183 research outputs found

    Caenorhabditis monodelphis sp. n.: defining 1 the stem morphology 2 and genomics of the genus Caenorhabditis

    Get PDF
    Background: The genus Caenorhabditis has been central to our understanding of metazoan biology. The best-known species, Caenorhabditis elegans, is but one member of a genus with around 50 known species, and knowledge of these species will place the singular example of C. elegans in a rich phylogenetic context. How did the model come to be as it is today, and what are the dynamics of change in the genus? Results: As part of this effort to “put C. elegans in its place”, we here describe the morphology and genome of Caenorhabditis monodelphis sp. n., previously known as Caenorhabditis sp. 1. Like many other Caenorhabditis, C. monodelphis sp. n. has a phoretic association with a transport host, in this case with the fungivorous beetle Cis castaneus. Using genomic data, we place C. monodelphis sp. n. as sister to all other Caenorhabditis for which genome data are available. Using this genome phylogeny, we reconstruct the stemspecies morphological pattern of Caenorhabditis. Conclusions: With the morphological and genomic description of C. monodelphis sp. n., another key species for evolutionary and developmental studies within Caenorhabditis becomes available. The most important characters are its early diverging position, unique morphology for the genus and its similarities with the hypothetical ancestor of Caenorhabditis

    Time Constraints Mediate Predator-Induced Plasticity in Immune Function, Condition, and Life History

    Get PDF
    The simultaneous presence of predators and a limited time for development imposes a conflict: accelerating growth under time constraints comes at the cost of higher predation risk mediated by increased foraging. The few studies that have addressed this trade-off have dealt only with life history traits such as age and size at maturity. Physiological traits have largely been ignored in studies assessing the impact of environmental stressors, and it is largely unknown whether they respond independently of life history traits. Here, we studied the simultaneous effects of time constraints, i.e., as imposed by seasonality, and predation risk on immune defense, energy storage, and life history in lestid damselflies. As predicted by theory, larvae accelerated growth and development under time constraints while the opposite occurred under predation risk. The activity of phenoloxidase, an important component of insect immunity, and investment in fat storage were reduced both under time constraints and in the presence of predators. These reductions were smaller when time constraints and predation risk were combined. This indicates that predators can induce sublethal costs linked to both life history and physiology in their prey, and that time constraints can independently reduce the impact of predator-induced changes in life history and physiology

    18S-NemaBase: Curated 18S rRNA Database of Nematode Sequences

    Get PDF
    Nematodes are the most abundant and diverse animals on the planet but lack representation in biodiversity research. This presents a problem for studying nematode diversity, particularly when molecular tools (i.e., barcoding and metabarcoding) rely on well-populated and curated reference databases, which are absent for nematodes. To improve molecular identification and the assessment of nematode diversity, we created and curated an 18S rRNA database specific to nematodes (18S-NemaBase) using sequences sourced from the most recent publicly available 18S rRNA SILVA v138 database. As part of the curation process, taxonomic strings were standardized to contain a fixed number of taxonomic ranks relevant to nematology and updated for the most recent accepted nematode classifications. In addition, apparent erroneous sequences were removed. To test the efficacy and accuracy of 18S-NemaBase, we compared it to an older but also curated SILVA v111 and the newest SILVA v138 by assigning taxonomies and analyzing the diversity of a nematode dataset from the Western Nebraska Sandhills. We showed that 18S-NemaBase provided more accurate taxonomic assignments and diversity assessments than either version of SILVA, with a much easier workflow and no need for manual corrections. Additionally, observed diversity further improved when 18S-NemaBase was supplemented with reference sequences from nematodes present in the study site. Although the 18S-NemaBase is a step in the right direction, a concerted effort to increase the number of high-quality, accessible, full-length nematode reference sequences is more important now than ever

    18S-NemaBase: Curated 18S rRNA Database of Nematode Sequences

    Get PDF
    Nematodes are the most abundant and diverse animals on the planet but lack representation in biodiversity research. This presents a problem for studying nematode diversity, particularly when molecular tools (i.e., barcoding and metabarcoding) rely on well-populated and curated reference databases, which are absent for nematodes. To improve molecular identification and the assessment of nematode diversity, we created and curated an 18S rRNA database specific to nematodes (18S-NemaBase) using sequences sourced from the most recent publicly available 18S rRNA SILVA v138 database. As part of the curation process, taxonomic strings were standardized to contain a fixed number of taxonomic ranks relevant to nematology and updated for the most recent accepted nematode classifications. In addition, apparent erroneous sequences were removed. To test the efficacy and accuracy of 18S-NemaBase, we compared it to an older but also curated SILVA v111 and the newest SILVA v138 by assigning taxonomies and analyzing the diversity of a nematode dataset from the Western Nebraska Sandhills. We showed that 18S-NemaBase provided more accurate taxonomic assignments and diversity assessments than either version of SILVA, with a much easier workflow and no need for manual corrections. Additionally, observed diversity further improved when 18S-NemaBase was supplemented with reference sequences from nematodes present in the study site. Although the 18S-NemaBase is a step in the right direction, a concerted effort to increase the number of high-quality, accessible, full-length nematode reference sequences is more important now than ever

    Diversification of the Caenorhabditis heat shock response by Helitron transposable elements.

    Get PDF
    Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR

    The B subunits of cholera and Escherichia coli heat-labile toxins enhance the immune responses in mice orally immunised with a recombinant live P-fimbrial vaccine for avian pathogenic E. coli

    Get PDF
    This study aimed to investigate the adjuvant effect of recombinant attenuated Salmonella expressing cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenic E. coli (APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with the Salmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with the Salmonella-LTB strain promoted Th1-type immunity, whereas that immunised with the Salmonella-CTB strain produced Th2-type immunity. We concluded that both Salmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC

    Rapid Growth Reduces Cold Resistance: Evidence from Latitudinal Variation in Growth Rate, Cold Resistance and Stress Proteins

    Get PDF
    Background: Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Methodology/Principal Finding: Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. Conclusions/Significance: We provide evidence for a novel cost of rapid growth: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adul

    The Genome of Caenorhabditis bovis

    Get PDF
    The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species
    corecore