269 research outputs found

    e-VLBI with the SFXC correlator

    Full text link
    oS(EXPReS09)04

    A probabilistic approach to phase calibration: I. Effects of source structure on fringe-fitting

    Get PDF
    We propose a probabilistic framework for performing simultaneous estimation of source structure and fringe-fitting parameters in Very Long Baseline Interferometry (VLBI) observations. As a first step, we demonstrate this technique through the analysis of synthetic short-duration Event Horizon Telescope (EHT) observations of various geometric source models at 230 GHz, in the presence of baseline-dependent thermal noise. We perform Bayesian parameter estimation and model selection between the different source models to obtain reliable uncertainty estimates and correlations between various source and fringe-fitting related model parameters. We also compare the Bayesian posteriors with those obtained using widely-used VLBI data reduction packages such as CASA and AIPS, by fringe-fitting 200 Monte Carlo simulations of each source model with different noise realisations, to obtain distributions of the Maximum A Posteriori (MAP) estimates. We find that, in the presence of resolved asymmetric source structure and a given array geometry, the traditional practice of fringe-fitting with a point source model yields appreciable offsets in the estimated phase residuals, potentially biasing or limiting the dynamic range of the starting model used for self-calibration. Simultaneously estimating the source structure earlier in the calibration process with formal uncertainties improves the precision and accuracy of fringe-fitting and establishes the potential of the available data especially when there is little prior information. We also note the potential applications of this method to astrometry and geodesy for specific science cases and the planned improvements to the computational performance and analyses of more complex source distributions.Comment: accepted for publication in MNRA

    Lagrangian transport through an ocean front in the North-Western Mediterranean Sea

    Get PDF
    We analyze with the tools of lobe dynamics the velocity field from a numerical simulation of the surface circulation in the Northwestern Mediterranean Sea. We identify relevant hyperbolic trajectories and their manifolds, and show that the transport mechanism known as the `turnstile', previously identified in abstract dynamical systems and simplified model flows, is also at work in this complex and rather realistic ocean flow. In addition nonlinear dynamics techniques are shown to be powerful enough to identify the key geometric structures in this part of the Mediterranean. In particular the North Balearic Front, the westernmost part of the transition zone between saltier and fresher waters in the Western Mediterranean is interpreted in terms of the presence of a semipermanent ``Lagrangian barrier'' across which little transport occurs. Our construction also reveals the routes along which this transport happens. Topological changes in that picture, associated with the crossing by eddies and that may be interpreted as the breakdown of the front, are also observed during the simulation.Comment: 34 pages, 6 (multiple) figures. Version with higher quality figures available from http://www.imedea.uib.es/physdept/publications/showpaper_en.php?indice=1764 . Problems with paper size fixe

    The EUropean-VGOS Project

    Get PDF
    In Spring 2018 the Bonn correlation centre\ua0started a collaboration with the three European stations\ua0of Wettzell, Onsala and Yebes, equipped with\ua0both S/X- and broadband systems, to perform VGOS-like test sessions. The aim is to verify and develop further\ua0the processing chain for VGOS experiments end-to-end, from the scheduling to the analysis of the derived\ua0observables. We will present the current status of\ua0the project

    MAPping out distribution routes for kinesin couriers

    Get PDF
    In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarized, compartmentalized and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of subdomain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications (PTMs), tubulin GTPase activity and MT associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that – especially for axonal cargo – alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution

    A more rational, theory-driven approach to analysing the factor structure of the Edinburgh Postnatal Depression Scale

    Get PDF
    We endeavoured to analyze the factor structure of the Edinburgh Postnatal Depression Scale (EPDS) during a screening programme in Hungary, using exploratory (EFA) and confirmatory factor analysis (CFA), testing both previously published models and newly developed theory-driven ones, after a critical analysis of the literature. Between April 2011 and January 2015, a sample of 2,967 pregnant women (between 12th and 30th weeks of gestation) and 714 women 6 weeks after delivery completed the Hungarian version of the EPDS in South-East Hungary. EFAs suggested unidimensionality in both samples. 33 out of 42 previously published models showed good and 6 acceptable fit with our antepartum data in CFAs, whilst 10 of them showed good and 28 acceptable fit in our postpartum sample. Using multiple fit indices, our theory-driven anhedonia (items 1,2) – anxiety (items 4,5) – low mood (items 8,9) model provided the best fit in the antepartum sample. In the postpartum sample, our theory-driven models were again among the best performing models, including an anhedonia and an anxiety factor together with either a low mood or a suicidal risk factor (items 3,6,10). The EPDS showed moderate within- and between-culture invariability, although this would also need to be re-examined with a theory-driven approach

    The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins

    Get PDF
    Early in programmed cell death (apoptosis), mitochondrial membrane permeability increases. This is at least in part due to opening of the permeability transition (PT) pore, a multiprotein complex built up at the contact site between the inner and the outer mitochondrial membranes. The PT pore has been previously implicated in clinically relevant massive cell death induced by toxins, anoxia, reactive oxygen species, and calcium overload. Here we show that PT pore complexes reconstituted in liposomes exhibit a functional behavior comparable with that of the natural PT pore present in intact mitochondria. The PT pore complex is regulated by thiol-reactive agents, calcium, cyclophilin D ligands (cyclosporin A and a nonimmunosuppressive cyclosporin A derivative), ligands of the adenine nucleotide translocator, apoptosis-related endoproteases (caspases), and Bcl-2–like proteins. Although calcium, prooxidants, and several recombinant caspases (caspases 1, 2, 3, 4, and 6) enhance the permeability of PT pore-containing liposomes, recombinant Bcl-2 or Bcl-XL augment the resistance of the reconstituted PT pore complex to pore opening. Mutated Bcl-2 proteins that have lost their cytoprotective potential also lose their PT modulatory capacity. In conclusion, the PT pore complex may constitute a crossroad of apoptosis regulation by caspases and members of the Bcl-2 family

    Revisiting the dimensional structure of the Edinburgh Postnatal Depression Scale (EPDS): empirical evidence for a general factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Edinburgh Postnatal Depression Scale (EPDS) has been proposed as a one-dimensional instrument and used as a single 10-item scale. This might be considered questionable since repeated psychometric studies have shown multi-dimensionality, which would entail using separate component subscales. This study reappraised the dimensional structure of the EPDS, with a focus on the extent of factor correlations and related factor-based discriminant validity as a foundation for deciding how to effectively scale the component items.</p> <p>Methods</p> <p>The sample comprised 811 randomly selected mothers of children up to 5 months attending primary health services of Rio de Janeiro, Brazil. Strict Confirmatory Factor Analysis (CFA) and Exploratory Factor Analysis modeled within a CFA framework (E/CFA) were sequentially used to identify best fitting and parsimonious model(s), including a bifactor analysis to evaluate the existence of a general factor. Properties concerning the related 10-item raw-score scale were also investigated using non-parametric items response theory methods (scalability and monotonicity).</p> <p>Results</p> <p>An initial CFA rejected the one-dimensional structure, while an E/CFA subscribed a three-dimensional solution. Yet, factors were highly correlated (0.66, 0.75 and 0.82). The ensuing CFA showed poor discriminant validity (some square-roots of average variance extracted below the factor correlations). A general bifactor CFA was then fit. Results suggested that, although still weakly encompassing three specific factors, the EPDS might be better described by a model encompassing a general factor (loadings ranging from 0.51 to 0.81). The related 10-item raw score showed adequate scalability (Loevinger's H coefficient = 0.4208), monotonicity e partial double monotonicity (nonintersections of Item Step Response Functions).</p> <p>Conclusion</p> <p>Although the EPDS indicated the presence of specific factors, they do not qualify as independent dimensions if used separately and should therefore not be used empirically as sub-scales (raw scores). An all-encompassing scale seems better suited and continuing its use in clinical practice and applied research should be encouraged.</p
    • …
    corecore