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SUMMARY

The free-living nematode Caenorhabditis elegans
is a key laboratory model for metazoan biology.
C. elegans has also become a model for parasitic
nematodes despite being only distantly related to
most parasitic species. All of the �65 Caenorhab-
ditis species currently in culture are free-living,
with most having been isolated from decaying
plant or fungal matter. Caenorhabditis bovis is a
particularly unusual species that has been isolated
several times from the inflamed ears of Zebu cattle
in Eastern Africa, where it is associated with
the disease bovine parasitic otitis. C. bovis is
therefore of particular interest to researchers inter-
ested in the evolution of nematode parasitism.
However, as C. bovis is not in laboratory culture,
it remains little studied. Here, by sampling live-
stock markets and slaughterhouses in Western
Kenya, we successfully reisolated C. bovis from
the ear of adult female Zebu. We sequenced the
genome of C. bovis using the Oxford Nanopore
MinION platform in a nearby field laboratory and
used the data to generate a chromosome-
scale draft genome sequence. We exploited this
draft genome sequence to reconstruct the phylo-
genetic relationships of C. bovis to other Caeno-
rhabditis species and reveal the changes in
genome size and content that have occurred dur-
ing its evolution. We also identified expansions in
several gene families that have been implicated
in parasitism in other nematode species. The
high-quality draft genome and our analyses
thereof represent a significant advancement in
our understanding of this unusual Caenorhabditis
species.
Current Biology 30, 1–9
This is an open access article und
INTRODUCTION

The free-living nematode Caenorhabditis elegans is used exten-

sively as a model for animal development, genetics, and neuro-

biology. As the most well-studied species within the phylum

Nematoda, C. elegans has also become a model for this

extremely abundant and diverse group of animals, many of

which are parasites [1, 2]. Attempts to understand the evolu-

tionary origins and genetic basis of nematode parasitism often

involve comparisons between parasitic nematode species and

C. elegans [3, 4]. However, C. elegans is only distantly related

to most parasitic species, which limits the efficacy of compara-

tive studies [1]. Recent years have seen significant progress in

our understanding of Caenorhabditis diversity, with over 30

new species discovered in the last decade [5–8]. However, all

of the �65 species currently in culture are free-living, with the

vast majority having been isolated from rotting fruits and flowers

[5–8].

Caenorhabditis bovis [9] is therefore particularly unusual for a

Caenorhabditis species, having been isolated several times from

the outer auditory canals of Zebu cattle in Eastern Africa [10] and

recently from Gyr cattle in South America [11]. C. bovis is

believed to be the causative agent of bovine parasitic otitis, a

disease that causes a range of symptoms including inflamma-

tion, dark brown discharge from the affected ear, and dullness

[12]. In severe cases, bovine parasitic otitis can result in mortality

[12]. As is typical for a Caenorhabditis species, C. bovis is

believed to have a phoretic association with an invertebrate,

with larvae of theOldWorld screwworm fly (Chrysomya bezziana)

also being found in the ears of Zebu cattle [12, 13]. It is unclear to

what extent bovine parasitic otitis is caused directly by C. bovis

or by bacterial and/or fungal infections, and therefore to what

extent C. bovis can be considered a parasite. Despite this, its

close association with a vertebrate means that C. bovis is of

particular interest to researchers interested in the evolution of

nematode parasitism and in Caenorhabditis diversity. However,

as C. bovis is not in laboratory culture, it remains little studied.

In collaboration with local veterinarians and scientists, we

sampled cattle at livestock markets and slaughterhouses in
, March 23, 2020 ª 2020 The Authors. Published by Elsevier Ltd. 1
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Figure 1. Cattle Sampling and Nematode

Isolation

(A) Sampling locations in Western Kenya. We

isolated C. bovis from an adult female Zebu

sampled at a livestock market in Chwele. The an-

imal was believed to have originated from West

Pokot County. The location of the field laboratory in

Busia is also shown. GPS coordinates and the

number of animals sampled at each site can be

found in Table S1.

(B) An animal being sampled using cotton wool

soaked in physiological saline.

(C) Adult female C. bovis under a stereo micro-

scope (C. bovis adults are �1 mm in length [9]).
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Western Kenya and successfully reisolated C. bovis from the ear

of an adult female Zebu. We sequenced the genome of C. bovis

in a nearby field laboratory using the Oxford Nanopore MinION

platform and used the data to generate a high-quality, chromo-

some-scale draft genome sequence. We exploited this genome

to determine the phylogenetic relationships of C. bovis to other

species in the genus Caenorhabditis, including C. elegans, and

reveal changes in genome size and content that have occurred

during its evolution. We also reveal specific expansions in

several gene families that may play a role in its unusual lifestyle.

The high-quality draft genome and the analyses presented here

represent a major step forward in our understanding of this un-

usual and understudied Caenorhabditis species.

RESULTS

Reisolation of C. bovis
We sampled a total of 44 cattle of various ages and breeds at live-

stock markets and slaughterhouses in three counties in Western

Kenya (Figure 1A; TableS1). Samplingwasperformedbywashing

theouter auditory canal of each animalwith cottonwool soaked in

physiological saline (Figure 1B), which was subsequently in-

spected under a dissecting microscope. We identified only a sin-

gle instance of bovine parasitic otitis. The affected animal was an

adult female Zebu that was sampled at a livestock market in

Chwele, Bungoma County (Figure 1A). The animal is believed to

have originated from West Pokot County (Figure 1A). Although

we noted no obvious clinical symptoms, the cotton wool sample

had an unpleasant odor, consistent with previous reports of

bovineparasitic otitis [12].We isolatedapproximately 50 live nem-

atode larvae from the sample, which were subsequently cultured

onE. coli-seededagarplates. Thecultures thrivedat 37�Conboth

nematode growth medium (NGM) and horse blood agar plates.

Using a standard compound microscope, we identified adult

nematodes as members of the genus Caenorhabditis based on

their morphology (presence of a prominent pharyngeal bulb and

filiform female tail). The morphology of the adult male tail (anteri-

orly closed fan, ray pattern with gap between GP2 and GP3,

and a bent gubernaculum) was consistent with previous descrip-

tions of C. bovis [9, 14].
2 Current Biology 30, 1–9, March 23, 2020
A High-Quality, Chromosome-Scale
C. bovis Reference Genome
We sought to generate a high-quality

reference genome for C. bovis. We took
advantage of the portability of theOxford NanoporeMinIONplat-

form and sequenced the genome of C. bovis in a field laboratory

in Busia, Western Kenya (Figure 1A). We generated 11.3 Gb of

sequence data representing �180-fold coverage of the

C. bovis genome using two MinION v9.4 flow cells. Read length

N50swere 11.4 kb and 4.3 kb, respectively, with the longest read

spanning 242 kb (Table S2; Figure S1). We also sequenced the

genome to �210-fold coverage (13.3 Gb) using the Illumina

MiSeq platform at the BecA-ILRI Hub in Nairobi, Kenya. We

identified and discarded reads originating from contaminant or-

ganisms, including several bacterial species that are known

mammalian pathogens, using taxon-annotated GC-coverage

plots (Figure S2).

We assembled the C. bovis genome using the MinION long

reads and corrected residual sequencing errors in the assembly

using the Illumina short reads. The resulting assembly comprises

35 contigs spanning 62.7 Mb with a contig N50 of 7.6 Mb, with

half of the assembly contained in just 4 contigs (Figures 2A

and 2B; Table 1). The assembly is highly complete, with 94.2%

of a conserved set of nematode genes being present and fully

assembled. In contrast to other outcrossing species, whose ge-

nomes typically contain high levels of heterozygosity [16], we

find that the genome of C. bovis contains surprisingly little het-

erozygosity. Using a variant calling approach, we estimate that

0.03% of sites in the C. bovis genome are heterozygous (1 het-

erozygous site every �3,760 bp), with the k-mer distribution of

the Illumina data indicating that the genome is essentially homo-

zygous (Figure S3). Using protein sequences predicted from the

genomes of related nematodes as homology evidence, we pre-

dicted 13,128 protein-coding genes in the C. bovis genome. We

note that this number is considerably lower than the number of

genes predicted in the genomes of otherCaenorhabditis species

[8]. However, the gene set contains 95.1% of a conserved set of

nematode genes (Table 1), suggesting that the reduced count is

not due to an incomplete gene set.

Chromosomal linkage groups are highly conserved in Caeno-

rhabditis [17]. We defined 7,706 one-to-one orthologs between

C. bovis and C. elegans, and exploited this conservation to

assign 15 contigs (representing 99.4% of the C. bovis assembly)

to the six C. elegans chromosomes (Figures 2A and S4).



Figure 2. A High-Quality, Chromosome-

Scale C. bovis Reference Genome

(A) Highly conserved linkage groups enable the

assignment of 15 C. bovis contigs, comprising

99.4% of the assembly, to the six C. elegans

chromosomes. Lines represent the position of

7,706 orthologs between C. bovis and C. elegans.

Figure S4 shows the genic composition of the 15

C. bovis contigs.

(B) Cumulative length as a proportion of span of the

C. bovis and C. elegans genome assemblies.

(C) Chromosome size in C. bovis and C. elegans.

Dotted line represents the expected chromosome

size based on the proportion of overall genome

size between C. elegans and C. bovis (1:0.63).

(D and E) Patterns of variation in GC content (using an 8 kb sliding window) in C. bovis contigs 3 (chromosome III; D) and 1 (chromosome V; E), respectively, are

consistent with the arms and centers organization present in the chromosomes of other Caenorhabditis species.
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Chromosomes III and V are represented by single contigs,

suggesting that these contigs represent complete C. bovis chro-

mosomes. Both contigs also show patterns of variation in GC

content characteristic of the arm and center organization present

in the chromosomes of other Caenorhabditis species [17–19]

(Figures 2D and 2E). The remaining chromosomes are each rep-

resented by 3–4 contigs (Figures 2A and S4).

The Position of C. bovis within Caenorhabditis

We sought to reconstruct the phylogenetic relationships of

C. bovis to other species in the genus Caenorhabditis. We clus-

tered over a million protein sequences predicted from the

genomes of C. bovis, 32 other Caenorhabditis species [8, 18–

23], and two outgroup taxa, Diploscapter coronatus [24] and

Diploscapter pachys [25], into orthologous groups and selected

1,167 single-copy orthologs. Alignments of these orthologs were

concatenated to form a supermatrix that was used to recon-

struct the Caenorhabditis phylogeny using maximum likelihood.

Our phylogenomic analysis resulted in a well-supported phylog-

eny (Figure 3) that was largely congruent with previously pub-

lished phylogenies [5, 8, 22]. We recover C. bovis as sister to

Caenorhabditis plicata with maximal support (bootstrap value

of 100). The clade containing C. bovis and C. plicata is early-

diverging within the genus Caenorhabditis, and the branches

separating C. bovis and C. plicata are long, indicating that

C. bovis is highly diverged from all other sequenced species,

including C. elegans.

Comparison between the C. bovis and C. elegans

Genomes
At 62.3 Mb, the C. bovis genome is the smallest Caenorhabditis

genome published to date [8], and is nearly 40 Mb smaller than

the C. elegans genome. All six C. bovis chromosomes are

smaller than their C. elegans homologs (Figure 2C). Chromo-

some V is 49% smaller in C. bovis and contains fewer than half

as many genes (2,302 and 4,992, respectively). Interestingly,

the X chromosome is most conserved in size, being only 28%

smaller in C. bovis and containing 20% fewer genes (2,260 and

2,782, respectively).

The majority of the overall difference in genome size (22.1 Mb

or 58%) can be explained by a difference in protein-coding gene

content, with the C. bovis genome containing 7,080 fewer pre-

dicted genes than C. elegans. The 13,128 C. bovis genes span
35.1 Mb, while the 20,208 C. elegans genes span 57.2 Mb,

with genic DNA making up a similar proportion of each genome

(56% and 57%, respectively). To understand what underlies the

difference in gene number, we used the orthology clustering set

described previously to compare the number of single-copy

genes (those that do not cluster alongside another gene from

the same species) and multi-copy genes (those that cluster

alongside at least one other gene from the same species) in

C. bovis andC. elegans.We find that theC. bovis gene set is sub-

stantially less redundant, with only 23% (3,095) of the gene set

being classified as multi-copy, while 41% (8,351) of the

C. elegans gene set is multi-copy. A particularly striking differ-

ence is in the number of G protein-coupled receptors (GPCRs),

a large family of transmembrane proteins with chemosensory

roles in C. elegans [26]. The C. elegans genome encodes 1,465

GPCRs, while theC. bovis genome contains just 326, accounting

for 16% of the overall difference in gene number (Table S3).

Several other large C. elegans gene families are also similarly

underrepresented in the C. bovis genome, with differences in

the number of nuclear hormone receptors (NHRs), major sperm

proteins (MSPs), F-box proteins, and C-type lectins accounting

for a further 10% of the difference in gene number (Table S3).

In addition to having fewer genes, the C. bovis genome con-

tains a smaller proportion of repetitive DNA than the C. elegans

genome (13% and 16%, respectively; Table S4), explaining a

further 8.1 Mb (21%) of the difference in genome size. As is the

case for C. elegans, repeats are underrepresented on the

C. bovis X chromosome relative to the rest of the genome (5%

versus 16%; Table S4). In C. elegans, repeats are distributed

non-randomly within the five autosomes, with the chromosome

arms being substantially more repeat rich than the centers

(28% versus 9%; Figures 4A and 4B; [18]). In contrast, we find

a more even distribution of repeats in the two fully assembled

C. bovis chromosomes (III and V), with the center regions being

marginally more repeat rich the arms (16% versus 14%, respec-

tively, assuming the same proportional length of the arm and

center domains as C. elegans; Figures 4A and 4B).

We compared gene structure in 7,706 genes that were single

copy between C. bovis and C. elegans. Despite the genome be-

ing considerably smaller, C. bovis genes contain more introns

than their C. elegans orthologs (8.6 and 6.6 introns per gene,

respectively; Figure 4C; Table S5). This is consistent with

previous analyses that have found that early-diverging
Current Biology 30, 1–9, March 23, 2020 3



Figure 3. ThePhylogenetic Position ofC. boviswithinCaenorhabditis

Phylogeny inferred using a supermatrix of 1,167 single-copy orthologs under

the general time reversible substitution model with gamma-distributed rate

variation among sites (GTR + G). C. bovis and C. elegans are highlighted in

bold. The tree is rooted with the two Diploscapter species. Branch lengths are

in substitutions per site; scale is shown. Bootstraps were 100 unless noted as

branch annotations. Major clades as defined by [5] are highlighted.

Table 1. Genome and Gene Set Metrics for Caenorhabditis bovis

Assembly v1.0

C. bovis v1 C. elegans

Span (Mb) 62.73 100.29

Number of contigs 35 7*

Contig N50 length (Mb) 7.56 17.49

Contig N50 number 4 3

Longest contig (Mb) 10.86 20.92

Repeat content (Mb) 8.19 (13.1%) 16.34 (16.3%)

BUSCO genome—complete (%)/

fragmented (%)

94.2/4.6 98.7/0.7

Number of protein-coding genes 13,128 20,208

BUSCO gene set—complete (%)/

fragmented (%)

95.2/3.2 98.7/0.9

Assembly and gene set completeness was assessed using BUSCO

(version 3.0.2) with the ‘‘nematoda_odb9’’ dataset. *The C. elegans

genome comprises 6 chromosomes and a 13 kb mitochondrial genome.

WormBase ParaSite version WBPS12 of the C. elegans genome was

used [15]. MinION sequencing statistics are shown in Figure S1 and Table

S2. A taxon-annotated GC-coverage plot showing contigs from contam-

inating organisms that were removed from the C. bovis assembly is

shown in Figure S2. Kmer spectra of the Illumina short-read data are

shown in Figure S3.
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Caenorhabditis species have retained more ancestral introns

than their in-group relatives [22, 28]. However, C. bovis introns

are, on average, less than half the size of C. elegans introns

(157 bp and 319 bp, respectively; Table S5). Therefore, despite

containing more introns, C. bovis genes contain on average

less intronic DNA than their C. elegans orthologs (1,270 bp and

2,375 bp of intronic DNA per gene, respectively; Figure 4D;

Table S5).

Expanded Gene Families in the C. bovis Genome
We sought to identify features of the C. bovis genome that may

relate to its unusual ecology. Using the orthology clustering set

described previously, we compared the C. bovis gene set to

those of 32 other Caenorhabditis species. Despite having sub-

stantially fewer genes than other Caenorhabditis species, we

identified several C. bovis-specific expansions in gene families

that have independently been implicated in parasitism in other

nematode species.

P-glycoproteins are members of the ATP-binding cassette

(ABC) transporter family and are responsible for the removal of

intracellular xenobiotics [29]. P-glycoproteins have been impli-

cated in resistance to antihelminthic drugs in several parasitic

nematode species [30–32]. We find evidence for two duplica-

tions of the ortholog of the C. elegans P-glycoprotein gene

pgp-11 inC. bovis, resulting in three distinct copies (Figure S5A).

All other Caenorhabditis species, except for C. monodelphis,

possess a single ortholog of pgp-11 (Figure S5A). C. elegans

strains that lack pgp-11 function show increased susceptibility

to ivermectin [33], a widely used antihelminthic drug, and genetic

variation in the ortholog of pgp-11 is associated with variation in

ivermectin susceptibility in the horse parasite Parascaris equo-

rum [34].

Fatty acid and retinol (FAR) proteins are responsible for the up-

take and transport of lipids required for nematode metabolism
4 Current Biology 30, 1–9, March 23, 2020
and development [35]. FAR proteins have also been proposed

to play a role in modulating host immune responses via the inter-

ference of lipid signaling pathways [36]. We find that the ortholog

of theC. elegans FAR gene far-8 has undergone two duplications

inC. bovis, resulting in three distinct copies (Figure S5B).We also

find evidence for the expansion of a family of proteins containing

Kunitz-type serine protease inhibitor domains in C. bovis

(Figure S5C). A Kunitz-type serine protease inhibitor secreted

by the hookworm Ancylostoma ceylanicum has been shown to

be capable of inhibitingmammalian host proteases [37]. Thema-

jority of species, including C. elegans, possess a single member

of this family, while C. bovis possesses five. In addition, a family

of galectin-domain-containing proteins appears to be restricted

to C. bovis. Galectins are actively secreted by several parasitic

nematode species and may interfere with mammalian host

immune responses [38–40].

DISCUSSION

Here, we reisolated C. bovis from the ear of a female Zebu (Bos

taurus indicus) in Western Kenya. We sequenced the genome of

C. bovis using the Oxford Nanopore MinION platform in a nearby

field laboratory and used the data to generate a high-quality,

chromosome-scale reference genome. We exploited this

genome sequence to reconstruct the phylogenetic relationships



Figure 4. Comparison between the C. bovis

and C. elegans Genomes

(A and B) Repeat densities across chromosome III

(A) and V (B) in 50 kb windows in C. bovis and

C. elegans. Lines represent loess smoothing

functions fitted to the data for each species. Points

and lines for C. elegans are colored by arms and

centers domains (dark blue: centers, light blue:

arms) as defined by [27]. Repeat content statistics

for each chromosome are shown in Table S4.

(C and D) Histograms of the log2-transformed ratio

of exon count (C) and intron span (D) in 7,706

genes in C. bovis compared to their orthologs in

C. elegans. Untranslated regions (UTRs) are not

annotated in C. bovis and so only coding exons

and the intervening introns were considered in

both species. Gene structure statistics are shown

in Table S5. Counts of large gene families in

C. elegans and C. bovis are shown in Table S3 and

gene trees of expanded gene families in C. bovis

are shown in Figure S5.
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of C. bovis to other Caenorhabditis species, and identified ex-

pansions in gene families that may be associated with the un-

usual lifestyle of C. bovis.

The low level of heterozygosity in the C. bovis genome is sur-

prising. Genomes of outcrossing Caenorhabditis species typi-

cally contain extremely high levels of heterozygosity [41, 42],

which can complicate genome assembly [16]. To circumvent

these issues, Caenorhabditis species are often deliberately

inbred over multiple generations (e.g., by sibling mating) prior

to sequencing [8]. While it is likely that our C. bovis cultures

underwent some population bottlenecking during isolation

and the subsequent two-week period of laboratory culture, if

C. bovis has similar levels of heterozygosity to other outcross-

ing Caenorhabditis species, this alone is not sufficient to

explain the low levels of heterozygosity we observe. Instead,

it seems that the C. bovis population we sampled from is

naturally highly inbred, suggesting that a very small number

of nematodes are transported between hosts and that gene

flow between demes is extremely rare. Resequencing other iso-

lates would allow us to test if this is true of all C. bovis

populations.

The placement of C. bovis as sister to C. plicata is intriguing.

C. plicata has been isolated from carrion (once from a dead

elephant in Kenya and once from a dead pine marten in

Germany) and has a phoretic association with carrion beetles

[10, 43, 44]. C. plicata is therefore the only Caenorhabditis

species currently in culture that has been found in association

with a vertebrate, with all others having been isolated from

rotting plant or fungal matter [5–8]. In recent years, worldwide

sampling has led to the discovery of many new Caenorhabditis

species, but all efforts have been focused in habitats that

resemble the decaying vegetable matter habitat identified as

the home of C. elegans [5–7, 45, 46]. While there are anecdotal
instances of other Caenorhabditis spe-

cies being associated with vertebrates,

including birds [47], dogs [48], and hu-

mans [49], no directed searches focusing

on living or dead animal niches have
been reported. It is therefore possible that there exists a largely

undiscovered clade of vertebrate-associated Caenorhabditis

species.

While the genome and the gene set of C. bovis are smaller

than that of C. elegans and many other Caenorhabditis species,

we identified several gene families that appear to have under-

gone expansion in C. bovis. Functional annotation of these

expanded gene families revealed that several have been inde-

pendently implicated in parasitism in other nematode species.

While P-glycoproteins (and orthologs of pgp-11 specifically)

are associated with resistance to antihelminthic drugs such

as ivermectin, what role the expansion of pgp-11 plays in the

biology of C. bovis remains unclear. Ivermectin has been found

to be effective at killing C. bovis and in the treatment of bovine

parasitic otitis in cattle in Tanzania [50]. In contrast, similar

studies have found ivermectin and albendazole to be an inef-

fective treatment for bovine parasitic otitis in cattle in Brazil

[51, 52]. Aside from P-glycoproteins, FAR proteins, galectins,

and serpins are known to be actively secreted by several para-

sitic nematode species, and an immunomodulatory role has

been proposed. It would be fascinating to explore the roles of

these families (and many others) in the possible parasitic life-

style of C. bovis. We note also that C. bovis appears to be

adapted to life at 37�C in its bovine niche. This temperature

is rapidly lethal to C. elegans [53, 54], and thus C. bovis must

have adapted to be heat resistant.

We do not yet know enough about the biology ofC. bovis, from

either its genome or its limited biological literature, to classify it

as a ‘‘true’’ parasite; C. bovis might instead be an opportunistic

colonizer of niches created by other pathogens. Several other

Caenorhabditis species associate with arthropods as phoretic

hosts, and such phoresy is thought to serve as the major means

of transport between scattered food patches [10]. C. bovis is
Current Biology 30, 1–9, March 23, 2020 5
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believed to be transported by dipterans [13], themselves associ-

ated with parasitism of bovine ears, and may have exploited the

biology of these phoretic hosts to colonize a new niche, the

bovine ear. Bacterial coinfection may be a prerequisite of coloni-

zation by C. bovis, may be exacerbated or encouraged by the

presence of C. bovis, or may be initiated by C. bovis itself. Other

Rhabditine species offer models for this last possibility: entomo-

pathogenic species in the genus Heterorhabditis carry specific

bacteria that play roles in killing their arthropod larval prey [55],

and molluscicidal nematodes in the genus Phasmarhabditis

induce bacterial sepsis in slugs and snail prey [56].

While the high-quality draft genome and the analyses pre-

sented here represent a major step forward in our understanding

of this unusual and understudied Caenorhabditis species, it is

only a beginning. Our ultimate goal is to establish long-term cul-

tures and to apply the exquisite reverse genetic toolkits available

for Caenorhabditis to understand the biology of this species. We

would like the isolates to be available to any researcher via the

Caenorhabditis Genetics Center (CGC), and we are currently

seeking the appropriate permits for export from Kenya. We

hope that these cultures, combined with the draft-genome

sequence, will enable the interrogation of the biology of

C. bovis, including the use of CRISPR-Cas9 technology to edit

or disrupt loci that might be relevant for its unusual lifestyle. It

is important to note, however, that we still know very little about

C. bovis in situ, with details of its present-day prevalence, role in

bovine parasitic otitis, and microbial associates remaining

scarce. Therefore, any laboratory interrogation must happen

alongside further study ofC. bovis in Eastern Africa, in collabora-

tion with local institutes and scientists.
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neuer und wenig bekannter Rhabditiden (Nematoda).
Current Biology 30, 1–9, March 23, 2020 7

http://refhub.elsevier.com/S0960-9822(20)30118-4/sref9
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref9
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref9
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref9
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref10
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref10
https://doi.org/10.21897/rmvz.311
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref12
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref12
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref12
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref13
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref13
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref13
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref14
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref14
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref14
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref14
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref14
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref15
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref15
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref15
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref16
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref16
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref16
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref16
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref17
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref17
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref17
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref17
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref18
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref18
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref18
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref19
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref19
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref19
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref19
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref20
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref20
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref20
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref20
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref21
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref21
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref21
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref22
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref22
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref22
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref23
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref23
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref23
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref23
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref24
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref24
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref24
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref24
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref25
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref25
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref25
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref25
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref26
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref26
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref26
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref26
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref27
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref27
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref27
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref28
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref28
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref28
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref28
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref29
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref29
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref29
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref29
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref30
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref30
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref30
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref31
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref31
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref31
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref31
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref32
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref32
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref32
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref32
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref32
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref32
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref33
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref33
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref33
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref33
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref34
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref34
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref34
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref34
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref34
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref35
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref35
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref35
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref35
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref35
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref35
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref36
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref36
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref36
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref36
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref37
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref37
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref37
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref37
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref38
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref38
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref38
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref38
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref39
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref39
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref39
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref39
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref39
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref40
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref40
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref40
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref40
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref41
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref41
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref41
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref42
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref42
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref42
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref43
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref43
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref44
http://refhub.elsevier.com/S0960-9822(20)30118-4/sref44


Please cite this article in press as: Stevens et al., The Genome of Caenorhabditis bovis, Current Biology (2020), https://doi.org/10.1016/
j.cub.2020.01.074
45. F�elix, M.-A., and Braendle, C. (2010). The natural history of Caenorhabditis

elegans. Curr. Biol. 20, R965–R969.

46. F�elix, M.-A., and Duveau, F. (2012). Population dynamics and habitat

sharing of natural populations of Caenorhabditis elegans and C. briggsae.

BMC Biol. 10, 59.

47. Schmidt, G., and Kuntz, R.E. (1972). Caenorhabditis avicola sp.

n.(Rhabditidae) found in a bird from Taiwan. Proc. Helminthol. Soc.

Wash. 39, 189–191.

48. Kreis, H.A., and Faust, E.C. (1933). Two new species of Rhabditis

(Rhabditis macrocerca and R. clavopapillata) associated with dogs and

monkeys in experimental Strongyloides studies. Trans. Am. Microsc.

Soc. 52, 162–172.

49. Scheiber, S.H. (1880). Ein Fall von mikroskopisch kleinen Rundwürmern—

Rhabditis genitalis—im Urin einer Kranken. Virchows Arch. 82, 161–175.

50. Msolla, P., Falmer-Hansen, J., Musemakweli, J., and Monrad, J. (1985).

Treatment of bovine parasitic otitis using ivermectin. Trop. Anim. Health

Prod. 17, 166–168.

51. Verocai, G.G., Fernandes, J.I., Correia, T.R., Melo, R.M., Alves, P.A.M.,

Scott, F.B., and Grisi, L. (2009). Inefficacy of albendazole sulphoxide

and ivermectin for the treatment of bovine parasitic otitis caused by rhab-

ditiform nematodes. Pesqui. Vet. Bras. 29, 910–912.

52. Ferraz, C.M., Sobral, S.A., Senna, C.C., Junior, O.F., Moreira, T.F., Tobias,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Cholesterol Sigma CAS#57-88-5

Potassium phosphate, monobasic Fisher CAS#7778-77-0

diPotassium hydrogen phosphate trihydrate Millipore CAS#16788-57-1

Bactotrypone Millipore CAS#91079-40-2

OmniPur Sodium Chloride Millipore CAS#7647-14-5

Columbia Agar Millipore Cat#27688-500G

Cell Lysis Solution QIAGEN Cat#158906

RNase Cocktail Enzyme Mix Invitrogen Cat#AM2286

Protein Precipitation Solution QIAGEN Cat#158910

Qubit BR/HS assay ThermoScientific Cat#Q32854/ Q32850

AMPure XP beads Beckman Coulter Cat#A63880

Ligation Sequencing Kit Oxford Nanopore Kit#SQK-LSK109

Ultra II Ligation Master Mix New England Biolabs Cat#E7595S

300 bp MiSeq reagent kit v3 Illumina Cat#MS-102-3003

Deposited Data

Raw sequence data European Nucleotide Archive (ENA) ENA: PRJEB34497

Genome assembly and annotation files European Nucleotide Archive (ENA) ENA: PRJEB34497

Software and Algorithms

Guppy N/A https://community.nanoporetech.com

wtdbg2 [57] https://github.com/ruanjue/wtdbg2

NCBI-BLAST+ [58] ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/LATEST/

Diamond [59] https://github.com/bbuchfink/diamond

minimap2 [60] https://github.com/lh3/minimap2

blobtools [61] https://blobtools.readme.io/docs

Racon [62] https://github.com/isovic/racon

Medaka N/A https://github.com/nanoporetech/medaka

BWA-MEM [63] https://github.com/lh3/bwa

Pilon [64] https://github.com/broadinstitute/pilon

RepeatModeler [65] http://www.repeatmasker.org/RepeatModeler/

RepeatMasker [66] http://www.repeatmasker.org/RMDownload.html

BRAKER [67] https://github.com/Gaius-Augustus/BRAKER

BUSCO [68] https://busco.ezlab.org/

JellyFish [69] https://www.cbcb.umd.edu/software/jellyfish/

GenomeScope [70] http://qb.cshl.edu/genomescope/

PicardTools [71] https://broadinstitute.github.io/picard/

freebayes [72] https://github.com/ekg/freebayes

bcftools [73] http://samtools.github.io/bcftools/bcftools.html

OrthoFinder [74] https://github.com/davidemms/OrthoFinder

IQ-TREE [75] http://www.iqtree.org/

MAFFT [76] https://mafft.cbrc.jp/alignment/software/

PhyloTreePruner [77] https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3825643/

(Continued on next page)
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KinFin [78] https://github.com/DRL/kinfin

InterProScan [79] https://www.ebi.ac.uk/interpro/search/

TransposonPSI [80] http://transposonpsi.sourceforge.net/

GenomeTools [81] http://genometools.org/

RepeatClassifier [66] http://www.repeatmasker.org/RMDownload.html

VSEARCH [82] https://github.com/torognes/vsearch
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LEAD CONTACT AND MATERIALS AVAILABILITY

There are restrictions to the availability of our cryopreserved C. bovis cultures as we do not yet have a material transfer agreement

(MTA) in place to export these animals from Kenya to the UK. Further information about our cultures should be directed to the Lead

Contact, Lewis Stevens (lewis.stevens@ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics Statement
This study was approved by the Institutional Research Ethics Committee (IREC Reference No. 2017-08) and the Institutional Animal

Care and Use Committee (IACUC Reference No. 2017-04 and 2017-04.1) at the International Livestock Research Institute, review

bodies approved by the Kenyan National Commission for Science, Technology and Innovation. Approval to conduct the work

was also obtained from the Department of Veterinary Services and the relevant offices of these Ministries at the county government

level. All recruited animal owners gave written, informed consent prior to their inclusion in the study.

Sampling, nematode isolation and culture
Samplingwas carried out as part of an existing surveillance program of zoonotic disease in humans at hospitals and livestock animals

at livestock markets and slaughterhouses in three counties of Western Kenya (Figure 1; Table S1). A total of 44 cattle, including a

range of local breeds and ages, were sampled. We restrained each animal manually and washed the external auditory canal using

cotton wool soaked in physiological saline. Cotton wool samples were stored in 50 mL tubes and transported to the laboratory in a

refrigerated box.We inspected 1-2mL of saline from each sample under a dissectingmicroscopewithin 4 h of collection. Nematodes

were isolated from the saline using a pipette and placed onto nematode growth medium (NGM) (1 g NaCl, 2 g Bactotryptone, 1.5 g

KH2PO4, 0.25 g K2HPO4, 4mg cholesterol, 10 g agar, 500 mL deionized water) or blood agar (50 mL horse blood, 41 g Columbia

blood agar base, 1L of deionized water) plates seeded with an environmentally-sourced E. coli strain. Plates were incubated at

37�C. The morphology of adult nematodes was examined using a standard compound microscope and compared to the previous

morphological descriptions of C. bovis [9, 14].

METHOD DETAILS

DNA extraction
We harvested nematodes by washing each plate with phosphate-buffered saline (PBS) supplemented with 0.01% Tween20. The

nematodes were washed three times with clean PBS and subsequently centrifuged to form a pellet. Pellets were stored at �40�C
until extraction. We added 600 mL of Cell Lysis Solution (QIAGEN) and 20 mL of proteinase K (20 mg/mL) to each frozen pellet and

incubated for four h at 56�C. 5 mL of RNase Cocktail Enzyme Mix (Invitrogen) was subsequently added and incubated at 37�C for

one h. We added 200 ml of Protein Precipitation Solution (QIAGEN) and centrifuged at 15,000 rpm for 3 min. The supernatant was

collected in a new tube and 600 mL of isopropanol added to precipitate the DNA. We centrifuged each tube at 15,000 rpm for

3 min and discarded the supernatant. The resulting DNA pellets were washed twice with 70% ethanol and briefly allowed to dry

before being resuspended in 100 mL of elution buffer (10 mM Tris-Cl). DNA concentration was assessed using Qubit (Thermo

Scientific).

Oxford Nanopore MinION sequencing
We sheared the DNA prior to sequencing by passing approximately 2 mg in a volume of 100 ml through either 26G or 29G insulin

needle 5-10 times. Small fragments were removed by purifying DNA with 0.5x concentration Agencourt AMPure XP beads. We

followed the ‘‘one-pot’’ ligation protocol for preparing Oxford Nanopore SQK-LSK108 libraries (https://www.protocols.io/view/

one-pot-ligation-protocol-for-oxford-nanopore-libr-k9acz2e) but with the following modifications: we added 5 ml of SQK-LSK109

adaptor mix (AMX) instead of 20 ml of SQK-LSK108 AMX; we added 20 ml of NEB Ultra II Ligation Master Mix instead of 40 ml; we

replaced the SQK-LSK108 adaptor binding beads (ABB) with either the SQK-LSK109 long fragment buffer (LFB) or short fragment
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buffer (SFB). Thereafter, we followed the standard manufacturer’s instructions for preparing and loading SQK-LSK109 libraries.

Libraries were loaded on to two R9.4 flow cell and run for �48 h using MinKNOW version 18.12.9. Raw data metrics are presented

in Table S2.

Illumina MiSeq sequencing
We prepared one Nextera DNA Flex library as per manufacturer’s instructions using �100 ng of input DNA. The library fragment size

was assessed using the Agilent TapeStation and library concentration was determined using Qubit dsDNA HS Assay Kit (Thermo

Scientific, USA). The library was then sequenced using the Illumina MiSeq platform with a paired-end 300 bp MiSeq reagent kit

v3 (Illumina, USA) at the BecA-ILRI Hub in Nairobi, Kenya.

Genome assembly
Software versions and relevant parameters are available in the Zenodo repository. We base called the MinION FAST5 data using the

high accuracy model in Guppy (available at https://community.nanoporetech.com). We generated a preliminary assembly using

wtdbg2 [57] and identified contaminants using taxon-annotated, GC-coverage plots (Figure S2) as implemented in blobtools [61].

Reads were mapped to the preliminary assembly using minimap2 [60] and the likely taxonomic origin of each contig was determined

by searching NCBI nucleotide ‘nt’ or UniProt Reference Proteomes [59] using NCBI-BLAST+ [58] or DIAMOND [83], respectively.

Reads originating from contaminant organisms were discarded. We generated the final assembly using wtdbg2. Sequencing errors

were initially corrected by aligning the MinION reads to the assembly using minimap2 and performing four iterations of Racon [62]

followed by a single iteration of Medaka (available at https://github.com/nanoporetech/medaka). Any remaining errors were cor-

rected by aligning the Illumina MiSeq reads to the assembly using BWA-MEM [63] and performing two iterations of Racon followed

by two iterations of Pilon [64].

Gene prediction
Prior to gene prediction, repeat sequences were identified de novo using RepeatModeler [65] and subsequently masked using

RepeatMasker [66]. Protein-coding genes were predicted using BRAKER [67], using proteins sequences from the nematode-specific

EggNOG database (which comprises sequences from C. elegans, C. briggsae, C. remanei, C. japonica, Pristionchus pacificus and

Trichinella spiralis) [84] as homology evidence. Genome assembly and gene set completeness were assessed using BUSCOwith the

‘nematoda_odb9’ database [68].

Estimation of heterozygosity
We estimated heterozygosity in theC. bovis genome using two approaches. We used Jellyfish [69] to count kmers (k = 19) in adaptor-

trimmed and contaminant-free Illumina MiSeq reads and used the GenomeScope website [70] to estimate heterozygosity. To

specifically call heterozygous sites in the C. bovis genome, we aligned the Illumina MiSeq reads to the C. bovis assembly using

BWA-MEM and removed possible PCR duplicates from the resulting BAM file using PicardTools [71]. We performed variant calling

using freebayes [72] and used bcftools [73] to remove variants sites that were dependent on strand or the position of the aligned read.

We then estimated heterozygosity by dividing the total number of biallelic single nucleotide polymorphisms (SNPs) by the total

number of sites (only those sites with a read depth R 8 and % 250, which represented 99.3% of the genome, were considered).

Assignment of C. bovis contigs to chromosomes
To assign C. bovis contigs to chromosomes, we identified one-to-one orthologs between C. bovis and C. elegans using a reciprocal

best BLAST hit approach. Both proteomes were filtered so that they contained only the longest isoform per gene and searched

against each other using blastp. Protein pairs which had reciprocal best BLAST hits with e-values < 1e-25 and a query coverage

> 75% were declared as one-to-one orthologs. C. bovis contigs containing 10 or more C. elegans orthologs were assigned to the

chromosome containing the majority of the C. elegans orthologs.

Orthology inference and phylogenomics
Accession details for all data used in this analysis are available in the Zenodo repository. We selected the protein sequence of the

longest isoform of each protein-coding gene inC. bovis, 32 other species ofCaenorhabditis, and the two outgroup taxa,Diploscapter

coronatus and Diploscapter pachys. OrthoFinder [74] was used to cluster all protein sequences into putatively orthologous groups

(OGs) using the default inflation value of 1.5. OGs containing loci which were present in at least 75% of species and which were, on

average, single copy (mean count per species < 1.3) were selected. We aligned each selected OG usingMAFFT [76] and generated a

maximum likelihood tree along with 1000 ultrafast bootstraps [85] using IQ-TREE [75], allowing the best-fitting substitution model to

be selected automatically [86]. Each tree was screened by PhyloTreePruner [77], collapsing nodes with bootstrap support < 90, and

any OGs containing paralogs were discarded. If two representative sequences were present for any species (i.e., ‘‘in-paralogues’’)

after this paralog screening step, only the longest of the two sequences was retained. We then realigned the remaining OGs using

MAFFT and trimmed spuriously aligned regions using trimAl [87]. The trimmed alignments were subsequently concatenated to form a

supermatrix using catfasta2phyml (available at https://github.com/nylander/catfasta2phyml). We inferred the species tree using

IQ-TREE with the general time reversible model (GTR) with gamma-distributed rate variation among sites. The resulting tree was

visualized using the iTOL web server [88]).
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Gene content and structure analyses
To understand the large difference in protein-coding gene number betweenC. bovis andC. elegans, we used the orthology clustering

set described previously to determine the level of redundancy in each gene set. For each species, we counted the number of loci in

orthogroups containing two or more representatives from that species (multi-copy) and the number of loci in orthogroups containing

a single representative from that species (single-copy). We also searched the longest isoform of each protein-coding gene from both

species against the Pfam [89] database using InterProScan [79]. We then counted the number of loci in each species that were

annotated as being GPCRs, NHRs, MSPs, F-box proteins, or C-type lectins. These gene families are known to constitute a substan-

tial fraction of the C. elegans gene set [90].

We sought to identify gene families that have undergone expansion in the relatively small C. bovis gene set. We provided the or-

thology clustering set described previously to KinFin [78] to compare counts between C. bovis and all other species. We also

searched the longest isoform of each protein-coding gene for all species against Pfam using InterProScan and provided the output

to KinFin to annotate each orthogroup with a putative function. We screened the expanded gene families for functions that had pre-

viously been implicated in parasitism in other nematode species. To further affirm expansion inC. bovis,we generated gene trees for

each orthogroup of interested using IQ-TREE as previously described.

To compare gene structure in C. bovis and C. elegans, we identified one-to-one orthologs in the orthology clustering set and

extracted the exon counts and intron spans from the GFF annotation files of each species. As untranslated regions (UTRs) are not

annotated in C. bovis, only coding exons and intervening introns were considered for both species. We calculated log2-transformed

ratios of exon counts and intron spans for each gene pair using a Python script (available at https://github.com/lstevens17/

cbovis_manuscript).

Repeat content analyses
To generate comprehensive repeat libraries and annotations for both C. bovis and C. elegans, we followed the approach of [91].

Briefly, we used TransposonPSI [80] to identify transposon sequences in both species, retaining those that were at least 50 bp in

length. We also identified long terminal repeat (LTR) transposons in each species using LTRharvest [81]. We searched the resulting

library with protein HMMs from Pfam and GyDB [92] using LTRdigest [93] and discarded any sequence that did not contain a trans-

posable element domain. We also identified repetitive sequences de novo in both species using RepeatModeler. We then combined

the resulting repeat libraries, classified each sequence using RepeatClassifier, and clustered the libraries at an identity of R 80%

using VSEARCH [82] to create a non-redundant repeat library for each species. We removed sequences from these repeat libraries

that had significant homology to any member of the C. elegans gene set using TBLASTN. The resulting non-redundant and filtered

repeat libraries were then provided to RepeatMasker which generated the final repeat annotations for each species along with

genome file with repeat sequences masked with N’s. We used a Python script (available at https://github.com/lstevens17/

cbovis_manuscript) to compute repeat densities in 50 kb windows across chromosomes III and V in both C. bovis and C. elegans.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted using R (v3.5.1) [94] and Python 2.7. Gene structure ratios were log2-transformed using themath

Python module. Loess smoothing curves were fitted to repeat densities using the ggplot2 R package (v2.3.1) [95].

DATA AND CODE AVAILABILITY

Raw sequence data and the genome assembly and annotation files have been deposited in the relevant INSDC databases under the

accession NCBI:PRJEB34497. The assembly and gene set are also available to browse, query, and download at http://

caenorhabditis.org/. Data files associated with this study have been deposited in Zenodo under the accession 10.5281/zenodo.

3571457. Scripts and intermediate files associated with this study are available in the following GitHub directory https://github.

com/lstevens17/cbovis_manuscript.
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