Rh(dimen) [19] in PMMA.  

Activation energies associated with Rh(TMB) phosphorescence decay were obtained from 

measurements in various media (in cm–1): 3420 (PMMA), 2080 (DMF solution), 2660 and 2720 

(H2O and D2O), 1970-2980 (solid, counterion-dependent) [123]. A linear correlation between 

the preexponential factor and activation energy was taken as confirmation that the decay 

mechanism is independent of the medium [123]. The finding that activated 3dσ*pσ decay 

occurs only for the two structurally flexible Rh-isocyanide dimers suggests that the activation 

process involves structural reorganization of the triplet state that would lead to surface 

crossing with one of the ground-state conformers. This interpretation was further supported by 

a ~1000 cm–1 red shift of both fluorescence and phosphorescence of Rh(dimen) in EtOH glass 

upon melting at 165 K. It is likely that a similar process is responsible for the relatively short 

Ir(dimen) lifetime (410 ns at room temperature [72], although the  temperature dependence 

has not been reported). Temperature-dependent phosphorescence decay also was found for 
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Ir2(µ-pz)2(COD)2, with activation energies in the 2300 – 2600 cm–1 range, depending on 

pyrazolyl bridge substituents (H, CH3, CF3) [10]. 

Temperature dependence of phosphorescence decay is accompanied by a pressure 

dependence [124]. 3dσ*pσ lifetimes of Rh(TMB) and Ir(pz)(CO)(cod) increase with increasing 

pressure, with activation volumes of +4.6 and +2.8 cm3mol–1 in MeCN. These increases were 

interpreted [124] as evidence for a strong-coupling [120] decay mechanism whereby the 

excited molecules undergo expansive distortion to achieve a crossing point with the ground-

state potential energy surface. On the other hand, very weak pressure dependence and small 

negative volumes of activation were determined [124] in MeCN for Pt(pop) (-0.2 cm3mol–1) and 

Rh(bridge) (-0.5 cm3mol–1), whose phosphorescence decays are temperature-independent. This 

observation agrees with the weak-coupling mechanism [120] that does not require a structural 

distortion. 

 

4.3. Singlet and triplet excited-state properties and reactivity 

The presence of long-lived singlet and triplet dσ*pσ excited states, which gives rise to 

the rare phenomenon of dual emission (fluorescence + phosphorescence), opened the way for 

direct probing of differences in the structures and reactivities of these two states of identical 

orbital origin but different spin multiplicity. Although d8-d8 complexes appear to be well suited 

for investigations of spin effects on photoreactivity [8, 11, 16, 97, 105], this area remains 

relatively unexplored. Thermodynamics is different for electron transfer reactions of singlet and 

triplet states. For example, Pt(pop-BF2) is expected to be a stronger photooxidant in the 1dσ*pσ 

state than in 3dσ*pσ, with excited-state reduction potentials of +1.57 and +0.86 V (vs. Fc+/Fc), 
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respectively [61]. Singlet and triplet excited-state electron transfer reactivity was studied in the 

Ir2(µ-3,5-Me2-pyrazolyl)2(CO)2(PPh2OCH2CH2-pyridinium-R)2 series, where intramolecular 

photoinduced electron transfer occurs from 1dσ*pσ as well as 3dσ*pσ states of the Ir2 unit to 

the appended pyridinium acceptor [11]. Singlet excited-state reactions are clearly faster due to 

larger driving forces. Rates of singlet and triplet forward ET as well as of the back reaction were 

measured for various R groups; and the rate vs. driving force plot provided compelling 

experimental evidence for Marcus inverted behavior [11]. A theoretical study of this process, 

which stressed the role of structural fluctuations, also showed that the electronic coupling 

between the pyridinium acceptor and the singlet- and triplet-excited Ir2 chromophore is similar 

[16]. Relevant to atom-transfer photoreactivity, 1,2-dichloroethane quenches the dσ*pσ singlet 

and triplet of Ir2(µ-pyrazolyl)2(1,5-cyclooctadiene)2 with rate constants of 3×109 and 7.3×105 M–

1s–1, respectively [105]. However, this difference was later attributed to enhanced ISC in the 

presence of 1,2-dichloroethane [8]. 

 

4.4. Excited-state spectroscopy 

In addition to dual emission (spontaneous fluorescence and phosphorescence), d8-d8 

complexes exhibit stimulated emission (SE) from the 1dσ*pσ state. SE, as well as triplet and 

singlet dσ*pσ excited-state absorption (ESA), are observable by time-resolved pump-probe UV-

vis spectroscopy. (SE and ESA are manifested by signals of opposite signs.) The 1dσ*pσ ESA of 

Rh(TMB) displayed a strong feature between 400 and 500 nm, whereas 3dσ*pσ was 

characterized by a broad, weak absorption extending from 350 to 750 nm [8, 125]. The strong 

singlet-specific band at ~440 nm was attributed to a dσ*→pσ transition that produces a 
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doubly-excited (pσ)2 state, which can exist only as a singlet [8]. On the other hand, Pt(pop) in 

ethylene glycol (τISC = 30.3 ps) exhibited essentially the same broad ESA around 335 and 460 nm 

from early picosecond time delays until 140 ps [47], attributable to overlapping singlet (at early 

times) and triplet absorptions (the latter appeared to be slightly broader on the red side, 

toward 480 nm). Pt(pop) SE occurs at ca. 400 nm, and its decay allowed determination of 

1dσ*pσ lifetimes as a function of solvent [47, 48]. Analysis of time-resolved spontaneous and 

stimulated Pt(pop) emission in different solvents revealed two periods of 1dσ*pσ vibrational 

relaxation (210-280 fs and 1.3-2.1 ps) [47]. Both spontaneous and stimulated emission signals 

exhibited harmonic oscillations that will be discussed below. Similar behavior was found [85] 

for Pt(pop-BF2) in MeCN, where 1dσ*pσ shows SE at 393 nm and the main ESA feature at 442 

nm that blue-shifts to 425 nm, broadens and loses about half its intensity on going to the 

3dσ*pσ state. Both excited states display a series of much weaker bands in the visible range 

[85]. In the case of Ir(dimen) in MeCN, SE decay revealed a 63 ps 1dσ*pσ lifetime [72] and rich 

oscillation dynamics [70]. Pronounced Ir(dimen) ESA has not been observed in the visible range 

[70, 72], perhaps due to broad overlapping ground-state absorptions. 

 

4.5. Vibrational coherence 

Coherent vibrational oscillations in the 1dσ*pσ state were observed by fluorescence 

upconversion and time-resolved absorption (SE and ESA) for Pt(pop) (Figure 10) and Pt(pop-BF2) 

[47, 48, 85], as well as for Ir(dimen) (SE only) [70]. Femtosecond pulsed laser excitation of 

Pt(pop) coherently excites ca. three vibrational levels, creating a wave packet that oscillates 

between classical turning points on the excited-state potential energy surface [47]. 
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Figure 10. Kinetics traces obtained from time-resolved absorption spectra at fixed probe 
wavelengths following 370 nm excitation of Pt(pop) in ethylene glycol. Negative traces 
correspond to ESA, positive ones to ground-state bleach and SE. The vertical dashed lines help 
identify the π phase shift between the oscillations at the red and blue sides of the SE band 
(compare, e.g., 407 and 380 nm traces) that is characteristic of oscillations between classical 
turning points. Reproduced with permission from ref. [47]. Copyright (2011) American Chemical 
Society. 
 

Oscillations with 224 and 281 fs periods and a 2.1 ps damping (decoherence) time were 

observed in ethylene glycol (Figure 10). Fourier transformation converted the oscillation 

periods into wavenumbers (149 and ~116 cm–1) that can be assigned to excited- and ground-

state ν(Pt–Pt) vibrations, respectively. (The latter oscillations, which are activated by a resonant 

impulsive stimulated Raman process in the ground state, were observed in the bleached 

ground-state absorption region.) The decoherence time (1.8-2.3 ps, depending on solvent) was 

much longer than depopulation of individual vibrational levels (~500 fs [47]). The surprisingly 

long-lived coherence was attributed [47] to the harmonic 1dσ*pσ potential along the Pt-Pt 

coordinate (virtually the only one undergoing change upon excitation, the vibrational frequency 

of a harmonic oscillator would not change during relaxation from the initially populated levels v 

= 6-9 toward v = 0). Similar behavior was observed for Pt(pop-BF2) [85]. Current studies on 
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coherence transfer in singlet- and triplet-excited Pt(pop) in MeCN have led to deeper insight 

into the ISC mechanism [48]. 

 
 

Figure 11. Top: time-resolved absorption spectra or Ir(dimen) in the SE region measured after 
50 fs excitation of the long/eclipsed isomer at 477 nm (left) and the short/twisted isomer at 590 
nm (right). Bottom: Fourier transforms of the oscillatory signal around 710 nm reveals the 
frequencies of contributing vibrations. Reproduced with permission from ref. [70]. Copyright 
(2011) American Chemical Society. 
 

 Ir(dimen) in MeCN shows an SE signal (Figure 11) whose oscillation pattern (but not the 

emission energy, 710 nm) depends on the excitation wavelength [70]. Exciting the long/eclipsed 

isomer with a 50 fs pulse at 477 nm creates a ν(Ir–Ir) wave packet (75 cm–1), whereas excitation 

of the short/twisted isomer produces ν(Ir–Ir) and dihedral (C-Ir-Ir-C) twist wave packets 

oscillating at 80 and 119 cm–1, respectively. Ground-state ν(Ir-Ir) oscillations at 11 and 48 cm–1 

were observed in bleached ground-state absorption regions of the long/eclipsed and 

short/twisted isomers, respectively. This experiment clearly demonstrated the existence of two 
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different ground-state isomers that absorb at different wavelengths, while the observation of 

the same SE signal at both excitation wavelengths indicates that the 1dσ*pσ state has a single 

relaxed conformation. Further insight into Ir(dimen) excited-state (1dσ*pσ) dynamics was 

obtained from QM/MM calculations [74] on the long/eclipsed isomer in MeCN. Three 

oscillatory motions were identified, in which the whole population of excited molecules 

vibrates in phase: ν(Ir-Ir), twist, and ligand-breathing. The ν(Ir-Ir) frequency was calculated (70 

cm–1) near the experimental value [70] of 75 cm–1. Unlike Pt(pop), the Ir(dimen) excited-state 

potential energy surface is anharmonic – much steeper on the short Ir-Ir side [21, 74]. Hence, 

the ν(Ir-Ir) frequency increases during vibrational relaxation as the potential becomes more 

harmonic near the energy minimum. Vibrational energy transfer (IVR) from ν(Ir-Ir) to the 

breathing mode was found to dominate at early times, quickly becoming hindered by the 

solvent [74]. Somewhat counterintuitively, it turns out that solvation facilitates ν(Ir-Ir) 

oscillations and sustains coherence. It was argued [74] that the most important solute-solvent 

interactions occur through ligands rather than Ir atoms. (This likely is the case also for Pt(pop), 

where the ligands could engage in H-bonding with solvent molecules [48].) The principal 

decoherence mechanism in Ir(dimen) was proposed [74] to be statistical, coming from a broad 

range of initial configurations. This mechanism contrasts with that proposed for Pt(pop), where 

decoherence is mostly dynamical, attributable to energy dissipation in each excited molecule 

[47, 48]. This difference highlights the importance of ligand rigidity in determining the 

structural/solvational distribution width of ground-state ensembles: narrow for Pt(pop) and 

Pt(pop-BF2); broad for the much more flexible Ir(dimen). 
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4.6. Relaxation of higher excited states 

Whereas fluorescence and phosphorescence excitation spectra and absorption spectra of 

Rh(bridge) and Rh(TMB) coincide in the 1dσ*pσ absorption region, the fluorescence excitation 

spectra are much weaker at shorter wavelengths, namely in the range of the sharp intense 

dπ→pσ 1MMLCT band at ~310 nm [7]. The same behavior was found for LMMCT bands of 

Pt(pop-BF2) [48] (Figure 12). It follows that UV excitation into higher excited states triggers 

ultrafast relaxation processes that largely bypass the lowest excited singlet state (1dσ*pσ), 

directly populating the phosphorescent dσ*pσ triplet. A coherent evolution of UV-excited 

LMMCT states into the lowest 3dσ*pσ (and, in some cases also 1dσ*pσ) was indicated by 

femtosecond UV-vis spectroscopy of Pt(pop) in H2O and MeCN, and Pt(pop-BF2) in MeCN [85]. 

For Rh(bridge), it was determined (Figure 13) [7] that the 1MMLCT state (1Eu) primarily decays  

(95%) to the corresponding 3MMLCT (3Eu) state (only 5% to 1dσ*pσ). 3MMLCT undergoes 88% 

internal conversion to 3dσ*pσ and 12% ISC to 1dσ*pσ (1A2u). Altogether, only ~17% of the initial 

excited 1MMLCT population decays though the lowest excited singlet state (1dσ*pσ). In the 

case of Rh(dimen), part of the 1MMLCT excited population decays directly to the ground state, 

bypassing both dσ*pσ singlet and triplet states [19]. 
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Figure 12. Fluorescence (red) and phosphorescence (black) excitation spectra of Pt(pop-BF2) in 
MeCN at 294 K [this work]. The spectra are normalized at the 1dσ*pσ peak maximum (364 nm). 
To compare with the absorption spectrum, see Figure 5-bottom. 
 

 

Figure 13. Excited-state conversions in Rh(bridge) at room temperature in MeCN. Reproduced 
with permission from ref. [7]. Copyright (1993) American Chemical Society. 
 

 

This behavior of UV-populated states is typical for d8-d8 complexes, observed also for 

Rh(TMB), Ir(TMB), and Ir2(µ-pyrazolyl)2(CO)4 [7, 9]. It is attributable to symmetry-allowed SO 

interactions between high-lying states (mostly 1Eu) and 3dσ*pσ (A2u). High-lying excited states 
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have mixed-spin character and different geometries than 3dσ*pσ, so that their potential energy 

surfaces may approach (cross) each other. Electronic relaxation of UV-states may proceed 

through a series of conical intersections involving the manifold of predominantly triplet MMLCT 

(isocyanides) or LMMCT (pop) states, some of which are spectroscopically silent. However, 

because of large energy gaps between those states and 1,3dσ*pσ, conversion of UV-states to 

3dσ*pσ  must occur at relatively high energies and geometries different from that of relaxed 

3dσ*pσ. (The same argument holds for minor pathways populating 1dσ*pσ and, for Rh(dimen), 

the ground state.) 

 Using valence-bond arguments, two zwitterionic singlet metal-to-metal CT excited states 

were predicted to occur at high energies (≤300 nm for Rh(bridge) and Rh(TMB)) [94]. These 

states arise from excitation of a 5d electron from one metal atom to the 6pz orbital on the 

other, giving rise to M+M–↔ M–M+ states (M+ = RhII, IrII or PtIII; M– = Rh0, Ir0 or PtI). Although no 

clear-cut experimental evidence for such states in d8-d8 systems is available, it would be 

interesting to know whether polar Mδ+Mδ– excited singlet states could be temporarily stabilized 

by solvent fluctuations, affecting the photophysics (ISC) or giving rise to unique singlet-state 

photochemistry. 

 

4.7. Metal-metal to ligand charge transfer and ligand-centered excited states 

Not all d8-d8 complexes have lowest singlet excited states of dσ*pσ character. 

Introducing a π-accepting 2-phenylpyridyl (ppy) ligand in complexes of the type Pt2(µ-

tBu2pz)2(ppy)2 (tBu2pz = 3,5-bis(tert-butyl)pyrazolate) changes the LUMO to π*(ppy), while the 

HOMO retains dσ* character. This situation gives rise to dσ*→π*(ppy) MMLCT lowest singlet 
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and triplet excited states (Figure 14) [64-67]. Ligand-centered (LC) states are the lowest ones if 

the Pt-Pt interaction is very weak and dσ* occurs below π(ppy) orbitals [64, 68]. The ground-

state Pt-Pt distance can be tuned by the pyrazolate substituents: the bulkier substituent, the 

shorter Pt-Pt distance. These compounds show strong long-lived phosphorescence and some of 

them are thermochromic and rigidochromic [64, 67, 126]. Their spectroscopic, photophysical, 

and electrochemical properties are broadly tunable by variations of the bridging and 

cyclometalated ligands [67]. Generally, fluid media and higher (room) temperatures support 

stronger Pt-Pt interactions, shift the MMLCT band to longer wavelengths and, in some cases, 

switch the character of the lowest excited state from LC to MMLCT. 

 

Figure 14. Structure of Pt2(µ-3,5-R2-pz)2(ppy)2, absorption spectra as a function of R: H (violet); 
Me (blue); Ph (green); tBu (red), and a qualitative MO diagram. Complexes with a long Pt-Pt 
distance have a lowest MLCT or ppy ligand-centered (LC) ππ* electronic transition localized at a 
single Pt center (left). Stronger Pt-Pt interactions increase the dσ* energy leading to an MMLCT 
lowest transition. The two upper levels correspond to in-phase and out-of-phase combinations 
of ppy π* orbitals. They are slightly split in energy because of interaction mediated by the Pt-Pt 
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bond. Reproduced with permission from refs. [68] and [67]. Copyright (2016, 2013) American 
Chemical Society. 

 

In the case of Pt2(µ-3,5-tBu2-pz)2(ppy)2, a Pt-Pt bond shortening of ~0.2 Å on going to the 

3MMLCT state was estimated by time-resolved X-ray absorption (XANES) [65] while a larger 

value of ~0.5 Å and ppy ligand rotation are indicated by time-resolved X-ray scattering [69]. DFT 

calculations predict a Pt-Pt contraction ranging from 0.3 to 0.8 Å, depending on the bridging 

ligand [65, 68, 69, 127, 128]. Unlike complexes with a dσ*pσ lowest excited state, the Pt-Pt 

contraction upon MMLCT excitation is attributable predominantly to depopulation of the dσ* 

orbital, since the pσ orbital is not involved.  

Pt2(µ-tBu2pz)2(ppy)2 shows remarkable coherence effects upon 1MMLCT excitation with 

510 nm laser pulses of ~50 fs duration [66]. Kinetics traces of polarized time-resolved 

absorption at 510 nm measured after excitation show oscillations that are π-shifted in the two 

polarizations (parallel and perpendicular to the excitation polarization), while oscillations were 

not observed in the trace measured at the magic angle. Oscillations persist until ca. 2 ps, which 

is longer than the ~145 fs ISC time. Their frequency changes sequentially. Oscillations start at 

320 cm–1 and after 200 fs their frequency changes to 110 cm–1. This unusual behavior was 

attributed to quantum beating between two electronic states resulting from excitation of a dσ* 

electron to the two π*(ppy) levels (see Figure 14). It was proposed that coherence is 

maintained through the ISC and the two oscillation frequencies (320, 110 cm–1) were 

interpreted as double the values of the splittings (Figure 14-bottom) of 1MMLCT and 3MMLCT 

states, respectively. According to this interpretation, oscillations are of electronic origin, 

corresponding to flow of excited electron density from one ppy ligand to the other and back 
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[66]. Alternatively, the 110 cm–1 oscillation could originate from the excited-state Pt–Pt 

stretching mode [69]. This behavior should be investigated more thoroughly, as it could have 

far reaching implications for assisting photoinduced electron and energy flows. 

 

4. Oxidized, reduced and superreduced states 

 Oxidation of d8-d8 complexes often is an irreversible 2-electron process promoted by 

axial coordination of Lewis bases (solvent molecules, halides, NCS–, NO2
–) [18, 20, 40, 60, 129]. 

The M-M bond shortens upon oxidative addition, for example from 3.243 Å in Rh(bridge)2+ to 

2.837 Å in [Rh(bridge)Cl2]2+ [129] or from 2.925 Å in Pt(pop) [33, 34] to 2.695 Å in [Pt(pop)Cl2]4– 

[130].  Oxidized species are coordinatively saturated d7-d7 complexes with a full metal-metal 

single bond. Each complex exhibits a very intense dσ→dσ* transition in the near UV spectral 

region whose energy depends on the extent of mixing between dσ and axial-ligand σ orbitals 

[40, 104, 129]. A weaker absorption band, attributed to dπ→dσ* transitions, occurs at slightly 

lower energies, usually in the visible range [40, 129].  

In contrast, Ir2(µ-3,5-R,R'-pyrazolyl)2(1,5-cyclooctadiene)2 (R,R' = H or Me) complexes 

undergo nearly reversible 1-electron oxidation in THF [131] or CH2Cl2 [132]. A second 

irreversible oxidation, which occurs in CH2Cl2 at more positive potentials, is facilitated by adding 

Lewis bases such as H2O (moisture) or MeCN. A single two-electron reversible oxidation to a d7-

d7 species with two axially coordinated MeCN molecules occurs in neat MeCN [132]. 

One-electron oxidized systems are primary products of oxidative quenching of 3dσpσ* 

excited states, which is a common photoreaction of bridged Rh isocyanides [15], pyrazolyl-

bridged Ir dimers [10, 11], Pt(pop) [49, 56] as well as Pt(pop-BF2) [89]. Upon oxidative 
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quenching of *Rh(TMB) by methylviologen, a transient band attributable to Rh(TMB)3+ was 

observed at 450 nm in MeOH (435 nm in MeCN) [15].  

Triplet dσ*pσ states also are quenched by electron donors (e.g., aromatic amines) [15, 

49, 56, 89], indicating formation of one-electron reduced species. Based on quenching and (in 

some cases) electrochemical experiments, 3dσ*pσ excited-state reduction potentials were 

estimated as (vs. Fc+/Fc, in MeCN): -0.1 V (*Rh(bridge) [15]), +0.7 V (*Pt(pop) [56]), and +0.86 V 

(*Pt(pop-BF2) [61]). One-electron reduced products were detected by flash photolysis as short-

lived intermediates: Rh(bridge)+ and Rh(TMB)+ exhibited broad absorption features at ~430 and 

~750 nm [15]. For Pt(pop)5–, very weak short-lived absorption around 400 nm was indicated by 

flash photolysis of Pt(pop)4– in the presence of N,N-dimethylaniline in MeOH [49]. Visible 

spectra of 1-electron reduced complexes were obtained by pulse radiolysis of Pt(pop) and 

Rh(TMB) in the presence of 1% t-butyl alcohol. Radiolysis-generated Pt(pop)5– in a phosphate 

buffer exhibited an intense peak at 420 nm and a weaker broad absorption at 580-600 nm that 

decayed with a 34 µs lifetime [133]. Rh(TMB)+ (in MeCN) displayed bands at 740 and 570 nm, 

similar to those detected by flash photolysis upon reductive quenching. Reversible one-electron 

electrochemical reduction (as well as oxidation) was observed for Ir2(µ-3,5-R2-pyrazolyl)2(1,5-

cyclooctadiene)2 complexes (R = H or Me); and electrochemiluminescence was detected upon 

cation/anion recombination [131]. (Electrochemiluminescence upon potential switching was 

seen also in the case of Pt(pop) that, however, shows neither reversible oxidation nor reduction 

[62, 63].) 

Electrochemical and spectroelectrochemical detection of reduced d8-d8 complexes 

proved to be challenging, presumably owing to their high reactivity. Reduced complexes have 
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been generated electrochemically and characterized for Pt(pop-BF2) [61] and Ir(dimen) [23]. 

Comparing the electrochemistry of these two systems has shed light on the effect of structural 

rigidity and LUMO delocalization on redox behavior. Pt(pop-BF2) undergoes [61] chemically 

reversible and electrochemically quasireversible reduction at −1.68 V (vs. Fc+/Fc), producing 

[Pt2(pop-BF2)4]5– (abbreviated Pt(pop-BF2)5–). A second reduction, which occurs at −2.46 V (peak 

potential), yields superreduced Pt(pop-BF2)6–. The reaction is chemically reversible at 0° C but 

electrochemically irreversible, indicating structural reorganization that disfavors electron 

transfer at the electrode. The two reductions correspond to successive filling of the pσ orbital, 

creating very rare pσ bonds: (pσ)1 bond in Pt(pop-BF2)5– (Figure 15) and (pσ)2 in Pt(pop-BF2)6– 

(Figure 16). Pt atoms in the superreduced species have a 5d86p1 electronic configuration 

(instead of the usual 5d9). This unique bonding model was supported by DFT calculations [61] 

that were validated by a good match of calculated and experimental UV-vis absorption and EPR 

spectra.  

The extent of Pt–Pt bond strengthening upon reduction was estimated from 

Mayer−Mulliken bond orders (Table 2), which increase from 0.23 in the parent to 0.27 and 0.34 

in the reduced and superreduced complexes, respectively; calculated Pt–Pt bond distances 

decrease from 2.901 to 2.815 and 2.740 Å (Table 1). We conclude that the rigid pop-BF2 cage 

accommodates the (pσ)2 bond in superreduced Pt(pop-BF2)6–, shielding it from the 

environment. The calculated Pt(pop-BF2)6– structure is slightly distorted, whereby one pair of P–

Pt–P angles on each side is larger than the other. However, the two Pt atoms are nearly 

equivalent electronically; their respective natural charges differ by only 0.035 e− [61]. 
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Of special interest are the changes in electronic absorption spectra along the Pt(pop-

BF2)n redox series (Figure 17) [61], which can be explained using the qualitative MO diagram 

shown in Figure 3-left: Pt(pop-BF2) exhibits the typical dσ*→pσ transition at 365 nm. Upon the 

first reduction, this band shifts to lower energy (416 nm); as the Pt–Pt interaction strengthens, 

the dσ* orbital is destabilized and pσ stabilized, decreasing the gap. A new weak spectral 

feature emerges at ~550 nm due to the pσ→LUMO+1 transition that cannot occur in the parent 

complex. The second reduction fills the pσ orbital. The dσ*→pσ transition disappears, being 

replaced by three weak bands due to transitions from pσ to higher unoccupied orbitals. (This 

qualitative model was supported by TDDFT calculations performed for each Pt(pop-BF2)n redox 

state [61].)  

 

Figure 15. Calculated SOMO (top) and spin-density distribution (bottom) in 1-electron reduced 
d8-d8 complexes: left Pt(pop-BF2)5–; right, Ir(dimen)+, both in MeCN solution. (DFT: 
PBE0/GD3/PCM-MeCN; this work). 
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Figure 16. HOMO of superreduced Pt(pop-BF2)6– (left) and twisted Ir(dimen)0 (right) in MeCN 
[this work]. HOMO shapes are virtually identical for twisted and eclipsed Ir(dimen)0 isomers. 
(DFT: PBE0/GD3/PCM-MeCN; this work) 
 

 
 

Figure 17. UV-vis absorption spectra of Pt(pop) (black), Pt(pop)5– (red) and superreduced 
Pt(pop)6– (blue) in MeCN. Measured spectroelectrochemically. (The intensity and shape of the 
~408 nm feature are probably affected by overlap with a residual Pt(pop)5– 416 nm band due to 
incomplete reduction.) Reproduced with permission from ref. [61]. Copyright (2016) American 
Chemical Society. 
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Figure 18. IR spectra recorded in the course of electrochemical reduction of Ir(dimen) in MeCN 
(containing 0.1 M Bu4NPF6). Top: the first reduction to Ir(dimen)+, bottom: the second reduction 
to Ir(dimen)0. Adapted with permission from ref. [23]. Copyright (1993) American Chemical 
Society. 
 

Ir(dimen) undergoes successive 1-electron reductions at -1.34 and -1.53 V (vs. Ag/AgCl 

in 1 M KCl; approximately -1.7 and -1.9 vs. Fc/Fc+), producing Ir(dimen)+ and Ir(dimen)0, 

respectively [23]. The infrared spectrum of Ir(dimen) [23] shows a single broad ν(C≡N) peak at 

2156 cm–1 (Figure 18) that shifts by 66 cm–1 to lower wavenumbers upon the first reduction, 

owing to π-back donation from the pσ SOMO to π*(C≡N) orbitals that is clearly seen in the 

SOMO distribution (Figure 15). A more profound change of the ν(C≡N) IR spectral pattern 

occurs upon the second reduction to Ir(dimen)0 whereby two downshifted features emerge at 

2058 and 1869 cm–1 [23]. Such a large ν(C≡N) splitting indicates the formation of two kinds of 

C≡N– ligands in the superreduced molecule. One possible explanation assumes a loss of 

symmetry between the Ir centers in a mixed-valence IrI···Ir–I (d8-d10) structure [23]. However, 
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DFT calculations indicate [82] that the two Ir atoms are nearly electronically equivalent and that 

the ν(C≡N) splitting originates from a trans-cis asymmetry between pairs of dimen ligands. The 

Ir(CN–)4 units (that are almost planar in Ir(dimen) and Ir(dimen)+) are heavily distorted in 

Ir(dimen)0 toward a seesaw geometry with axial  (nearly linear) NC–Ir–CN and equatorial (bent) 

Ir(CN)2 units, see Figure 19-right. Two stable Ir(dimen)0 conformations were calculated, which 

differ in the relative orientations of bent and linear NC–Ir–CN units at the two Ir centers but 

exhibit virtually identical ν(C≡N) vibrations. In both conformers, equatorial C≡N distances were 

calculated to be ~0.02 Å longer than axial ones and the corresponding Ir–C bonds are shorter by 

about 0.026-0.032 Å. The calculation predicted that the equatorial ligands would be bent at the 

N atoms (C≡N–C angles of ~145° vs. ~165° for the axial ligands). It follows that the second 

reduction would be largely localized at the equatorial C≡N– units, which is understandable in 

view of the extensive delocalization (64-68%) of the pσ HOMO over the ligands. In accord with 

this model, the Mayer-Mulliken Ir–Ir bond orders increase in each reduction reduction step 

(Table 5), similarly as in the case of Pt(pop-BF2) (Table 2). Mulliken charges on the two Ir atoms 

were calculated to be virtually identical and charge changes on corresponding C≡N– groups at 

each Ir center also are very similar (Table 6). The total charge change over the eight isocyanides 

(0.45-0.48 e–) upon the second reduction is much larger than at the two Ir atoms (0.15-0.19 e–). 

The electron density increases much more at the equatorial than axial ligands: 0.31-0.37 vs. 

0.08-0.17 e– (The two numbers are for different superreduced isomers, Table 6.) We conclude 

that superreduced Ir(dimen)0 is another example of a (pσ)2 dimer albeit with extensive 

delocalization over four of the C≡N– groups that induce the distortion of Ir(C≡N–)4 moieties 

that in turn leads to the trans-cis asymmetry of C≡N– ligands. Interestingly, Pt(pop-BF2)6– is 
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distorted in the same way but to a much smaller degree, as the extra electron density is more 

localized between the metal atoms (Figure 19). 

 

 

Figure 19. Left column: DFT-calculated structures of Pt(pop-BF2) in MeCN (top) and 
superreduced Pt(pop-BF2)6– (bottom). Right column: Ir(dimen) (top) and the two isomers of 
superreduced Ir(dimen)0. [this work] 
 

Table 5. Mayer-Mulliken bond orders for Ir2(dimen)n  complexes, "short/twisted" isomer. (DFT: 
PBE0/GD3/PCM-MeCN, this work) 
 

bond \ n 
2+ 

long/eclipsed 
2+ 

short/twisted 
1+ a 

0 
twisted 

0 
eclipsed 

2+ in 3A 
exc. state 

Ir – Ir 0.072 0.156 0.201 0.286 0.311 0.228 
Ir – C1 0.525 0.558 0.618 0.594 ax 0.622 ax 0.653 
Ir – C2 0.524 0.568 0.634 0.940 eq 0.928 eq 0.681 
Ir – C3 0.523 0.559 0.618 0.594 ax 0.622 ax 0.625 
Ir – C4 0.522 0.568 0.635 0.940 eq 0.928 eq 0.724 
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C1 – N1 2.374 2.345 2.237 2.170 ax 2.193 ax 2.124 
C2 – N2 2.375 2.345 2.450 2.035 eq 2.038 eq 2.225 
C3 – N3 2.375 2.345 2.237 2.170 ax 2.193 ax 2.126 
C4 – N4 2.374 2.345 2.450 2.035 eq 2.038 eq 2.228 

a No isomers found. 
 

Table 6. Changes of DFT-calculated Mulliken charges upon the two reduction steps of 
Ir(dimen)n. Isomers are specified in parentheses [this work]. 

 

 2(sh/tw)→1 1→0(tw) 1→0(ecl) 
Ir1 -0.194 -0.072 -0.092 
Ir2 -0.193 -0.074 -0.093 
Cax -0.008 -0.012 -0.003 
Nax -0.030 -0.031 -0.018 
Ceq -0.010 -0.035 -0.056 
Neq -0.029 -0.042 -0.036 

 

The much greater stability of reduced and superreduced Pt(pop-BF2) as compared to the 

corresponding Pt(pop) states is likely caused by the lack of reducible hydrogen atoms as well as 

electron-withdrawing BF2 groups that shield the Pt–Pt unit. On the other hand, the reduction 

products of Ir(dimen) are stabilized by π-back donation to C≡N– groups and by ligand flexibility 

that can accommodate structural changes induced by both reduction steps. It remains to be 

seen whether d8-d8 complexes can be employed as electrocatalysts. Preliminary results are 

encouraging: Ir(dimen)+ and Pt(pop-BF2)5– react with CH2Cl2 [23, 61]; and Ir(dimen)2+ is an 

electrocatalyst for CO2 reduction to formate and bicarbonate in a reaction cycle that involves 

CO2 addition to superreduced Ir(dimen)0 [134]. Residual water is reduced to H2 in a parallel 

reaction. Given the predicted predominant localization of extra electron density in Ir(dimen)0 at 

bent C≡N– groups, it is likely that their N atoms act as nucleophilic reaction centers. Perhaps 
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CO2 reduction and H2 formation involve an interplay between the ligand and metal sites in 

superreduced Ir(dimen)0. 

 

Conclusions 

 d8-d8 complexes exhibit common patterns of structural, spectroscopic, and 

photophysical behavior that stem from the presence of a σ-antibonding HOMO and a σ-

bonding LUMO. This unique electronic structure gives rise to the signature 1dσ*→pσ 

absorption band in the near UV (Pt-pop)) or visible (Ir, Rh di-isocyanides) spectral region, as well 

as to long-lived singlet (ps-ns) and triplet (µs) dσ*pσ excited states. The photophysics can be 

rationalized in terms of metal-metal-bond strengthening upon excitation, large singlet-triplet 

splittings, large energy separations between 1dσ*pσ and higher excited states, the absence of 

spin-orbit coupling between dσ*pσ singlet and triplet states along with nested and usually 

(except M(dimen)!) harmonic potential energy surfaces that are shifted to shorter metal-metal 

distances with respect to the ground state, and strong spin-orbit coupling among high-lying 

excited states of mixed-spin character that involve excitation from ligand-localized orbitals with 

pπ and dπ contributions (Pt(pop) and Pt(pop-BF2)) or from predominantly dπ orbitals 

(diisocyanides) to the pσ LUMO, acquiring partial LMMCT and MMLCT character, respectively. A 

different electronic structure was found in complexes with terminal electron-accepting ligands 

of the type Pt2(µ-pyrazolate)2(ppy)2 that feature a π*(ppy) LUMO and, hence, a (M)MLCT lowest 

excited state. 

 Differences in the behavior of Pt(pop)/Pt(pop-BF2) and diisocyanide metal complexes 

can be explained by shorter metal-metal distances supported by the P–O–P bridging unit in the 
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former complexes and by LUMO (pσ) delocalization that is more extensive and confined to the 

π*(C≡N–) orbitals in the diisocyanides and spread over the outer PtP4 regions (and also to some 

extent over the bridging oxygens) in Pt(pop)/Pt(pop-BF2). The presence of C≡N– π electrons 

also gives rise to attractive dispersion interactions involving two parallel M(C≡N–)4 planes, 

stabilizing binuclear structures. Dispersion forces are less important in Pt(pop)/Pt(pop-BF2). 

 Variations within the classes of d8-d8 complexes can be accounted for by the rigidity and 

bulkiness of the bridging ligand. The finding of a dramatically higher fluorescence quantum 

yield and longer 1dσ*pσ lifetime upon Pt(pop) perfluoroboration to Pt(pop-BF2) is a case in 

point. Generally, ISC in d8-d8 systems requires thermally activated distortions and, hence, is 

facilitated by more flexible ligands and greater solvent accessibility. Among diisocyanide 

complexes, Rh(dimen) and Ir(dimen) appear to be the most structurally flexible. 

Coherent oscillations of a ν(M-M) wave packet induced by femtosecond excitation into 

the 1dσ*→pσ absorption band is a common feature of d8-d8 photophysics. Such oscillations 

were observed on harmonic as well as anharmonic 1dσ*pσ potential energy surfaces of 

Pt(pop)/Pt(pop-BF2) and Ir(dimen), respectively, although with different decoherence 

mechanisms. 

Electrochemical reduction often is irreversible, presumably because of the high 

reactivity of products and accompanying structural reorganization. Pt(pop-BF2) and Ir(dimen) 

are exceptional cases that undergo two sequential 1-electron reductions; each step involves 

adding an electron to a pσ molecular orbital, which in the second step produces a rare (pσ)2 

metal-metal bond between (formally in each case) PtI and Ir0 atoms. Superreduced Ir(dimen)0 

undergoes a structural distortion accompanied by localization of extra electron density on two 
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trans pairs of the C≡N– ligands, thereby causing bending at the N atoms. It will be of interest to 

see if such nucleophilic N-atoms interact with substrates (H+, CO2) in electrocatalytic processes. 

We expect that future research on d8-d8 bridged as well as self-assembled systems will 

address fundamental questions such as ISC mechanisms, vibrational coherence and dephasing 

mechanisms (which will aid our understanding of energy flows in solvated molecular systems), 

and, importantly, differences in chemical reactivities of singlet and triplet excited states. And, in 

our view, both experimental and theoretical analyses of the mechanisms of photo- and 

electrochemical reactions catalyzed by d8-d8 complexes will continue to be very rich areas for 

exploration.  
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Appendix: Computational details 

 The electronic structures Pt(pop-BF2) and Ir(dimen) in various oxidation states and in 

the first triplet state were calculated by DFT using Gaussian 09 (G09) and ADF 2016.01 program 

packages. Open shell systems were calculated by the UKS approach, geometry optimization was 

followed by vibrational analysis in order to characterize stationary states. DFT calculations 

(G09) employed Perdew, Burke, Ernzerhof (PBE0) hybrid functional [135, 136], either alone or 

with the D3 version of Grimme’s dispersion with the original D3 damping function added [137]. 

The solvent was described by the polarizable conductor calculation model (PCM) [138]. The 

following basis sets were used within G09: double-ζ 6-31g(d) basis set for H [139], polarized 
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triple-ζ basis sets 6-311g(d) for C, N, O, and P atoms [140, 141], and small-core quasirelativistic 

effective core pseudopotentials and corresponding optimized set of basis functions for Ir and Pt 

[142, 143]. Electronic transitions were calculated by time-dependent DFT (TDDFT). The 

methodology of spin-orbit TDDFT calculations using ADF program package has been described 

[144]. 
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Highlights 

 
• Excitation, reduction, and oxidation strengthen d8-d8 metal-metal bonding interactions 
 
• Long-lived singlet and triplet excited states and dual emission are frequent features of d8-d8 
complexes 
 
• Femtosecond optical excitation triggers coherent motions of the metal-metal unit 
 
• Higher excited states have mixed-spin, with some charge-transfer character 
 
• Two-electron superreduced complexes feature (pσ)2 metal-metal bonds combined with 
electron delocalization over the ligands 
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