111 research outputs found

    Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites

    Get PDF
    Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use

    Prediction of improvement in skin fibrosis in diffuse cutaneous systemic sclerosis: a EUSTAR analysis

    Get PDF
    OBJECTIVES Improvement of skin fibrosis is part of the natural course of diffuse cutaneous systemic sclerosis (dcSSc). Recognising those patients most likely to improve could help tailoring clinical management and cohort enrichment for clinical trials. In this study, we aimed to identify predictors for improvement of skin fibrosis in patients with dcSSc. METHODS We performed a longitudinal analysis of the European Scleroderma Trials And Research (EUSTAR) registry including patients with dcSSc, fulfilling American College of Rheumatology criteria, baseline modified Rodnan skin score (mRSS) ≄7 and follow-up mRSS at 12±2 months. The primary outcome was skin improvement (decrease in mRSS of >5 points and ≄25%) at 1 year follow-up. A respective increase in mRSS was considered progression. Candidate predictors for skin improvement were selected by expert opinion and logistic regression with bootstrap validation was applied. RESULTS From the 919 patients included, 218 (24%) improved and 95 (10%) progressed. Eleven candidate predictors for skin improvement were analysed. The final model identified high baseline mRSS and absence of tendon friction rubs as independent predictors of skin improvement. The baseline mRSS was the strongest predictor of skin improvement, independent of disease duration. An upper threshold between 18 and 25 performed best in enriching for progressors over regressors. CONCLUSIONS Patients with advanced skin fibrosis at baseline and absence of tendon friction rubs are more likely to regress in the next year than patients with milder skin fibrosis. These evidence-based data can be implemented in clinical trial design to minimise the inclusion of patients who would regress under standard of care

    Lagrangian transport through an ocean front in the North-Western Mediterranean Sea

    Get PDF
    We analyze with the tools of lobe dynamics the velocity field from a numerical simulation of the surface circulation in the Northwestern Mediterranean Sea. We identify relevant hyperbolic trajectories and their manifolds, and show that the transport mechanism known as the `turnstile', previously identified in abstract dynamical systems and simplified model flows, is also at work in this complex and rather realistic ocean flow. In addition nonlinear dynamics techniques are shown to be powerful enough to identify the key geometric structures in this part of the Mediterranean. In particular the North Balearic Front, the westernmost part of the transition zone between saltier and fresher waters in the Western Mediterranean is interpreted in terms of the presence of a semipermanent ``Lagrangian barrier'' across which little transport occurs. Our construction also reveals the routes along which this transport happens. Topological changes in that picture, associated with the crossing by eddies and that may be interpreted as the breakdown of the front, are also observed during the simulation.Comment: 34 pages, 6 (multiple) figures. Version with higher quality figures available from http://www.imedea.uib.es/physdept/publications/showpaper_en.php?indice=1764 . Problems with paper size fixe

    Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1203–1221, doi:10.1175/2007JPO3768.1.Analyses of current time series longer than 200 days from 33 sites over the Middle Atlantic Bight continental shelf reveal a consistent mean circulation pattern. The mean depth-averaged flow is equatorward, alongshelf, and increases with increasing water depth from 3 cm s−1 at the 15-m isobath to 10 cm s−1 at the 100-m isobath. The mean cross-shelf circulation exhibits a consistent cross-shelf and vertical structure. The near-surface flow is typically offshore (positive, range −3 to 6 cm s−1). The interior flow is onshore and remarkably constant (−0.2 to −1.4 cm s−1). The near-bottom flow increases linearly with increasing water depth from −1 cm s−1 (onshore) in shallow water to 4 cm s−1 (offshore) at the 250-m isobath over the slope, with the direction reversal near the 50-m isobath. A steady, two-dimensional model (no along-isobath variations in the flow) reproduces the main features of the observed circulation pattern. The depth-averaged alongshelf flow is primarily driven by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an opposing mean wind stress that also drives the near-surface offshore flow. The alongshelf pressure gradient accounts for both the increase in the alongshelf flow with water depth and the geostrophic balance onshore flow in the interior. The increase in the near-bottom offshore flow with water depth is due to the change in the relative magnitude of the contributions from the geostrophic onshore flow that dominates in shallow water and the offshore flow driven by the bottom stress that dominates in deeper water.This research was funded by Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE-848961

    gcamland v1.0 – An R Package for Modelling Land Use and Land Cover Change

    No full text

    Selected European Studies On Sea Ice Classification And Drift Retrieval As Basis For Collaborative Projects During Dragon 4

    No full text
    The key element in the Dragon program is the utilization of remote sensing technologies for geo- and bio-scientific research. Considering the vast extent of the Polar Regions and the difficulties to access those, it is immediately clear that in particular the use of data from Earth Observing (EO) satellites is essential for monitoring ice sheets, ice shelves and sea ice. Recent studies on sea ice focus both on aspects regarding the interaction mechanisms between ocean, ice and atmosphere and their implications for weather and climate, and on information retrieval about ice mechanics and ice conditions for supporting marine traffic and offshore operations. During the Dragon-2 and 3 phases, researchers from the First Institute of Oceanography, Qingdao, China, the Finnish Meteorological Institute, the Danish Meteorological Institute, and the Alfred Wegener Institute in Germany have successfully established a close information exchange with respect to sea ice classification and ice parameter retrieval. Direct collaboration projects were focused on ice thickness retrieval using polarimetric SAR data from the Bohai Sea, and the possibility to estimate ice thickness in the Arctic based on compact satellite radar polarimetry. The PIs Ji, Zhang, and Dierking as well as the other members of the Dragon sea ice team have been involved in various external collaborative projects, which have been positively influencing their work in the Dragon program. The objective of this presentation is to give an overview about important European projects and studies that were carried out during the Dragon-3 phase and are of importance for future activities in the Dragon-4 program. Here, we focus on sea ice classification and drift retrieval using synthetic aperture radar (SAR). The separation of different ice types is needed for marine operations (mainly thin, smooth ice separated from thicker compacted ice) and for scientific process studies regarding, for example, heat exchange between ocean and atmosphere through the ice, or exchange of momentum between ice, on the one hand, and atmosphere and ocean, on the other hand. The major step in sea ice classification is to sub-divide sea ice SAR images into distinct regions based on similarities of parameters derived from the radar signal(s), and relate those regions to existing sea ice classification schemes. A special case is the separation of open water and ice for the determination of ice concentration. In this context, different research groups study different statistical models to adequately describe the distribution of radar parameter values typical for single ice types. Besides multi-polarization imagery, acquired with polarimetric SAR, multi-frequency data sets (that require combined acquisitions from SAR systems on different satellites) are in the focus of recent investigations in European groups. In order to improve the reliability of the classification and the retrieval of ice parameters, more advanced models for describing the multivariate dependencies are needed. The ultimate goal of these investigations is to make the whole classification process automatic, reliable and robust. Classification during the melting season, which is hampered by moist or wet snow layers and ice surfaces, and by melt ponds on the ice, is an important topic as well. The direct validation of sea ice maps and parameter retrievals is difficult because of the logistic difficulties to obtain the needed complementary data. The European sea ice remote sensing group hence closely collaborate with field researchers or participate themselves in field cruises to the Polar Regions. The retrieval of sea ice thickness from remote sensing data is one of the holy grails of polar research. European partners are developing and demonstrating the regional mapping of sea ice thickness based on multi-sensor satellite data (e. g. Sentinel-1 SAR combined with AMSR2) and parallel thickness simulations of a sea ice model (CMEMS Topaz). Thin ice (<30 cm) areas are detected using AMSR2 data and are excluded to reduce ice classification ambiguities in SAR images. Also areas with ice concentrations less than 70% are not considered for retrieval. For thicker ice areas SAR data are employed to modulate locally the TOPAZ ice thickness field. Another example is the development of new sea ice classification and thickness products from SAR and radar altimeter data (the latter from Cryosat-2 and Sentinel-3) in the EU H2020 project SPICES. The ice thickness retrieval works under cold wintertime conditions. The sea ice drift retrieval is carried out in three different ways: (1) pattern matching. For this method, at least two consecutive SAR images are needed. From normalized cross-correlation or phase correlation, or combinations of both, the displacement of the ice between the timings of the two image acquisitions is calculated. (2) feature tracking. In this case, structures are identified in two consecutive images, and their displacement is determined. (3) Doppler shift analysis. Here, only one image is needed, e. g. the Sentnel-1 radial surface velocity product. Whereas the results of (1) and (2) represent the 2-D average drift vectors for time steps between a few hours and days, approach 3 is a snapshot of the instantaneous line-of-sight motion. Different European groups have been working on the different methods and focus recently on problems of rotational ice movements, discontinuities of the drift field, evaluation of the accuracy of drift retrievals, spatial scaling of drift and deformation, and on increasing the computational speed of the retrieval algorithms

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore