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ABSTRACT
We propose a probabilistic framework for performing simultaneous estimation of source
structure and fringe-fitting parameters in Very Long Baseline Interferometry (VLBI)
observations. As a first step, we demonstrate this technique through the analysis of
synthetic short-duration Event Horizon Telescope (EHT) observations of various ge-
ometric source models at 230 GHz, in the presence of baseline-dependent thermal
noise. We perform Bayesian parameter estimation and model selection between the
different source models to obtain reliable uncertainty estimates and correlations be-
tween various source and fringe-fitting related model parameters. We also compare
the Bayesian posteriors with those obtained using widely-used VLBI data reduction
packages such as casa and aips, by fringe-fitting 200 Monte Carlo simulations of each
source model with different noise realisations, to obtain distributions of the Maximum
A Posteriori (MAP) estimates. We find that, in the presence of resolved asymmetric
source structure and a given array geometry, the traditional practice of fringe-fitting
with a point source model yields appreciable offsets in the estimated phase residuals,
potentially biasing or limiting the dynamic range of the starting model used for self-
calibration. Simultaneously estimating the source structure earlier in the calibration
process with formal uncertainties improves the precision and accuracy of fringe-fitting
and establishes the potential of the available data especially when there is little prior
information. We also note the potential applications of this method to astrometry and
geodesy for specific science cases and the planned improvements to the computational
performance and analyses of more complex source distributions.

Key words: techniques: interferometric – techniques: high angular resolution – meth-
ods: data analysis – methods: statistical

1 INTRODUCTION

Interferometry is concerned with estimating the spatial co-
herence function of electromagnetic fields measured between
two different locations. A correlator must cross-correlate the
signals from different stations while ensuring that they corre-
spond to the same incoming wavefront instance. VLBI obser-
vations are similar to those made using connected-element
interferometers insofar as the aim is to obtain this coher-
ence function, but the measured visibility phases are less

? E-mail: iniyannatarajan@gmail.com

well-behaved in VLBI due to a number of reasons. The atmo-
spheric conditions at individual stations are different, lead-
ing to different atmospheric propagation delays that are un-
correlated (Thompson et al. 2017, Chapter 9). The use of
independent frequency standards introduces another source
of systematic uncertainty in determining the correct times-
tamps at which to cross-correlate the signals from different
stations. Moreover, the rotation of the Earth causes the sta-
tions to move at different speeds with respect to the source,
resulting in different Doppler shifts of the incoming wave,
which introduces a time-variable delay (Taylor et al. 1999,
Chapter 22). Finally, the presence of complex source struc-
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2 Natarajan et al.

ture also contributes to the variations in the phases of the
measured visibilities.

A range of geometric, atmospheric, and instrumental
effects are accounted for by the correlator model, a geomet-
rical model that is applied to correct the visibility phases.
This model is not perfect and contains residual errors in
phases, that may vary appreciably with frequency and time.
Various systematics such as errors in the source or antenna
positions, offsets in the clock epoch, and errors in modelling
the turbulence in the troposphere, especially at high fre-
quency (Taylor et al. 1999, Chapter 28), contribute to these
residual phases, and considerably reduce the time and fre-
quency interval over which the measured visibilities can be
averaged without a net loss of amplitude (coherence time),
limiting the signal-to-noise ratio (SNR) of the data (Schwab
& Cotton 1983). Correcting for these phase residuals and
their slopes with frequency and time (known as delay residu-
als and rate residuals respectively) is known as fringe-fitting
or fringe-searching, which allows one to average data over
larger intervals of time and frequency, thereby increasing
the coherence time and bandwidth, and improving the sen-
sitivity.

Fringe-fitting is performed as one of the first steps af-
ter correlation and the resulting corrected visibilities are
used as inputs for subsequent calibration procedures, such
as self-calibration. Hence, studying any correlations between
spatially-resolved source structure and fringe-fitting param-
eters and propagating reliable uncertainties further down to
the data analysis steps where the astrophysical parameters
are estimated is useful, especially since fringe-fitting is of-
ten performed with the assumption that the source is unre-
solved. Using the wrong source model during fringe-fitting
can introduce false symmetry in the source structure, which
may affect the results significantly when analysing strongly
averaged data (e.g. Wielgus et al. 2019; Event Horizon Tele-
scope Collaboration et al. 2019c). This may also be relevant
to other science cases such as the asymmetric source struc-
ture observed in Global mm VLBI Array (GMVA) observa-
tions of Sgr A* (Issaoun et al. 2019), compact and extended
structures observed in VLBI observations of gravitationally
lensed radio sources (Spingola et al. 2019), and highly accu-
rate source position estimates required for performing VLBI
astrometry for the Bulge Asymmetries and Dynamic Evolu-
tion (BAaDE) targets (van Langevelde et al. 2019).

Incorporating a priori knowledge of the relevant param-
eters for self-calibration was first advocated by Cornwell &
Wilkinson (1981) and a similar approach for fringe-fitting
was advocated by Schwab & Cotton (1983). Reliable uncer-
tainty propagation for calibration parameters has been dis-
cussed within the framework of Information Field Theory
(IFT) by Enßlin et al. (2009, 2014); Enßlin (2018), and im-
plemented in algorithms such as resolve (Junklewitz et al.
2016). Lochner et al. (2015) discuss simultaneous estima-
tion of source and instrumental parameters and model selec-
tion between partially-resolved source structures on Wester-
bork Synthesis Radio Telescope (WSRT) simulations within
a Bayesian framework. In Natarajan et al. (2017), we un-
dertook a full Bayesian analysis of European VLBI Network
(EVN) observations of the blazar J0809+5341 to prove the
existence of extended jet structure in the presence of residual
station gain amplitudes after self-calibration.

In this first of an intended series of papers on the ap-

plication of probabilistic techniques to the wider problem of
phase calibration in VLBI, we study the mutual effects of
source structure and some fringe-fitting related parameters
on each other, using short duration synthetic EHT observa-
tions with sparse uv-coverage1. Of the parameters relevant
to fringe-fitting, we simulate the phase and delay residuals;
in actual observations, the phases also vary with time (rate
residuals) and must be accounted for while fringe-fitting.
However, in this proof-of-concept presentation of simulta-
neous source structure estimation and fringe-fitting, we per-
form these experiments only with simulated phase and delay
residuals, since rate residuals are not significant for short du-
ration snapshot observations such as these. We also assume
that accurate a priori amplitude calibration has been per-
formed on the data and do not consider gain amplitudes.
Finally, we consider the presence of only one spectral win-
dow (subband) in this paper.

This work is organised as follows. In Section 2, we
briefly discuss the theory behind fringe-fitting approaches
used in current software packages. In Section 3, we present
a probabilistic fringe-fitting formalism that simultaneously
estimates the source-related parameters. In Sections 4 and
5, we apply this method to synthetic snapshot EHT obser-
vations of partially-and-fully-resolved symmetric and asym-
metric geometric source models, and compare our results
with those of other calibration packages such as casa2 and
aips3. Finally, we outline ongoing efforts to update this
framework to handle an expanded parameter space involving
more complex source models and time-varying phase, delay,
and rate residuals simultaneously, and the projects that we
subsequently propose to undertake in Section 6.

2 FRINGE-FITTING

2.1 Terminology

There appears to be confusion in the relevant literature
about the nomenclature used to describe the quantities that
are estimated during fringe-fitting. Throughout this paper,
we consistently refer to the first order phase residual terms
(ψ0p

) as phase residuals; the derivative of the phase with re-
spect to frequency (τp) as delay residual and the derivative
of the phase with respect to time (rp) as rate residual.

2.2 Background

The significant phase variations present in VLBI data lead
to the loss of amplitude of the measured visibilities when av-
eraged (decoherence), which fringe-fitting aims to minimise.
These variations, to first order, manifest as residual phases,
and phase slopes with frequency and time for ground-based
VLBI arrays. Let Ṽpq(tm, νn) be the measured visibility cor-
responding to baseline pq at time tm and frequency νn. This
is related to the true visibility Vpq(tm, νn) as

Ṽpq(tm, νn) = gp(tm, νn)ḡq(tm, νn)Vpq(tm, νn) + εpqmn , (1)

1 Throughout this paper, we use the terms simulated and syn-
thetic interchangeably, as both are used in the relevant VLBI lit-

erature (e.g. Event Horizon Telescope Collaboration et al. 2019d).
2 www.casa.nrao.edu.
3 www.aips.nrao.edu.
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where εpqmn is the additive noise term arising due to ther-
mal noise; gp are complex-valued functions that incorporate
antenna-based effects and can be expressed as

gp(t, ν) = |gp(t, ν)|eiψp (t,ν) . (2)

Assuming that the amplitudes |gp | and |Vpq | vary slowly
enough that they are constant over the time and frequency
averaging intervals, we can write to first-order (Schwab &
Cotton 1983)

Ṽpq(tm, νn) ' |gp | |gq |Vpq(t0, ν0) exp(i[(ψp − ψq)(t0, ν0)])

× exp
(
i
[
∂(ψp − ψq + φpq)

∂t

���
(t0,ν0)

(tm − t0)

+
∂(ψp − ψq + φpq)

∂ν

���
(t0,ν0)

(νn − ν0)
] )

,

(3)

where φpq ≡ arg Vpq . Here t0 and ν0 are the time and fre-
quency relative to which the calculations are carried out.
It must be noted that using a fixed reference frequency
across the band is valid only for moderate bandwidths as a
first-order approximation, which will need to be revised for
wide-band fringe-fitting. Here, we adopt this formalism from
Schwab & Cotton (1983) which forms the basis of fringe-
fitting in both casa and aips. The derivative of phase with
respect to time

rpq ≡
∂(ψp − ψq + φpq)

∂t

���
(t0,ν0)

(4)

is the expression for the rate residual, and the derivative of
phase with respect to frequency

τpq ≡
∂(ψp − ψq + φpq)

∂ν

���
(t0,ν0)

(5)

quantifies the delay residual, estimated relative to t0 and
ν0. These values are estimated by Fourier-transforming the
per-baseline visibilities from the time and frequency domain
to the delay and rate residual domain and finding its max-
imum (which would occur at rpq and τpq). The position of
this peak is used to define the phase centre of the observa-
tion, a fixed point in the sky relative to which the delay and
rate residuals are estimated. The value of the function at this
maximum (dependent on t and ν), gives the phase-corrected
estimates of the visibility function in the time-frequency do-
main (Cotton 1995). It must be remembered that these esti-
mates are only approximations to the fringe solutions, since
the fringe-rate correction is constant over all frequencies.
These can then be averaged coherently over time and fre-
quency, to the extent that the first-order model in equation
(3) is valid. It is important to note that the derivatives of
the antenna phases ψ and those of the true visibility phases
φ cannot be separated by this method.

Global fringe-fitting is performed to separate the
antenna-based components in equation (3) and estimate
them simultaneously for all stations using the data corre-
sponding to all baselines. This is especially useful in cases
where the SNR is low, which is often the case with VLBI
observations. If the source is resolved, then a model of the
source VM

pq approximating the true visibilities Vpq is needed
to enable this separation. If the source is (a) sufficiently com-
pact so the 2-D FFT to the delay and rate residual domain
has a well-defined peak and (b) the visibility function does
not change significantly during the integration period (Alef

& Porcas 1986), then the default assumption of the source
being point-like is made. For more elaborate source models,
in theory, an initial image of the source can be used to enable
the separation of baseline-based and antenna-based phase
components (Schwab & Cotton 1983). Global fringe-fitting
is related to phase self-calibration (Readhead & Wilkinson
1978; Readhead et al. 1980) in that both procedures aim to
minimise the difference between the observed and model vis-
ibility phases. In addition to phase residuals, fringe-fitting
also estimates their time and frequency slopes, and is always
performed before averaging in order to preserve coherence.

Contemporary fringe-fitting algorithms such as the one
employed by the casa task fringefit 4, perform baseline-
based fringe-fitting before globalising the solutions to all
baselines through a least-squares method (e.g. Janssen
et al. 2019). This can be done, for instance, by perform-
ing baseline-based fringe-fitting with a subset of the more
sensitive stations in the array, and letting the result serve
as a starting point to a later global fringe-fitting step. A
baseline-based approach that finds the maximum in a three-
dimensional space of multi-band delay, single-band delay,
and rate, is employed by the fourfit task (Cappallo 2017)
in the Haystack Observatory Postprocessing System (hops)5

(Whitney et al. 2004). A pipeline based on hops that per-
forms additional global fringe-fitting for delay and rate resid-
uals (Blackburn et al. 2019b) is one of the primary fringe-
fitting tools used to process data from the EHT, along with
casa and aips (Event Horizon Telescope Collaboration et al.
2019c), the tools we compare our results with in this work.

3 A RIME-BASED PROBABILISTIC
APPROACH

We adopt a fully Bayesian approach to simultaneously es-
timate the source structure and the phase and delay resid-
uals. This approach has the significant advantage that the
prior assumptions (or biases) are quantified and propagated
into the final visibility or image-plane analysis (e.g. Natara-
jan et al. 2017). A natural outcome of this process is that
we obtain reliable uncertainty estimates of and degeneracies
between the various model parameters. A model or a hypoth-
esis in our context, includes both source and instrumental
parameters.

We use the Radio Interferometry Measurement Equa-
tion (RIME) formalism for modelling visibilities, which was
originally developed for radio polarimetry by Hamaker et al.
(1996) and extended to incorporate direction-dependent ef-
fects by Smirnov (2011). The RIME expresses the relation-
ship between the source and instrumental characteristics in
the form of 2×2 complex matrices known as Jones matrices
(Jones 1941), which enables us to model the desired source
properties and propagation path effects in parametric form.
The generic RIME for a sky composed of multiple discrete
sources is given by

Vpq =
∑
s

Jsp Bs JsqH , (6)

4 https://casa.nrao.edu/casadocs-devel/stable/
global-task-list/task_fringefit/about.
5 www.haystack.mit.edu/tech/vlbi/hops.html.
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where Vpq denotes the visibility corresponding to baseline
pq, Jsp represents the 2 × 2 cumulative Jones matrix corre-
sponding to antenna p in the direction of source s, and Bs

is the brightness matrix corresponding to the full polarisa-
tion output of the correlator. Each propagation path effect
may be assigned its own Jones matrix, with the unknown
or inseparable effects being subsumed into a generic Jones
term.

The RIME for fringe-fitting is constructed as follows.
In our analyses for this paper, we simulate only unpolarised
sources with flat spectra. Hence, the brightness matrix for a
source with flux density Sν at frequency ν is given by

B =

(
Sν 0
0 Sν

)
. (7)

This signal undergoes a linear transformation represented by
the phase delay matrix K, representing the phase difference
(κp) between the waves received by antenna p located at
up = (up, vp,wp) relative to u = 0:

Kp = e−iκp ≡ e−iκp
(
1 0
0 1

)
. (8)

Since the K-Jones term exists even under ideal conditions
with no propagation path effects, we define the source co-
herency matrix for convenience as (Smirnov 2011)

Xpq = Kp BKH
q = Be−iκpq . (9)

The E-Jones terms for primary beams are taken to be unity
(Esp ≡ 1) owing to the small FoVs often used for VLBI data

analysis6. We construct a scalar phase-matrix G that affects
both polarisation axes equally:

Gp = |gp | exp(i[∆ψp(t, ν)])
(
1 0
0 1

)
, (10)

where ∆ψp incorporates two independent terms that affect
the visibility phases: the station-based phase residuals ψ0p

and delay residuals τp, relative to a reference antenna and
frequency νref :

∆ψp(tm, νn) = ψ0p
+
∂ψp

∂ν
(νn − νref) ,

= ψ0p
+ τp(νn − νref) .

(11)

To keep the execution times (on a small compute server)
manageable, for the purposes of this paper we restrict the
number of model parameters relevant to fringe fitting, and
simulate only the phase and delay residuals. More informa-
tion on how we propose to expand this framework can be
found in Section 6. Including the above terms, equation (6)
becomes:

Vpq(tm, νn) = Gp(tm, νn)
(∑

s

Xspq(tm, νn)
)

GH
q (tm, νn) .

(12)

For fringe-fitting, we are interested only in the phases of
the Gp terms and set the gain amplitudes to unity (|gp | ≡ 1).
In practice, these terms are always present and uncertainties

6 For a discussion of the effects of E-Jones terms on EHT ob-

servations in the presence of antenna pointing errors, see Blecher
et al. (2017).

in their estimates also affect the estimated source structure
(e.g. Natarajan et al. 2017).

Having built this formalism for forward-modelling, we
perform Bayesian inference on the synthetic data. Assum-
ing a model (or hypothesis) H to be true, we estimate its
parameters, Θ, by fitting them to the visibilities (data, D)7:

P(Θ|D,H) = P(Θ|H) P(D |Θ,H)P(D|H) , (13)

where P(Θ|H) is called the prior probability distribution,
which encodes our beliefs about the parameters prior to the
analysis of the data. P(Θ|D,H) is the posterior probability
distribution which describes how the data D modify our ini-
tial beliefs. P(D |Θ,H) ≡ L(Θ|D,H) is the likelihood, which
reflects how the uncertainties in the measurement are dis-
tributed. The denominator P(D|H) is a normalising constant
called the Bayesian evidence or the marginal likelihood that
becomes a valuable tool for ranking models while perform-
ing model comparison. Assuming Gaussian noise, which is
a good approximation in the high SNR regime (e.g. Event
Horizon Telescope Collaboration et al. 2019f), given the ob-
served (VD) and the modelled (VM ) visibilities (refer equa-
tion 12), and the uncertainties σk that vary with baseline,
the likelihood function for parameter estimation for model
H may be written as

L(Θ|VD,H) =
1

2Nvis∏
k=1

√
2πσ2

k

exp
(
− χ

2

2

)
,

where χ2 =
2Nvis∑
k=1

(
VMk

− VDk

σk

)2
,

(14)

and Nvis is the total number of complex visibilities. The nat-
ural logarithm of L, given by

ln(L) =
2Nvis∑
k=1

ln
[
(2πσ2

k )
−1/2

]
− χ2

2

= −1
2

2Nvis∑
k=1

ln
[
2πσ2

k

]
− χ2

2
,

(15)

is often used in practice since it is more convenient to work
with. The baseline-dependent per-visibility noise term for
one polarisation is computed from the System Equivalent
Flux Densities (SEFDs) of the individual stations using the
radiometer equation (Thompson et al. 2017):

σpq =
SEFDpq√

2δν tpq
,

where SEFDpq =

√
SEFDp x SEFDq ,

(16)

SEFDp is the SEFD of station p, δν is the channel band-
width, and tpq is the integration time for baseline pq.

The second level of inference we perform is model selec-
tion between different hypotheses. We use various geometric

7 A more detailed introduction to Bayesian inference may be
found in Natarajan et al. (2017, and references therein). Here

we give a short review relevant to our analysis.

MNRAS 000, 1–14 (2020)



Probabilistic Fringe-fitting 5

Table 1. Criteria for model selection. B12 denotes the ratio of
the evidences between hypotheses H1 and H2 (Kass & Raftery

1995), which measures the relative success of the two models at

predicting the data.

2 ln(B12) B12 Evidence against H2

0 to 2 1 to 3 Not worth more than a mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong
> 10 > 150 Very strong

source models in our analyses, and always compare the re-
sults with those obtained with a point source model. Given
hypothesis H, and a prior belief in the validity of H given
by P(H |I), where I is any relevant background information,
the model posterior probability may be computed using the
evidence obtained from parameter estimation as

P(H |D, I) ∝ P(D |H, I) P(H |I) . (17)

Given two models H1 and H2, we may define a model se-
lection ratio between the posteriors of the two models as

P(H1 |D, I)
P(H2 |D, I) =

Z1
Z2

P(H1 |I)
P(H2 |I)

= B12
P(H1 |I)
P(H2 |I)

, (18)

where P(H1 |I)/P(H2 |I) is the ratio of the priors of the two
models which we set to unity, indicating that there is no
prior preference for one model over the other. The ratio of
the evidences, B12, known as the Bayes factor (Jeffreys 1961)
then provides the odds in favour of H1; the larger the value of
B12, the more is H1 preferred over H2. Hence, Bayes factors
between two models provide a more comprehensive metric
for model comparison than traditional methods. Following
Kass & Raftery (1995), we use twice the natural logarithm
of this factor as a measure of how strongly one model is
preferred over another (Table 1). An order of magnitude
more support by the data in favour of H1 is required to
move up a level on this scale (Trotta 2008).

3.1 Software setup

We have developed a software package called zagros8

to perform simultaneous source parameter estimation and
fringe-fitting. zagros uses codex-africanus9, a GPU-
based forward-modelling software package (Perkins et al in
prep), that speeds up model computation required for every
iteration of the likelihood evaluation. zagros can currently
handle small datasets that can fit into the memory of an
NVIDIA Tesla K20m GPU.

For sampling from the multi-dimensional posterior dis-
tribution we use dypolychord, an implementation of the
dynamic nested sampling algorithm (Higson et al. 2019),
based on the publicly available polychord tool (Handley
et al. 2015a,b). For generating synthetic EHT observations,
we use meqsilhouette, a mm-VLBI synthetic data gener-
ation package capable of generating model visibilities from

8 https://github.com/saiyanprince/zagros.
9 https://github.com/ska-sa/codex-africanus.

parametric and non-parametric sky models and adding vari-
ous propagation path effects such as tropospheric phase cor-
ruption, variable receiver gains, antenna pointing errors, and
polarisation leakage (Blecher et al. 2017, Natarajan et al in
prep).

4 FRINGE-FITTING AND SOURCE
STRUCTURE

The EHT is a network of mm/sub-mm facilities spread
across continents to create a telescope with high angular
resolution (' 30–10 µas), with the longest baselines span-
ning the Earth’s diameter (Event Horizon Telescope Col-
laboration et al. 2019b). The primary goal of the EHT is
to image the gravitationally-lensed photon ‘ring’ or shadow
around the event horizons of the supermassive black holes
at the centres of the Milky Way (Sgr A*) and the supergiant
elliptical galaxy M87, which have the largest predicted ap-
parent angular diameters that are resolvable by the EHT at
230 GHz (e.g. Broderick & Loeb 2009; Falcke & Markoff
2013). In the observing run of April 2017, the EHT im-
aged the black hole shadow of M87 within an asymmetric
ring of size 42 ± 3 µas (Event Horizon Telescope Collabora-
tion et al. 2019d,f). At this frequency, the troposphere gives
rise to a turbulent component to the delays, which is the
major contributor to the decoherence of the visibilities. As
the frequency increases, so does the tropospheric absorp-
tion, mainly due to the pressure-broadened transition lines
of H2O and O2 (Carilli & Holdaway 1999). Unlike other
chemical components, water vapour mixes poorly in the at-
mosphere, introducing rapid fluctuations in the measured
visibility phases.

Under such difficult observing conditions, it is instruc-
tive to study the effects of partially or fully-resolved source
structure on fringe-fitting. This is also relevant for self-
calibration downstream, as the effects of the early decisions
on the initial models will be impossible to remove further
down the data analysis process. This is especially true for ar-
rays with few stations such as EHT (given the small mutual
visibility windows between stations, even fewer are observing
simultaneously). The critical point in this paper is that the
probabilistic approach has the advantage that it can simulta-
neously estimate the parameters related to source structure
and fringe-fitting, and reveal whether they are degenerate, as
well as enabling model selection via the Bayesian evidence.
This not only minimises the effects that arise from using in-
correct source models, but also enables the propagation of
phase uncertainties further down in the calibration process.
This may not always yield an appreciable difference in the
final calibrated data, but may prove highly useful for high-
value science targets such as the ones mentioned in Section
1.

With the recent introduction of the fringe-fitting task
fringefit, casa is being adopted for VLBI data process-
ing (e.g. Janssen et al. 2019; van Bemmel et al. 2019) and
hence serves as a good tool to compare our results with. We
also perform some comparisons with the aips task FRING10

10 http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?
FRING.
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Table 2. EHT stations participating in the mock-observations.

Station Diameter (m) Nominal SEFD (Jy)

SMA (SM) 25 6000

SMT (AZ) 30 1300

LMT (LM) 32 560
ALMA (AA) 25 220

JCMT (JC) 15 5000

SPT (SP) 10 1600
APEX (AP) 12 4500

(for the elliptical Gaussian model), which has traditionally
been used for fringe-fitting. Since Bayesian methods are in-
trinsically concerned with probability distributions, we want
to compare them to distributions of parameter estimates
output by conventional methods; since the latter generate
only MAP estimates (albeit with bounds), we run them over
a set of 200 Monte Carlo simulations of each sky model in
the study, each with a different noise realisation, and thus
obtain these distributions.

4.1 Simulations of geometric source models

We consider the following source models in our simulations:
a point source at the centre (PT), a circular Gaussian source
(CIRC), an elliptical Gaussian source (ELLIP), and two
point sources (2PT). To each source model, phase and de-
lay residuals and baseline-dependent Gaussian thermal noise
are introduced. The EHT stations used for these simula-
tions are the Submillimeter Array (SMA) and James Clerk
Maxwell Telescope (JCMT) in Hawai’i, Submillimeter Tele-
scope (SMT) in Arizona, Large Millimeter Telescope (LMT)
in Mexico, the Atacama Large Millimeter Array (ALMA)
and the Atacama Pathfinder Experiment (APEX) in Chile,
and the South Pole Telescope (SPT) (Table 2). The phase
centre of the observations coincides with the coordinates of
Sgr A*, αJ2000 = 17h45m40s.04088, δJ2000 = −29◦0′28′′.118.
The mock-observations were conducted for 3 minutes with a
2 s integration time, at a frequency of 230 GHz, with a 2.56
GHz bandwidth divided into 32 channels. The start time of
the observation was selected for maximum mutual visibility
between the stations.

The parametrisation of each model evaluated is shown
in Table 3 and the hyperparameters used in the analyses are
shown in Table 4. In all the models, the position (l,m) of the
central source was fixed at the phase centre. The position of
the secondary source in 2PT (l2,m2) is given a uniform prior
overlapping with the position of the primary source. CIRC
and ELLIP use the same parameters to describe the shape,
with CIRC imposing the additional constraints emin = emaj
and PA = 0. The position angle PA is set to vary over a range
of 180 degrees, to avoid degeneracies between position angles
oriented in opposite directions. LM was used as the reference
station and hence its phase and delay residuals were set to
zero. The centre frequency of the band was chosen as the
reference frequency.

Table 3. Models evaluated in this study. Each model is composed
of source-related parameters and the station-based phase and de-

lay residuals. The degrees of freedom (DoF) indicates the number

of parameters that are free to vary independently (excludes pa-
rameters with delta priors, such as the phase and delay residuals

corresponding to reference stations; refer text).

Model Parameters/DoF Parametrisation

CIRC 24/14

Flux Density (Sν)

Position (l,m)
Shape (emaj, emin, PA)

Phase residuals (ψ0p )

Delay residuals (τp)

ELLIP 24/16

Flux Density (Sν)

Position (l,m)
Shape (emaj, emin, PA)

Phase residuals (ψ0p )

Delay residuals (τp)

2PT 24/16

Flux Density (Sν1,Sν2)

Position ((l1,m1), (l2,m2))
Phase residuals (ψ0p )

Delay residuals (τp)

Table 4. Prior distributions for all the model parameters. All pa-

rameters were set uniform priors with the range indicated by the

values in the square brackets. For parameters with delta priors,
refer text.

Parameter (Units) Prior distribution

Sν (Jy) [0, 2]

l2 (µas) [-50, 50]
m2 (µas) [-10, 110]

emaj (µas) [0, 40]
emin (µas) [0, 40]

PA (◦) [0, 180]

ψ0p (◦), where p , LM [0, 360]

τp (ps), where p , LM [-200, 200]

4.1.1 Point Source and Circular Gaussian (PT & CIRC)

We simulate 21 datasets, each with a central circular Gaus-
sian of total flux density 1 Jy, with increasing HPBW from 0
to 20 µas, up to about half the size of the point spread func-
tion (PSF) of the array. In all zagros runs, we use 400 live
points and 100 points for the initial exploratory run of dy-
polychord, via the nlive_const and ninit parameters
respectively (Higson et al. 2019). To perform Bayesian model
selection on each dataset, we compare the evidences for a
circular Gaussian model (CIRC) with that of a point source
model (PT). In each case, the correct model is favoured (PT
for the 0 µas source and CIRC for the rest) with very strong
Bayesian evidence (Table 1). As the source gets more re-
solved, the odds ratio in favour of CIRC increases from 23 : 1
(for 1 µas Gaussian) to 1012 : 1 (for 20 µas Gaussian), indi-
cating that the correct model is very strongly preferred. The
error in relative natural-logarithmic evidence (the quantity
defined in Table 1) in each case is ±0.7. It must be noted
that, in actual observations, the minimum resolvable source
size depends on the SNR, array configuration and calibration
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uncertainties, and hence additional calibration steps will be
necessary (Mart́ı-Vidal et al. 2012; Natarajan et al. 2017).

Fig. 1 shows the results of zagros fringe-fitting on the
synthetic data with a 20 µas circular Gaussian source at the
centre. We see from the 1-D marginalised posterior plots
on the main diagonal, that all the model parameters are
estimated to a high precision and accuracy. The 2-D joint
posteriors show that there are no significant degeneracies
between the source and instrumental parameters in this case,
apart from a slight correlation between the delay residual
estimates for AA with AP, likely due to their proximity.

As the radius of the simulated circular Gaussian source
increases, the peak flux density goes down which results in
decreased SNR of the data. This reduction in SNR con-
tributes to the widening of the posteriors for larger source
sizes. Figs. 2 and 3 demonstrate this effect for the estimated
phase and delay residuals respectively for synthetic data gen-
erated with increasingly resolved CIRC models. In addition,
the larger sources are resolved by the longer baselines and
the corresponding visibility amplitudes decrease. This effect
is demonstrated in Fig. 4 which plots the posteriors of phase
and delay residuals for all antennas for the 20 µas CIRC
model. The posteriors corresponding to SM, JC, and SP that
contribute to the longest baselines are wider than those of
the other stations whose baselines are relatively shorter. AA
has the narrowest posteriors due to its high sensitivity.

To obtain the distribution of casa fringefit results
for comparison with zagros, we simulate 200 instances of
each dataset with independent noise realisations, with the
same rms σpq in equation (16). Following this, we fringe-fit
each dataset twice, with and without incorporating the ex-
act source model in the process, to obtain the best and worst
possible estimates from casa. Figs. 5 and 6 show the results
of this process. Only those solutions with SNR ≥ 3 are in-
cluded for global least-squares minimisation via the minsnr
parameter. The phase residuals obtained with fringefit
are re-referenced to the central frequency of the band. For
this symmetric source structure, we see that the point source
assumption during fringe-fitting is sufficient and the his-
tograms of the fringefit results coincide well with the
Bayesian posteriors.

4.1.2 Elliptical Gaussian (ELLIP)

We next perform fringe-fitting on elliptical Gaussian models
(ELLIP) of size 25 × 5 µas oriented at a position angle of
60◦. Model selection between PT and ELLIP on these data
results in a Bayes factor on the order of 1012 (with the er-
ror in relative evidence being ±0.66), indicating a very high
preference for the elliptical Gaussian.

The posterior distributions of the parameters corre-
sponding to ELLIP are shown in Fig. 7. Here too, we see
that the Bayesian framework estimates the source parame-
ters and the phase and delay residuals accurately, as shown
by the vertical green lines indicating the true values. There
are no significant degeneracies between the source and in-
strumental parameters, except for the slight correlation be-
tween the AA and AP delay estimates as with the CIRC
model. There are no appreciable systematic offsets in the
delay posteriors.

Figs. 8 and 9 respectively show the relative widths of
the phase and delay estimates output by casa fringefit

for 200 Monte Carlo simulations of the ELLIP source with
different noise realisations. As with CIRC, the phase and
delay histograms coincide with the Bayesian posteriors. Ne-
glecting the source structure for this centrally-located source
distribution with two axes of symmetry does not affect the
accuracy of the fringe-fitting.

For the ELLIP case, we also compare the casa esti-
mates with the results of fringe-fitting this dataset using
the aips task FRING. We choose this model for the aips
comparison since the 2PT model which has more than one
source cannot be input to the FRING task in aips. As with
fringefit, the fringe-fitting is performed by inputting
the exact source model to FRING. A comparison of the
fringefit and FRING results is shown in Figs. 10 and 11).
The results from both aips and casa are re-referenced to the
same frequency (the central frequency of the band) used by
zagros. There is almost perfect correlation between the aips
and casa delay residual estimates, while the phase residual
estimates also follow the same trend, but are more loosely
correlated. This correspondence between casa, aips, and
zagros results indicates that our software is consistent with
different implementations of the fringe-fitting algorithm.

4.1.3 Two point sources (2PT)

The next class of source models we test, 2PT, are asymmet-
ric source models with a primary point source of flux density
1 Jy at the phase centre and a secondary point source of 0.3
Jy located away from the central source at different dis-
tances. While the flux density ratios and source separations
may change, the overall structure in this source model is
more typical of VLBI sources and therefore is an important
test to perform.

We simulate 9 datasets in which the secondary source
is located at varying distances from the central source, from
20 µas to 100 µas in Declination (∆α = 0), in steps of 10 µas.
The flux densities of both the sources and the location of
the secondary source are allowed to vary with uniform priors
with the hyperparameters shown in Table 4. Crucially, the
position prior of the secondary source is allowed to overlap
with that of the primary source. In each case, the correct
model (2PT) was favoured with a Bayes factor on the order
of 1012. The error in relative evidence is ±0.7.

Fig. 12 shows the posterior distributions of the param-
eters of 2PT, when the secondary source is located 100 µas
away from the centre. This asymmetric source structure re-
veals stronger correlations between the source structure and
phase residuals. The phase residuals of the different stations
are also correlated with each other. The delay residuals are
independent of the source structure, as with the previous
models.

The ground-truth values for almost all fringe-fitting pa-
rameters are located within a credible interval of 1σ, except
for the delay residuals of AZ and SP. For these two antennas,
the ground-truth values lie at the 2σ level of the posteriors.
This could be due to contributions from various factors such
as the source orientation with respect to the PSF of the ar-
ray, which in turn is a function of the baseline orientation.
To test this, we generate synthetic data with a 2PT source
model rotated by 90◦ in the sky (∆α = −100 µas, ∆δ = 0) and
perform fringe-fitting with zagros. Fig. 13 shows the com-
parison between the delay posteriors of AZ and SP obtained
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Figure 1. The 1-D and 2-D posteriors of the parameters of CIRC of size 20 µas. The principal diagonal gives the 1-D marginalised

posterior distributions of the estimated flux density (Sν), the HPBW of the Gaussian profile (emaj = emin), and the station delay residuals
τp shifted to zero mean. The 68 (1σ) and 95 (2σ) per cent credible regions are indicated by the dark-red and light-red shaded regions

respectively. The vertical green lines indicate the ground-truth values used in the simulation. Parameters with delta priors are not shown.

Figure 2. Posteriors of the phase residuals estimated by zagros

for synthetic data generated using CIRC models of three different
sizes: 4, 12 and 20 µas. The ground-truth values are shifted to zero.

Figure 3. Same as Fig. 2, but for delay residuals.

for this dataset and that shown in Fig. 12. We see that the
systematic offsets in the posterior peaks for both AZ and

MNRAS 000, 1–14 (2020)
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Figure 4. The posteriors of the phase and delay residuals from

Fig. 1 (20 µas CIRC model) for all antennas. The ground-truth

values are shifted to zero.

Figure 5. zagros posteriors (green) from Fig. 1 (20 µas CIRC)

shown alongside the histograms of the phase residuals obtained
for 200 Monte Carlo simulations with different noise realisations

using casa fringefit, with PT (blue) and CIRC (red) provided
as input source models independently. The ground-truth values

are shifted to zero.

Figure 6. Same as Fig. 5, but for delay residuals.

SP are reduced. Fig. 14 also shows the relative widths and
the magnitude of the spread of the posteriors from Fig. 12
around the ground-truth values for all antennas plotted to-
gether. All the posteriors have comparable widths, with AA
being the narrowest due to its high sensitivity.

Fig. 15 compares the zagros posteriors with casa esti-
mates. Here, the point source assumption introduces signifi-
cant offsets of up to ± 15◦ in the estimated phase residuals.
Incorporating the exact source structure in casa results in
the estimated phases coinciding with the zagros estimates.
Fig. 16 shows the comparison between the delay estimates
obtained with both zagros and fringefit. In this case,
not accounting for the source structure results in offsets of
up to ±4 ps in the estimated delay residuals. Figure 17 shows
the differences in phases between the corrected visibilities,
after fringe-fitting with and without incorporating the cor-
rect source model. We may expect these offsets to be much
larger in the low SNR regime. A crucial advantage of zagros
is that it can capture the uncertainties in and degeneracies
between the source parameters and the fringe-fitting related
parameters completely, allowing one to draw more robust
scientific inferences in the more difficult cases.

5 DISCUSSION

As the source structure becomes more complex, it must be
incorporated in the fringe-fitting process to avoid significant
offsets in the corrected visibility phases. We find that our
probabilistic approach to fringe-fitting performs at least as
well as other widely-used software packages used for fringe-
fitting, if not better. This is especially true in cases where
a good source model from previous observations is unavail-
able or is difficult to obtain from the data, as is normally
the case when the uv -coverage is sparse. It also possesses the
unique advantage of returning full posterior distributions for
the model parameters and thus reliable propagation of un-
certainties and the use of more informative priors further
down in the calibration process where iterative calibration
is necessary.

We find that for resolved Gaussian source morpholo-
gies at the phase centre, the effects of not incorporating
the source model is not as significant as for an asymmet-
ric source model such as two point sources. While for short-
duration observations, the sparse sampling will ultimately
constrain the amount of information that can be obtained
on source structure, especially if the source structure is com-
plex, the availability of posteriors on super-resolved source
parameters provides a mechanism for establishing the verac-
ity of the results obtained using conventional methods. For
simple symmetric sources, the conventional methods gener-
ally yield results that are close to the truth which is borne
out by the correspondence with the Bayesian posteriors. For
asymmetric source distributions, any unmodelled structure
not accounted for during fringe-fitting introduces system-
atic offsets in the estimates of the phase and delay residu-
als, as evident from the point source assumption using casa
fringefit and the relative Bayesian evidences that are
orders of magnitude (up to 1012 : 1) in favour of the correct
source model in zagros.

Furthermore, the unmodelled flux could be subsumed
into self-calibration solutions, causing artefacts and sup-
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Figure 7. Same as Fig. 1, but for the model ELLIP of size 25 × 5 µas.

Figure 8. zagros posteriors (green) from Fig. 7 (25×5 µas EL-

LIP) shown alongside the histograms of the phase residuals ob-
tained for 200 Monte Carlo simulations with different noise reali-

sations using casa fringefit, with PT (blue) and ELLIP (red)

provided as input source models independently. The ground-truth
values are shifted to zero.

Figure 9. Same as Fig. 8 but for delay residuals.

pressing real sources, even in the case of connected-element
interferometers with a large number of stations (Grobler
et al. 2014; Sob et al. 2019). VLBI observations can be es-
pecially affected by this, given the sparsity of uv -coverage.
Calibration and imaging is an ill-posed problem, with the so-
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Figure 10. A comparison of aips and casa estimates of the phase
residuals, with the true values shifted to zero, for the 200 synthetic

datasets of the 25×5 µas ELLIP source with the exact source
model input during fringe-fitting.

Figure 11. Same as Fig. 10, but for delay residuals.

lutions selected by self-calibration strongly affected by initial
conditions. Obtaining joint posteriors of source parameters
while performing fringe-fitting allows for the starting condi-
tions to be closer to the ground-truth. In cases where the
source structure is comparable to or smaller than the size of
the PSF, it is difficult to obtain a model as a result of a pre-
vious imaging step. In such cases, using a priori knowledge
of the source structure, modelled even as simple geometric
models, selected based on Bayesian evidences obtained by
a relatively quick run of zagros, provides a good starting
point for calibration; this would be especially useful in the
low SNR regime.

Application of this technique to synthetic data with low
SNR will help set an upper limit to the effect that the sys-
tematic offsets of the posteriors from the ground-truth will
have on subsequent calibration of actual VLBI data. The
correlation between source parameters and phase and de-
lay residuals may be relevant to specialist experiments men-
tioned in Section 1.

Apart from imaging experiments, this technique will
find special applications in high precision astrometry and

geodesy. For instance, simultaneous estimation of source po-
sitions in the presence of phase residuals on simulated Eu-
ropean VLBI Network (EVN) data at 6.7 GHz, yield highly
accurate estimates of the source positions (van Langevelde
et al. 2019). Reversing this assumption and treating the
source positions as known and the antenna locations as
unknown, we can measure geodetic quantities more accu-
rately (Taylor et al. 1999, Chapter 23). The crucial advan-
tage to geodetic experiments here is the capability to esti-
mate the frequency-dependent core-shifts of sources simulta-
neously with the antenna positions and study the degenera-
cies between them, since it is straightforward to account for
frequency-dependence in the source structure in our current
framework.

6 COMPUTATIONAL CONSIDERATIONS
AND OUTLOOK

The Bayesian analyses performed for this paper take a max-
imum of about 8 hours to complete on a machine with an
NVIDIA Tesla K20m GPU, compared to the ∼ 30 min-
utes required for obtaining the histograms by fringe-fitting
200 datasets using casa fringefit (excluding the ∼ 2
hours required to simulate 200 datasets using meqsilhou-
ette) on the same machine. In order to systematically ex-
plore a larger parameter space with zagros in a reason-
able amount of time (e.g. more complex source models,
time and frequency variable complex gains, rate residuals,
etc.), faster model computation and sampling techniques
become necessary. For larger visibility data set sizes, the
forward-modelling step must be distributed over multiple
CPU and/or GPU nodes due to increased memory require-
ments, which therefore necessitates processing on High Per-
formance Computing (HPC) clusters. A distributed version
of codex-africanus (Perkins et al., in prep.) and the cor-
responding zagros version which can distribute model com-
putation between multiple HPC nodes using the dask11 li-
brary are currently under development, and will be avail-
able for production in the near future. Including complex-
valued, time and frequency varying delay and rate residuals
is a straightforward extension of the current framework that
would benefit from increased computational speed.

The geometric models explored in this paper have rel-
atively simple structures, modelled using point sources and
Gaussians. While the asymmetric source models with sec-
ondary point sources placed at different locations is typical
of some VLBI sources and are useful for studying the lim-
itations of traditional fringe-fitting, the primary EHT tar-
gets have much more complex structure (e.g. Event Horizon
Telescope Collaboration et al. 2019a,d). We plan to gener-
ate synthetic data with geometric ring and crescent mod-
els with jet components and fringe-fit them in two differ-
ent ways: (i) using multiple Gaussian components to cap-
ture the source structure in the RIME and (ii) constructing
the source-related terms of the RIME by performing Fast
Fourier Transform (FFT) on parametrised ring and jet struc-
tures input in FITS format. Comparing the fringe-fitting re-

11 https://dask.org.
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Figure 12. Same as Fig. 1, but for the model 2PT with the second source located at ∆δ = 100 µas.

Figure 13. Comparison of the delay posteriors of AZ and SP from
Fig. 12 (left) with those obtained for synthetic data generated

with the same sky model rotated by 90◦ (∆α = −100 µas, ∆δ =

0 µas).

sults of the two methods will reveal the limitations of using
simple geometric models to model rings and crescents.

Knowledge of these systematics will enable us to choose
between these methods to fringe-fit synthetic observations
of general relativistic magneto hydrodynamical (GRMHD)
models (e.g. Mościbrodzka et al. 2016) of the photon ring
surrounding the shadow of a black hole (e.g. Event Hori-

Figure 14. The posteriors of the phase and delay residuals from
Fig. 12 (∆α = 0 µas, ∆δ = 100 µas) for all antennas. The ground-

truth values are shifted to zero.

zon Telescope Collaboration et al. 2019a,e). Using the FFT
method, important physical parameters necessary to build
GRMHD models can be directly sampled in image space and
posteriors obtained at the end of a zagros run. A system-
atic study of these fringe-fitting approaches, followed by a
suite of self-calibration procedures to measure differences in
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Figure 15. zagros posteriors (green) from Fig. 12 shown along-
side the histograms of the phase residuals obtained for 200 Monte

Carlo simulations with different noise realisations using casa

fringefit, with PT (blue) and 2PT (red) provided as input
source models independently. The ground-truth values are shifted

to zero.

Figure 16. Same as Fig. 15, but for delay residuals.

the final maps is a natural extension of this and will be the
subject of a future paper.

Blackburn et al. (2020) have shown that the usage of
closure quantities is equivalent to numerical marginalisa-
tion over unconstrained gains. Under the RIME framework,
scalar closure relations generalise to matrix closure relations
and apply under certain assumptions of source symmetry
(Smirnov 2011). Marginalising over uniform priors on instru-
mental phases and using these estimates to initialise gains
for the full inference problem may serve as a good compu-
tational improvement and will be explored. We also plan to
extend these analyses to multiple spectral windows so that
this framework can be used to estimate multi-band delays.
The ability to include both spatially and frequency-resolved
source structure in fringe-fitting will prove useful especially
when fractional bandwidths are large, as will be the case
for arrays such as the next generation Very Large Array
(ngVLA) (Carilli et al. 2015) and the next generation EHT
(ngEHT) (Blackburn et al. 2019a).

Figure 17. Difference between the corrected phases for the 2PT
simulation, after fringe-fitting with and without incorporating the

source model, shown as a function of baseline length. The data

are coloured by baseline and correspond to all channels and time.
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