61 research outputs found

    Increased expression of cystine/glutamate antiporter in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter x<sub>c</sub><sup>-</sup>, an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system x<sub>c</sub><sup>- </sup>in glutamate homeostasis alterations in MS pathology.</p> <p>Methods</p> <p>Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT) was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and in samples of MS patients.</p> <p>Results and discussion</p> <p>We show here that human activated monocytes release glutamate through cystine/glutamate antiporter x<sub>c</sub><sup>- </sup>and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS) and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes.</p> <p>Conclusions</p> <p>Together, these results reveal that increased expression of the cystine/glutamate antiporter system x<sub>c</sub><sup>- </sup>in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.</p

    Member of the Organizing Committee

    Get PDF
    The Portuguese Glial Network invites you to attend the VII Symposium of the Portuguese Glial Network, in collaboration with Red Glial Española. The Symposium will be held in Albufeira (Algarve) on May 2, 2023, as a satellite meeting of the FENS Regional Meeting 2023. This year, we will have six invited speakers to bring us the latest on glial cell physiology, biology, signaling, and ultrastructure: Amanda Sierra (Achucarro Basque Center for Neuroscience and Department of Biochemistry and Molecular Biology, Spain), Ana LuĂ­sa Cardoso (University of Coimbra, Portugal), Christa Rhiner (Champalimaud Research Program, Portugal), Corrado CalĂŹ (UniversitĂ  degli Studi di Torino, Italy), Juliana Rosa (Hospital Nacional de ParaplĂ©jicos – IDISCAM, Spain) and Renzo Mancuso (Universiteit Antwerpen, Belgium). Six short talks will also be selected from the submitted abstracts by our Scientific Committee. We are delighted to welcome you to our VII Symposium and gather again friends and colleagues of the Portuguese glial family for another great meeting. Registration is, as always, free (but mandatory), and the best poster and oral communication will receive awards! Join us in the vibrant setting of the city of Albufeira and experience the sun and energy of the Algarve

    Dietary Fat Patterns and Outcomes in Acute Pancreatitis in Spain

    Get PDF
    Background/Objective: Evidence from basic and clinical studies suggests that unsaturated fatty acids (UFAs) might be relevant mediators of the development of complications in acute pancreatitis (AP). Objective: The aim of this study was to analyze outcomes in patients with AP from regions in Spain with different patterns of dietary fat intake. Materials and Methods: A retrospective analysis was performed with data from 1,655 patients with AP from a Spanish prospective cohort study and regional nutritional data from a Spanish cross-sectional study. Nutritional data considered in the study concern the total lipid consumption, detailing total saturated fatty acids, UFAs and monounsaturated fatty acids (MUFAs) consumption derived from regional data and not from the patient prospective cohort. Two multivariable analysis models were used: (1) a model with the Charlson comorbidity index, sex, alcoholic etiology, and recurrent AP; (2) a model that included these variables plus obesity. Results: In multivariable analysis, patients from regions with high UFA intake had a significantly increased frequency of local complications, persistent organ failure (POF), mortality, and moderate-to-severe disease in the model without obesity and a higher frequency of POF in the model with obesity. Patients from regions with high MUFA intake had significantly more local complications and moderate-to-severe disease; this significance remained for moderate-to-severe disease when obesity was added to the model. Conclusions: Differences in dietary fat patterns could be associated with different outcomes in AP, and dietary fat patterns may be a pre-morbid factor that determines the severity of AP. UFAs, and particulary MUFAs, may influence the pathogenesis of the severity of AP

    Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy

    Get PDF
    Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    A holistic evaluation of patients with chronic Hepatitis D virus (HDV) infection enrolled in the Italian PITER-B and delta cohort

    Get PDF
    Background and Aims: We aimed to characterize the epidemiologic and comorbidities profiles of patients with chronic Hepatitis D (CHD) followed in clinical practice in Italy and explored their interferon (IFN) eligibility. Methods: This was a cross-sectional study of the PITER cohort consisting of consecutive HBsAg-positive patients from 59 centers over the period 2019-2023. Multivariable analysis was performed by logistic regression model. Results: Of 5492 HBsAg-positive enrolled patients, 4152 (75.6%) were screened for HDV, 422 (10.2%) were anti-HDV positive. Compared with HBsAg mono-infected, anti-HDV positive patients were more often younger, non-Italians, with a history of drug use, had elevated alanine transaminase (ALT), cirrhosis, or hepatocellular carcinoma (HCC). Compared with Italians, anti-HDV positive non-Italians were younger (42.2% age ≀ 40 years vs. 2.1%; P &lt; 0.001), more often females (males 43.0% vs. 68.6%; P &lt; 0.001) with less frequent cirrhosis and HCC. HDV-RNA was detected in 63.2% of anti-HDV-positive patients, who were more likely to have elevated ALT, cirrhosis, and HCC. Extrahepatic comorbidities were present in 47.4% of anti-HDV positive patients and could affect the eligibility of IFN-containing therapies in at least 53.0% of patients in care. Conclusions: CHD affects young, foreign-born patients and older Italians, of whom two-thirds had cirrhosis or HCC. Comorbidities were frequent in both Italians and non-Italians and impacted eligibility for IFN

    Clinical features and comorbidity pattern of HCV infected migrants compared to native patients in care in Italy: A real-life evaluation of the PITER cohort

    Get PDF
    Background: Direct-acting antivirals are highly effective for the treatment of hepatitis C virus (HCV) infection, regardless race/ethnicity. We aimed to evaluate demographic, virological and clinical data of HCV-infected migrants vs. natives consecutively enrolled in the PITER cohort. Methods: Migrants were defined by country of birth and nationality that was different from Italy. Mann-Whitney U test, Chi-squared test and multiple logistic regression were used. Results: Of 10,669 enrolled patients, 301 (2.8%) were migrants: median age 47 vs. 62 years, (p &lt; 0.001), females 56.5% vs. 45.3%, (p &lt; 0.001), HBsAg positivity 3.8% vs. 1.4%, (p &lt; 0.05). Genotype 1b was prevalent in both groups, whereas genotype 4 was more prevalent in migrants (p &lt; 0.05). Liver disease severity and sustained virologic response (SVR) were similar. A higher prevalence of comorbidities was reported for natives compared to migrants (p &lt; 0.05). Liver disease progression cofactors (HBsAg, HIV coinfection, alcohol abuse, potential metabolic syndrome) were present in 39.1% and 47.1% (p &gt; 0.05) of migrants and natives who eradicated HCV, respectively. Conclusion: Compared to natives, HCV-infected migrants in care have different demographics, HCV genotypes, viral coinfections and comorbidities and similar disease severity, SVR and cofactors for disease progression after HCV eradication. A periodic clinical assessment after HCV eradication in Italians and migrants with cofactors for disease progression is warranted

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Novel genes and sex differences in COVID-19 severity

    Get PDF
    [EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≄60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
    • 

    corecore