31 research outputs found

    Exact non-equilibrium current from the partition function for impurity transport problems

    Full text link
    We study the partition functions of quantum impurity problems in the domain of complex applied bias for its relation to the non-equilibrium current suggested by Fendley, Lesage and Saleur (cond-mat/9510055). The problem is reformulated as a certain generalization of the linear response theory that accomodates an additional complex variable. It is shown that the mentioned relation holds in a rather generic case in the linear response limit, or under certain condition out of equilibrium. This condition is trivially satisfied by the quadratic Hamiltonians and is rather restrictive for the interacting models. An example is given when the condition is violated.Comment: 10 pages, RevTex. Final extended versio

    Effects of spatially inhomogeneous atomic interactions on Bose-Einstein condensates in optical lattices

    Full text link
    An interplay of optical lattices and nonlinear impurities in controlling the dynamics of Bose-Einstein condensate bright solitons is investigated using effective potential approach. The ability of pushing the solitons into or away from the impurity region by changing both lattice and impurity parameters is suggested. A possibility for the existence of stable fundamental gap solitons, which appear to satisfy an inverted Vakhitov-Kolokolov criterion, is examined.Comment: 14 pages, 19 figure

    Algebraic bright and vortex solitons in defocusing media

    Full text link
    We demonstrate that spatially inhomogeneous defocusing nonlinear landscapes with the nonlinearity coefficient growing toward the periphery as [1+abs(r)]**a support one- and two-dimensional fundamental and higher-order bright solitons, as well as vortex solitons, with algebraically decaying tails. The energy flow of the solitons converges as long as nonlinearity growth rate exceeds the dimensionality, i.e., a>D. Fundamental solitons are always stable, while multipoles and vortices are stable if the nonlinearity growth rate is large enough.Comment: 12 pages, 4 figure

    Exchange Instabilities in Semiconductor Double Quantum Well Systems

    Full text link
    We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the absence of any external magnetic field. We establish that there is no exchange-driven bilayer to monolayer charge transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock approximation, the low density stable phase (even in the absence of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous interlayer phase coherent spin-polarized symmetric state rather than the classical Ising-like charge-transfer phase. The U(1) symmetry of the double quantum well system is broken spontaneously at this low density quantum phase transition, and the layer density develops quantum fluctuations even in the absence of any interlayer tunneling. The phase diagram for the double quantum well system is calculated in the carrier density--layer separation space, and the possibility of experimentally observing various quantum phases is discussed. The situation in the presence of an external electric field is investigated in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final version to appear in PR

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    Quantum Transport in Semiconductor Nanostructures

    Get PDF
    I. Introduction (Preface, Nanostructures in Si Inversion Layers, Nanostructures in GaAs-AlGaAs Heterostructures, Basic Properties). II. Diffusive and Quasi-Ballistic Transport (Classical Size Effects, Weak Localization, Conductance Fluctuations, Aharonov-Bohm Effect, Electron-Electron Interactions, Quantum Size Effects, Periodic Potential). III. Ballistic Transport (Conduction as a Transmission Problem, Quantum Point Contacts, Coherent Electron Focusing, Collimation, Junction Scattering, Tunneling). IV. Adiabatic Transport (Edge Channels and the Quantum Hall Effect, Selective Population and Detection of Edge Channels, Fractional Quantum Hall Effect, Aharonov-Bohm Effect in Strong Magnetic Fields, Magnetically Induced Band Structure).Comment: 111 pages including 109 figures; this review from 1991 has retained much of its usefulness, but it was not yet available electronicall

    sj-docx-1-wso-10.1177_17474930231217670 – Supplemental material for Lung cancer is associated with acute ongoing cerebral ischemia: A population-based study

    No full text
    Supplemental material, sj-docx-1-wso-10.1177_17474930231217670 for Lung cancer is associated with acute ongoing cerebral ischemia: A population-based study by Jonathan Naftali, Rani Barnea, Ruth Eliahou, Keshet Pardo, Assaf Tolkovsky, Meital Adi, Vadim Hasminski, Walid Saliba, Sivan Bloch, Guy Raphaeli, Avi Leader and Eitan Auriel in International Journal of Stroke</p

    Functional Characterisation of Eel Dopamine D 2

    No full text
    International audienceIn various vertebrate species, dopamine (DA) exerts an inhibitory action on reproduction. In the European eel, DA plays a pivotal role in the inhibitory control of the gonadotrope function and the blockade of puberty. In vivo studies suggested that this effect is mediated by receptors pharmacologically related to the D2-family. In the European eel, two distinct D2 receptor (D2-R) paralogous genes have been identified (D2A-R and D2B-R) and both shown to be expressed in the pituitary. We investigated the potential role of each paralog in the control of gonadotrope function in this species. Eel recombinant D2A-R or D2B-R were expressed in HEK 293 cells, with a universal Gα subunit, and receptor activation was followed by inositol phosphate production. Recombinant D2-Rs exhibited a comparable affinity for DA, but differential affinities for mammalian D2-R agonists and antagonists, supporting subtle structure/activity differences. Further, using eel pituitary cell primary cultures, the expression by gonadotrope cells of both native eel D2-R paralogs was examined by in situ hybridisation of D2A-R or D2B-R transcripts, coupled to immunofluorescence of LHβ or FSHβ. LH and to a lesser extent, FSH cells expressed both D2-R transcripts, but with a clear predominance of D2B-R. Notably, D2B- R transcripts were detected on the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal and testosterone-stimulated LHβ expression and less potently basal and activin-stimulated FSHβ expression. We also tested some D2-R antagonists in order to select the most adequate one to be used in innovative protocols for induction of eel sexual maturation. We identified eticlopride as the most potent inhibitor of DA action on basal and stimulated LH expression in vitro. Our data suggest a differential functionalisation of the duplicated receptor genes and demonstrate that mainly D2B-R is involved in the dopaminergic inhibitory control of eel gonadotrope function
    corecore