98 research outputs found

    Search for Majorana neutrinos with the first two years of EXO-200 data

    Get PDF
    Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions—that is, that neutrinos are their own anti-particles—but this assumption is difficult to confirm. Observation of neutrinoless double-β decay (0νββ), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with ^(76)Ge (the GERDA experiment) and ^(136)Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 10^(25) years, corresponding to a limit on the neutrino mass of 0.2–0.4 electronvolts. Here we report new results from EXO-200 based on a large ^(136)Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9 × 10^(25) years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0νββ decay and set a half-life limit of 1.1 × 10^(25)  years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0νββ decay searches with an improved Xe-based experiment, nEXO

    The Role of the Lactate Dehydrogenase and the Effect of Prone Position during Ventilator-induced Lung Injury

    Get PDF
    To examine the impact of lactate dehydrogenase (LDH) as an early marker of ventilator-induced lung injury (VILI) and the effect of prone position during the VILI, we ventilated 28 normal white rabbits (10 supine, 10 prone, 8 controls) for 6 hr or until PaO2/FIO2 ratio was <200 mmHg. We applied an identical injurious ventilatory pattern (peak inspiratory pressure of 35 cmH2O with a PEEP of 3 cmH2O, I:E ratio of 1:2, and FIO2 of 0.40) in the supine and prone group. VILI was assessed by oxygenation, gravimetric analysis and histologic grading. Serum levels of LDH progressively increased significantly during the VILI (supine and prone groups) as compared with controls. There was a significant negative correlation between oxygenation and LDH levels (r=-0.619, p<0.001). Wet weight/dry weight ratios (WW/DW) and histologic scores for dependent regions were significantly higher in the supine than the prone group. There were no differences in WW/DW and histologic scores for nondependent regions between the supine and prone group. These findings suggest that serum LDH levels might be an early marker of severity of lung injury. The prone position resulted in a less severe and more homogenous distribution of VILI

    Patterns of public participation: opportunity structures and mobilization from a cross-national perspective

    Get PDF
    Purpose: The paper summarizes data from twelve countries, chosen to exhibit wide variation, on the role and place of public participation in the setting of priorities. It seeks to exhibit cross-national patterns in respect of public participation, linking those differences to institutional features of the countries concerned. Design/methodology/approach: The approach is an example of case-orientated qualitative assessment of participation practices. It derives its data from the presentation of country case studies by experts on each system. The country cases are located within the historical development of democracy in each country. Findings: Patterns of participation are widely variable. Participation that is effective through routinized institutional processes appears to be inversely related to contestatory participation that uses political mobilization to challenge the legitimacy of the priority setting process. No system has resolved the conceptual ambiguities that are implicit in the idea of public participation. Originality/value: The paper draws on a unique collection of country case studies in participatory practice in prioritization, supplementing existing published sources. In showing that contestatory participation plays an important role in a sub-set of these countries it makes an important contribution to the field because it broadens the debate about public participation in priority setting beyond the use of minipublics and the observation of public representatives on decision-making bodies

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    High PEEP in ARDS: quantitative evaluation between improved oxygenation and decreased oxygen delivery

    Get PDF
    Background: Positive end-expiratory pressure (PEEP) is widely used to improve oxygenation and prevent alveolar collapse in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS). While PEEP predictably improves arterial oxygenation, high PEEP strategies have demonstrated equivocal improvements in ARDS mortality. The effect of PEEP on tissue oxygen delivery is poorly understood and is difficult to quantify or investigate in the clinical environment. Methods: We investigated the effects of PEEP on tissue oxygen delivery in ARDS using a novel, high-fidelity, computational model with highly integrated respiratory and cardiovascular systems. The model was configured to replicate published clinical trial data on the responses of individual ARDS patients to changes in PEEP. These virtual patients were subjected to increasing PEEP levels during a lung-protective ventilation strategy (0 - 20 cmH2O). Measured variables included arterial oxygenation, cardiac output, peripheral oxygen delivery and alveolar strain. Results: As PEEP increased, tissue oxygen delivery decreased in all subjects (mean reduction 25% at 20 cmH2O PEEP), despite an increase in arterial oxygen tension (mean increase 6.7 kPa, at 20 cmH2O PEEP). Changes in arterial oxygenation and tissue oxygen delivery differed between subjects, but showed a consistent pattern. Static and dynamic alveolar strain decreased in all patients as PEEP increased. Conclusions: Incremental PEEP in ARDS appears to protect alveoli and improve arterial oxygenation, but also appears to significantly impair tissue oxygen delivery due to reduced cardiac output. We propose why this trade-off may explain the poor improvements in mortality associated with high PEEP ventilation strategies

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis
    corecore