39 research outputs found

    VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression

    Get PDF
    VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2O2, during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress

    A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase

    Get PDF
    The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn2+^{2+} ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism. Active site residues central to the hydrolytic mechanism include a novel catalytic triad Asp-His-His supported by structural comparison and hybrid quantum mechanics/classical mechanics simulations. A hydrolytic mechanism for a Mn2+^{2+} dependent amidohydrolases that disfavour Zn2+^{2+}as the primary catalytically active site metal proposed here is supported by these likely cases of convergent evolution. The work illustrates a fundamental difference in the substrate-binding mode between Mn2+^{2+} dependent isatin hydrolase like enzymes in comparison with the vast number of Zn2+^{2+} dependent enzymes

    Effects of the integrated galactic IMF on the chemical evolution of the solar neighbourhood

    Full text link
    The initial mass function determines the fraction of stars of different intial mass born per stellar generation. In this paper, we test the effects of the integrated galactic initial mass function (IGIMF) on the chemical evolution of the solar neighbourhood. The IGIMF (Weidner & Kroupa 2005) is computed from the combination of the stellar intial mass function (IMF), i.e. the mass function of single star clusters, and the embedded cluster mass function, i.e. a power law with index beta. By taking into account also the fact that the maximum achievable stellar mass is a function of the total mass of the cluster, the IGIMF becomes a time-varying IMF which depends on the star formation rate. We applied this formalism to a chemical evolution model for the solar neighbourhood and compared the results obtained by assuming three possible values for beta with the results obtained by means of a standard, well-tested, constant IMF. In general, a lower absolute value of beta implies a flatter IGIMF, hence a larger number of massive stars and larger metal ejection rates. This translates into higher type Ia and II supernova rates, higher mass ejection rates from massive stars and a larger amount of gas available for star formation, coupled with lower present-day stellar mass densities. (abridged) We also discuss the importance of the present day stellar mass function (PDMF) in providing a way to disentangle among various assumptions for beta. Our results indicate that the model adopting the IGIMF computed with beta ~2 should be considered the best since it allows us to reproduce the observed PDMF and to account for most of the chemical evolution constraints considered in this work.Comment: 22 pages, 19 figure

    Chemical enrichment of galaxy clusters from hydrodynamical simulations

    Full text link
    We present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra--cluster medium (ICM). These simulations have been performed by implementing a detailed model of chemical evolution in the Tree-SPH \gd code. This model allows us to follow the metal release from SNII, SNIa and AGB stars, by properly accounting for the lifetimes of stars of different mass, as well as to change the stellar initial mass function (IMF), the lifetime function and the stellar yields. As such, our implementation of chemical evolution represents a powerful instrument to follow the cosmic history of metal production. The simulations presented here have been performed with the twofold aim of checking numerical effects, as well as the impact of changing the model of chemical evolution and the efficiency of stellar feedback.Comment: to appear on MNRA

    The Formation of a Disk Galaxy within a Growing Dark Halo

    Full text link
    We present a dynamical model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. The simulations start at redshift z=4.85 with a small dark halo in a LCDM universe and we follow the evolution until the present epoch. The energy release by massive stars and SNe prevents a rapid collapse of the baryonic matter and delays the maximum star formation until z=1. The galaxy forms radially from inside-out and vertically from halo to disk. The first galactic component that forms is the halo, followed by the bulge, the disk-halo transition region, and the disk. At z=1, a bar begins to form which later turns into a triaxial bulge. There is a pronounced deficiency of low-metallicity disk stars due to pre-enrichment of the disk ISM with metal-rich gas from the bulge and inner disk (G-dwarf problem). The mean rotation and the distribution of orbital eccentricities for all stars as a function of metallicity are not very different from those observed in the solar neighbourhood, showing that homogeneous collapse models are oversimplified. The approach presented here provides a detailed description of the formation and evolution of an isolated disk galaxy in a LCDM universe, yielding new information about the kinematical and chemical history of the stars and the ISM, but also about the evolution of the luminosity, the colours and the morphology of disk galaxies.Comment: 23 pages, LaTeX, 18 figures, A&A accepted, a high resolution version of the paper can be found at http://www.astro.unibas.ch/leute/ms.shtm

    The chemical evolution of a Milky Way-like galaxy: the importance of a cosmologically motivated infall law

    Full text link
    We aim at finding a cosmologically motivated infall law to understand if the LambdaCDM cosmology can reproduce the main chemical characteristics of a Milky Way-like spiral galaxy. In this work we test several different gas infall laws, starting from that suggested in the two-infall model for the chemical evolution of the Milky Way by Chiappini et al., but focusing on laws derived from cosmological simulations which follows a concordance LambdaCDM cosmology. By means of a detailed chemical evolution model for the solar vicinity, we study the effects of the different gas infall laws on the abundance patterns and the G-dwarf metallicity distribution. The cosmological gas infall law predicts two main gas accretion episodes. By means of this cosmologically motivated infall law, we study the star formation rate, the SNIa and SNII rate, the total amount of gas and stars in the solar neighbourhood and the behaviour of several chemical abundances. We find that the results of the two-infall model are fully compatible with the evolution of the Milky Way with cosmological accretion laws. A gas assembly history derived from a DM halo, compatible with the formation of a late-type galaxy from the morphological point of view, can produce chemical properties in agreement with the available observations.Comment: This paper has 26 pages, 19 figures and 5 table

    Formation and Evolution of Early-Type Galaxies. III Star formation history as a function of mass and over-density

    Full text link
    We investigate the influence of the initial proto-galaxies over-densities and masses on their evolution, to understand whether the internal properties of the proto-galactic haloes are sufficient to account for the varied properties of the galactic populations. By means of fully hydrodynamical N-body simulations performed with the code EvoL we produce twelve self-similar models of early-type galaxies of different initial masses and over-densities, following their evolution from z \geq 20 down to z \leq 1. The simulations include radiative cooling, star formation, stellar energy feedback, a reionizing photoheating background, and chemical enrichment of the ISM. We find a strong correlation between the initial properties of the proto-haloes and their star formation histories. Massive (10^13M\odot) haloes experience a single, intense burst of star formation (with rates \geq 10^3M\odot/yr) at early epochs, consistently with observations, with a less pronounced dependence on the initial over-density; intermediate mass (10^11M\odot) haloes histories strongly depend on their initial over-density, whereas small (10^9M\odot) haloes always have fragmented histories, resulting in multiple stellar populations, due to the "galactic breathing" phenomenon. The galaxy models have morphological, structural and photometric properties comparable to real galaxies, often closely matching the observed data; even though some disagreement is still there, likely a consequence of some numerical choices. We conclude that internal properties are essentially sufficient to explain many of the observed features of early type galaxies, particularly the complicated and different star formation histories shown by haloes of very different mass. In this picture, nature seems to play the dominant role, whereas nurture has a secondary importance.Comment: 27 pages, 25 figures, 5 table

    Kinase and Phosphatase Cross-Talk at the Kinetochore

    Get PDF
    Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes

    A Proton Wire and Water Channel Revealed in the Crystal Structure of Isatin Hydrolase

    No full text
    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora
    corecore