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I. Introduction

l PREFACE

In recent years semiconductor nanostructures have become the model
Systems of choice for mvestigations of electncal conduction on short length
scales This development was made possible by the availabihty of semicon-
ductmg matenals of unprecedented punty and crystallme perfection Such
matenals can be structured to contam a thm layer of highly mobile electrons
Motion perpendicular to the layer is quantized, so that the electrons are

l Copyright © 1991 by Academic Press Ine
All rights of reproduction m any form reserved

ISBN 0 12 607744^
ISBNO 12 606044 4 (pbk)



2 C W J BEENAKKER AND H VAN HOUTEN

constramed to move m a plane As a model system, this two-dimensional
electron gas (2DEG) combmes a number of desirable properties, not shared by
thm metal films It has a low electron density, which may be readily vaned by
means of an electnc field (because of the large screenmg length) The low
density imphes a large Fermi wavelength (typically 40 nm), comparable to the
dimensions of the smallest structures (nanostructures) that can be fabncated
today The electron mean free path can be quite large (exceedmg ΙΟμηι)
Fmally, the reduced dimensionahty of the motion and the circular Fermi
surface form simphfymg factors

Quantum transport is convemently studied m a 2DEG because of the
combmation of a large Fermi wavelength and large mean free path The
quantum mechanical phase coherence charactenstic of a rmcroscopic object
can be mamtained at low temperatures (below l K) over distances of several
microns, which one would otherwise have classified äs macroscopic The
physics of these Systems has been referred to äs mesoscopic,1 a word borrowed
from statistical mechanics 2 Elastic impunty scattenng does not destroy
phase coherence, which is why the effects of quantum mterference can modify
the conductivity of a disordered conductor This is the regime of diffusive
transport, charactenstic for disordered metals Quantum mterference
becomes more important äs the dimensionahty of the conductor is reduced
Quasi-one dimensionahty can readily be achieved m a 2DEG by lateral
confinement

Semiconductor nanostructures are umque m offenng the possibihty of
studymg quantum transport in an artificial potential landscape This is the
regime of balhstic transport, in which scattermg with impunties can be
neglected The transport properties can then be tailored by varymg the
geometry of the conductor, m much the same way äs one would tailor the
transmission properties of a waveguide The physics of this transport regime
could be called electron optics in the solid state 3 The formal relation between
conduction and transmission, known äs the Landauer formula,1 4 5 has
demonstrated its real power in this context For example, the quantization of
the conductance of a quantum point contact6 7 (a short and narrow

Ύ Imry, m "Directions m Condensed Matter Physics," Vol l (G Grmstein and G Mazenko,
eds) World Scientific, Smgapore, 1986

2N G van Kämpen, "Stochastic Processes m Physics and Chemistry" North-Holland,
Amsterdam, 1981

3H van Houten and C W J Beenakker, in "Analogies in Optics and Microelectromcs" (W
van Haermgen and D Lenstra, eds) Kluwer Academic, Dordrecht 1990

*R Landauer, IBM J Res Dev l, 223 (1957), 32, 306 (1988)
5M Buttiker, Phys Rev Leu 57, 1761 (1986)
6B J van Wees, H van Houten, C W J Beenakker, J G Wilhamson, L P Kouwenhoven, D

van der Marel, and C T Foxon, Phys Rev Leu 60 848 (1988)
7D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G

Hasko, D C Peacock, D A Ritchie, and G A C Jones, J Phys C 21, L209 (1988)
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constnction m the 2DEG) can be understood using the Landauer formula äs
resulting from the discreteness of the number of propagating modes m a
waveguide.

Two-dimensional Systems m a perpendicular magnetic field have the
remarkable property of a quantized Hall resistance,8 which results from the
quantization of the energy m a senes of Landau levels. The magnetic length
(h/eB)1/2 (« lOnm at B = 5T) assumes the role of the wavelength in the
quantum Hall effect. The potential landscape in a 2DEG can be adjusted to
be smooth on the scale of the magnetic length, so that inter-Landau level
scattermg is suppressed. One then enters the regime of adiabatic tr'anspart. In
this regime truly macroscopic behavior may not be found even m samples äs
large äs 0.25 mm.

In this review we present a self-contained account of these three novel
transport regimes in semiconductor nanostructures. The experimental and
theoretical developments in this field have developed hand in hand, a fruitful
balance that we have tried to mamtain here äs well. We have opted for the
simplest possible theoretical explanations, avoiding the powerful—but more
formal—Green's function techniques. l fm some mstances this choice has not
enabled us to do füll justice to a subject, then we hope that this disadvantage
is compensated by a gam in accessibility. Lack of space and time has caused
us to hmit the scope of this review to metallic transport in the plane of a
2DEG at small currents and voltages. Transport in the regime of strong
localization is excluded, äs well äs that in the regime of a nonlinear current-
voltage dependence. Overviews of these, and other, topics not covered here
may be found in Refs. 9-11, äs well äs in recent Conference proceedings.12"17

We have attempted to give a comprehensive list of references to theoretical

8K von Khtzmg, G Dorda, and M Pepper, Phy<: Rev Lett 45, 494 (1980)
9M A Reed, ed, "Nanostructured Systems" Academic Press, New York, to be pubhshed

10P A Lee, R A Webb and B L AFtshuler, eds , "Mesoscopic Phenomena m Sohds " Eisevier,
Amsterdam, to be published

"B L Al'tshuler, R A Webb, and R B Laibowitz, eds , IBM J Res Dev 32,304-437,439-579
(1988)

12"Proceedmgs of the International Conference on Electronic Properties of Two-Dimensional
Systems," IV-VIII, Suif Sa 113 (1982), 142 (1984), 170 (1986), 196 (1988), 229 (1990)

13M J Kelly and C Weisbuch, eds, "The Physics and Fabncation of Microstructures and
Microdevices" Proc Winter School Les Houches, 1986, Springer, Berlin, 1986

14H Heinrich, G Bauer, and F Kuchar, eds, "Physics and Technology of Submicron
Structures " Springer, Berlin, 1988

I5M Reed and W P Kirk, eds, "Nanostructure Physics and Fabncation" Academic Press,
New York, 1989

16S P Beaumont and C M Sotomayor-Torres, eds, "Science and Engineering of l- and 0-
Dimensional Semiconductors " Plenum, London, 1990

17J M Chamberlam, L Eaves, and J C Portal, eds , "Electronic Properties of Multilayers and
Low-Dimensional Semiconductor Structures" Plenum, London, to be pubhshed
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and expenmental work on the subjects of this review We apologize to those
whose contnbutions we have overlooked Certam expenments are discussed
m some detail In selectmg these expenments, our aim has been to choose
those that illustrate a particular phenomenon m the clearest fashion, not to
estabhsh pnonties We thank the authors and publishers for their kmd
permission to reproduce figures from the original pubhcations Much of the
work reviewed here was a joint effort with colleagues at the Delft Umversity
of Technology and at the Philips Research Laboratories, and we are grateful
for the stimulating collaboration

The study of quantum transport m semiconductor nanostructures is
motivated by more than scientific mterest The fabncation of nanostructures
relies on sophisticated crystal growth and lithographic techniques that exist
because of the mdustnal effort toward the mmiatunzation of transistors
Conventional transistors operate m the regime of classical diffusive transport,
which breaks down on short length scales The discovery of novel transport
regimes m semiconductor nanostructures provides options for the develop-
ment of innovative future devices At this point, most of the proposals in the
hterature for a quantum mterference device have been presented pnmanly äs
interesting possibilities, and they have not yet been cntically analyzed A
quantitative companson with conventional transistors will be needed, takmg
Circuit design and technological considerations into account18 Some pro-
posals are very ambitious, in that they do not only consider a different
pnnciple of Operation for a smgle transistor, but envision entire Computer
architectures m which arrays of quantum devices operate phase coherently 19

We hope that the present review will convey some of the excitement that
the workers m this rewarding field of research have expenenced m its
exploration May the descnption of the vanety of phenomena known at
present, and of the simplest way m which they can be understood, form an
Inspiration for future mvestigations

2 NANOSTRUCTURES IN Si INVERSION LAYERS

Electronic properties of the two-dimensional electron gas m Si MOSFETs
(metal-oxide-semiconductor field-effect transistors) have been reviewed by
Ando, Fowler, and Stern,20 while general technological and device aspects
are covered in detail m the books by Sze21 and by Nicollian and Brew 22 In
this section we only summanze those properties that are needed in the

18R Landauer, Phys Today 42, 119 (1989)
19R T Bäte, Sa Am 258 78 (1988)
20T Ando, A B Fowler, and F Stern, Rev Mod Phys 54, 437 (1982)
2'S M Sze, "Physics of Semiconductor Devices" Wiley, New York, 1981
22E H Nicollian and J R Brew, "Metal Oxide Semiconductor Technology " Wiley, New York,

1982
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SiC>2 p-Si

FIG l Band-bending diagram (showmg conduction band Ec, valence band Ev, and Fermi
level Ep) of a metal-oxide-semiconductor (MOS) structure A 2DEG is formed at the Interface
between the oxide and the p-type sihcon Substrate, äs a consequence of the positive voltage Fg on
the metal gate electrode

followmg A typical device consists of a p-type Si Substrate, covered by a SiO2

layer that serves äs an msulator between the (100) Si surface and a metalhc
gate electrode By application of a sufficiently strong positive voltage Fg on
the gate, a 2DEG is mduced electrostatically in the p-type Si under the gate
The band bendmg leadmg to the formation of this Inversion layer is
schematically mdicated m Fig l The areal electron concentration (or sheet
density) ns follows from ens = Cm(Vg - Vt), where Vt is the threshold voltage
beyond which the Inversion layer is created, and Cox is the capacitance per
unit area of the gate electrode with respect to the electron gas Approximate-
ly, one has Cox = eajdm (with εοχ = 3 9ε0 the dielectnc constant of the SiO2

layer),21 so

n, =
ed„ (v. - K) (2l)

The linear dependence of the sheet density on the applied gate voltage is one
of the most useful properties of Si Inversion layers

The electnc field across the oxide layer resultmg from the applied gate
voltage can be quite strong Typically, Vg - Vt = 5 V and dm = 50 nm, so the
field strength is of order l MV/cm, at best a factor of 10 lower than typical
fields for the dielectnc breakdown of SiO2 It is possible to change the electnc
field at the mterface, without altermg ns, by applymg an addiüonal voltage
across the p-n junction that isolates the Inversion layer from the p-type
Substrate (such a voltage is referred to äs a Substrate bias) At the Si-SiO2

mterface the electnc field is contmuous, but there is an electrostatic potential
Step of about 3 eV An approximately triangulär potential well is thus formed
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at the Interface (see Fig. 1). The actual shape of the potential deviates
somewhat from the triangulär one due to the electronic Charge in the
Inversion layer, and has to be calculated self-consistently.20 Due to the
confinement in one direction in this potential well, the three-dimensional
conduction band splits into a series of two-dimensional subbands. Under
typical conditions (for a sheet electron density ns = lO^-lO^cmT2) only a
single two-dimensional subband is occupied. Bulk Si has an indirect band
gap, with six equivalent conduction band valleys in the <100> direction in
reciprocal space. In Inversion layers on the (100) Si surface, the degeneracy
between these valleys is partially lifted. A twofold valley degeneracy remains.
In the following, we treat these two valleys äs completely independent,
ignoring complications due to intervalley scattering. For each valley, the
(one-dimensional) Fermi surface is simply a circle, corresponding to free
motion in a plane with effective electron mass20 m = 0.19me. For easy
reference, this and other relevant numbers are listed in Table I.

The electronic properties of the Si Inversion layer can be studied by
capacitive or spectroscopic techniques (which are outside the scope of this
review), äs well äs by transport measurements in the plane of the 2DEG. To
determine the intrinsic transport properties of the 2DEG (e.g., the electron
mobility), one defines a wide channel by fabricating a gate electrode with the
appropriate shape. Ohmic contacts to the channel are then made by ion
Implantation, followed by a lateral diffusion and annealing process. The two
current-carrying contacts are referred to äs the source and the drain. One of
these also serves äs zero reference for the gate voltage. Additional side
contacts to the channel are often fabricated äs well (for example, in the Hall
bar geometry), to serve äs voltage probes for measurements of the longi-
tudinal and Hall resistance. Insulation is automatically provided by the p-n
junctions surrounding the Inversion layer. (Moreover, at the low temper-
atures of interest here, the Substrate conduction vanishes anyway due to
carrier freeze-out.) The electron mobility με is an important figure of merit for
the quality of the device. At low temperatures the mobility in a given sample
varies nonmonotonically20 with increasing electron density ns (or increasing
gate voltage), due to the opposite effects of enhanced screening (which reduces
ionized impurity scattering) and enhanced confinement (which leads to an
increase in surface roughness scattering at the Si-SiO2 interface). The
maximum low-temperature mobility of electrons in high-quality samples is
around 104cm2/V-s. This review deals with the modifications of the transport
properties of the 2DEG in narrow geometries. Several lateral confinement
schemes have been tried in order to achieve narrow Inversion layer channels
(see Fig. 2). Many more have been proposed, but here we discuss only those
realized experimentally.

Technically simplest, because it does not require electron beam lit-
hography, is an approach first used by Fowler et al, following a Suggestion by



TABLE I ELECTRONIC PROPERTIES OF THE 2DEG IN GaAs-AlGaAs HETEROSTRUCTURES AND Si
INVERSION LAYERS

Effective Mass m
Spin Degeneracy gs

Valley Degeneracy gv

Dielectnc Constant ε

Density of States p(E)~g,gv(m/2nh2

Electronic Sheet
Density' ns

Fermi Wave Vector kF = (4Kns/g,g^)il2

Fermi Velocity UF = hkF/m
Fermi Energy EF = (hkF)

2/2m
Electron Mobmty" μ0

Scattermg Time τ — ηιμ^ε
Diffusion Constant D = νΡτ/2
Resistivity p = (i,e/ie) ~ l

Fermi Wavelength ΑΓ = 2π/&Γ

Mean Free Path / = !>FT
Phase Coherence

Length" Ιφ = (Οτφ)
1/2

Thermal Length lT = (hD/kBT)1'2

Cyclotron Radius lcycl = hkF/eB
Magnetic Length lm = (h/eB)l/2

kfl
ω,,τ
Er/h^

GaAs(lOO)

0067
2
1

131

) 028

4
158
27

14
10*- 1 06

038-38
140-14000
16-0016
40
102-10*

200-
330-3300
100
26
158-1580
1-100
79

Si (100)

019
2
2
119

159

1-10
056-177
034-1 1
063-63
10*
1 1
64-64
63-063
112-35
37-118

40-400
70-220
37-116
26
21-21
1
1-10

UNITS

mc = 9 1 x l O - 2 8 g

ε0 = 89
x l O ~ 1 2 F m - '

101 1cm-2meV~1

10ncm-2

106cni~'
107 cm/s
meV
cm2/V s
ps
cm2/s
kQ
nm
nm

nm(T/K)-1/2

nm(T/K)-1/2

nm(ß/T)-'
nm(ß/T)~1/2

(B/T)
(B/T)'1

aA typical (fixed) density value is taken for GaAs-AlGaAs heterostructures, and a typical ränge
of values in the metalhc conducüon regime for Si MOSFETs For the mobility, a ränge of
representative values is hsted for GaAs-AlGaAs heterostructures, and a typical "good" value for
Si MOSFETs The Variation m the other quantities reflects that m n, and μ,
bRough estimate of the phase coherence length, based on weak localization expenments in
laterally confined heterostructures23"27 and Si MOSFETs 28 29 The stated T~1 / 2 temperature
dependence should be regarded äs an indication only, since a simple power law dependence is not
always found (see, for example, Refs 30 and 25) For high-mobihty GaAs-AlGaAs hetero-
structures the phase coherence length is not known, but is presumably31 comparable to the
(elastic) mean free path /

23B J F Lm, M A Paalanen, A C Gossard, and D C Tsui, Phys Rev B 29, 927 (1984)
24H Z Zheng, H P Wei, D C Tsui, and G Weimann Phys Rev B 34, 5635 (1986)
25K K Choi, D C Tsui, and K Alavi, Phys Rev B 36, 7751 (1987), Appl Phys Lett 50, 110

(1987)
26H van Houten, C W J Beenakker, B J van Wees, and J E Mooy, Surf Sa 196, 144 (1988)
27H van Houten, C W J Beenakker, M E I Broekaart, M G J Heijman, B J van Wees, J E

Mooy, and J P Andre, Aaa Electionica, 28, 27 (1988)
28D J Bishop, R C Dynes, and D C Tsui, Phys Rev B 26, 773 (1982)
29W J Skocpol, L D Jackel, E L Hu, R E Howard, and L A Fetter, Phys Rev Lett 49,951

(1982)
30K K Choi, Phyi Rev B 28, 5774 (1983)
31H van Houten, B J van Wees, and C W J Beenakker, m Ref 14
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Si02

n-Si p-Si

SiO2
frn r++i im rm r++i

p-Si

!!!± 9ate

p-Si

FIG 2 Schematic cross-sectional Views of the lateral pmch-off technique used to define a
narrow electron accumulation layer (a), and of three different methods to define a narrow
Inversion layer m Si MOSFETs (b-d) Positive ( + ) and negative ( — ) charges on the gate
electrodes are mdicated The location of the 2DEG is shown in black

Pepper 32 34 (Fig. 2a). By adjustmg the negative voltage over p-n junctions
on either side of a relatively wide gate, they were able to vary the electron
channel width äs well äs its electron density. This technique has been used to
define narrow accumulation layers on η-type Si Substrates, rather than
Inversion layers. Specifically, it has been used for the exploration of quantum
transport in the strongly localized regime32·35"37 (which is not discussed in
this review). Perhaps the technique is particularly suited to this highly
resistive regime, since a tail of the diffusion profile inevitably extends into the
channel, providing additional scattering centers.34 Some studies in the weak
localization regime have also been reported.33

The conceptually simplest approach (Fig. 2b) to define a narrow channel is
to scale down the width of the gate by means of electron beam lithography38

32A B Fowler, A Hartstem, and R A Webb, Phys Rev Leu 48, 196 (1982)
33M Pepper and M J Uren, J Phys C 15, L617 (1982)
34C C Dean and M Pepper, J Phys C 15, L1287 (1982)
35A B Fowler, J J Warner, and R A Webb, IBM J Res Dev 32, 372 (1988)
36S B Kaplan and A C Warren, Phys Rev B 34, 1346 (1986)
37S B KaplanandA Hartstein, IBM J Res Dev 32, 347 (1988), Phys Rev Leu 56,2403(1986)
38R G Wheeler, K K Choi, A Goel, R Wisnieff, and D E Prober, Phys Rev Lett 49, 1674

(1982)



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 9

or other advanced techniques 39~41 A difficulty for the charactenzation of the
device is that frmging fields beyond the gate mduce a considerable un-
certamty m the channel width, äs well äs its density Such a problem is shared
to some degree by all approaches, however, and this technique has been quite
successful (äs we will discuss m Section II) For a theoretical study of the
electrostatic confinmg potentml mduced by the narrow gate, we refer to the
work by Laux and Stern 42 This is a complicated problem, which requires a
self-consistent solution of the Poisson and Schrodmger equations, and must
be solved numencally

The narrow gate technique has been modified by Warren et al43 44 (Fig
2c), who covered a multiple narrow-gate structure with a second dielectnc
followed by a second gate covenng the entire device (This structure was
specifically intended to study one-dimensional superlattice effects, which is
why multiple narrow gates were used) By separately varying the voltages on
the two gates, one achieves an increased control over channel width and
density The electrostatics of this particular structure has been studied m Ref
43 in a semiclassical approximation

Skocpol et al29 45 have combmed a narrow gate with a deep self-ahgned
mesa structure (Fig 2d), fabncated usmg dry-etchmg techniques One
advantage of their method is that at least an upper bound on the channel
width is known unequivocally A disadvantage is that the deep etch exposes
the sidewalls of the electron gas, so that it is hkely that some mobihty
reduction occurs due to sidewall scattenng In addition, the deep etch may
damage the 2DEG itself This approach has been used successfully in the
exploration of nonlocal quantum transport in multiprobe channels, which in
addition to being narrow have a very small Separation of the voltage
probes 45 46 In another investigation these narrow channels have been used
äs Instruments sensitive to the chargmg and dischargmg of a single electron
trap, allowmg a detailed study of the statistics of trap kinetics 46~48

39R F Kwasmck, M A Kastner, J Melngaihs, and P A Lee, Phys Rev Lett 52, 224 (1984)
40J C Licmi, D J Bishop, M A Kastner, and J Melngaihs, Phys Rev Lett 55, 2987 (1985)
41P H Woerlee, G A M Hurkx, W J M J Josqum, and J F C M Verhoeven, Appl Phys

Lett 47, 700 (1985), see also H van Houten and P H Woerlee, "Proc ICPS 18,' p 1515 (O
Engstrom, ed ) World Scientific, Smgapore, 1987

42S E Laux and F Stern, Appl Phys Lett 49, 91 (1986)
43A C Warren, D A Antomadis, and H I Smith, Phys Rev Lett 56, 1858 (1986)
44 A C Warren, D A Antomadis, and H I Smith, IEEE Electron Device Lett, EDL-7, 413

(1986)
45W J Skocpol, P M Mankiewich, R E Howard, L D Jackel, D M Tennant, and A D

Stone, Phys Rev Lett 56, 2865 (1986)
46W J Skocpol, Physica Scripta T19, 95 (1987)
47K S Ralls, W J Skocpol, L D Jackel, R E Howard, L A Fetter, R W Epworth, and D M

Tennant, Phys Rev Lett 52, 228 (1984)
48R E Howard, W J Skocpol, L D Jackel, P M Mankiewich, L A Fetter, D M Tennant, R

Epworth, and K S Ralls, IEEE Trans ED-32, 1669 (1985)
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AI03Ga0 7As GaAs

FIG 3 Band-bendmg diagram of a modulation doped GaAs-Alj-Ga^^Asheterostructure A
2DEG is formed m the undoped GaAs at the mterface with the p-type doped AlGaAs Note the
Schottky barner between the semiconductor and a metal electrode

3 NANOSTRUCTURES IN GaAs-AlGaAs HETEROSTRUCTURES

In a modulation-doped49 GaAs-AlGaAs heterostructure, the 2DEG is
present at the mterface between GaAs and Al xGa 1_ xAs layers (for a recent
review, see Ref 50) Typically, the AI mole fraction χ = 0 3 As shown m the
band-bendmg diagram of Fig 3, the electrons are confmed to the GaAs-
AlGaAs mterface by a potential well, formed by the repulsive barner due to
the conducüon band offset of about 03V between the two sermconductors,
and by the attractive electrostatic potential due to the posiüvely charged
lonized donors in the rc-doped AlGaAs layer To reduce scattermg from these
donors, the doped layer is separated from the mterface by an undoped
AlGaAs spacer layer Two-dimensional subbands are formed äs a result of
confmement perpendicular to the mterface and free motion along the
mterface An important advantage over a MOSFET is that the present
mterface does not Interrupt the crystalhne penodicity This is possible
because GaAs and AlGaAs have almost the same lattice spacmg Because of
the absence of boundary scattermg at the mterface, the electron mobihty can
be higher by many Orders of magmtude (see Table I) The mobihty is also high
because of the low effective mass m = 0 067me m GaAs (for a review of GaAs
matenal properties, see Ref 51) As m a Si Inversion layer, only a smgle two-
dimensional subband (associated with the lowest discrete confmement level
m the well) is usually populated Smce GaAs has a direct band gap, with a

49H L Stornier, R Dmgle, A C Gossard, and W Wiegman, "Proc 14th ICPS," p 6 (B L H
Wilson, ed) Institute ofPhysics, London, 1978, R Dmgle, H L Stormer, A C Gossard, and
W Wiegman, Appl Phys Leu 7, 665 (1978)

50J J Harns, J A Pals and R Woltjer, Rep Prag Phy; 52, 1217 (1989)
51S Adachi, J Appl Phys 58, Rl (1985)
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gate

AlGaAs !Π++++++*++Π++;Π*Π++;+ AlGaAs

GaAs
GaAs

[AlGaAs

GaAs

GaAs

FIG 4 Schematic cross-sectional views of four different ways to define narrow 2DEG
channels in a GaAs-AlGaAs heterostructure Positive lonized donors and negative charges on a
Schottky gate electrode are mdicated The hatched squares m d represent unremoved resist used
äs a gate dielectnc

single conduction band minimum, complications due to intervalley scattering
(äs m Si) are absent. The one-dimensional Fermi surface is a circle, for the
commonly used (100) Substrate orientation.

Smce the 2DEG is present "naturally" due to the modulation doping (i.e.,
even in the absence of a gate), the creation of a narrow channel now requires
the selective depletion of the electron gas in spatially separated regions. In
principle, one could imagine using a combination of an undoped hetero-
structure and a narrow gate (similarly to a MOSFET), but in practice this
does not work very well due to the lack of a natural oxide to serve äs an
insulator on top of the AlGaAs. The Schottky barrier between a metal and
(Al)GaAs (see Fig. 3) is too low (only 0.9 V) to sustain a large positive voltage
on the gate. For depletion-type devices, where a negative voltage is applied
on the gate, the Schottky barrier is quite sufficient äs a gate insulator (see, e.g.,
Ref. 52).

The simplest lateral confmement technique is illustrated in Fig. 4a. The
52D Delagebeaudeuf and N T Lmh, IEEE Trans ED-28, 790 (1981)
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appropnate device geometry (such äs a Hall bar) is realized by definmg a deep
mesa, by means of wet chemical etchmg Wide Hall bars are usually
fabncated in this way This approach has also been used to fabncate the first
micron-scale devices, such äs the constnctions used in the study of the
breakdown of the quantum Hall effect by Kirtley et al53 and Bhek et a/,54

and the narrow channels used m the first study of quasi-one-dimensional
quantum transport m heterostructures by Choi et al55 The deep-mesa
confinement techmque usmg wet25 56 or dry57 etchmg is still of use for some
expenmental studies, but it is generally feit to be unrehable for channels less
than l μηι wide (in particular because of the exposed sidewalls of the
structure)

The first workmg alternative confinement scheme was developed by
Thornton et a/ 5 8 and Zheng et a/,24 who introduced the spht-gate lateral
confinement techmque (Fig 4b) On apphcation of a negative voltage to a
spht Schottky gate, wide 2DEG regions under the gate are depleted, leavmg a
narrow channel undepleted The most appealmg feature of this confinement
scheme is that the channel width and electron density can be vaned
contmuously (but not mdependently) by mcreasmg the negative gate voltage
beyond the depletion threshold in the wide regions (typically about —06V)
The spht-gate techmque has become very populär, especially after it was used
to fabncate the short and narrow constnctions known äs quantum pomt
contacts6 7 59 (see Section III) The electrostatic confinement problem for the
spht-gate geometry has been studied numerically in Refs 60 and 61 A simple
analytical treatment is given m Ref 62 A modification of the spht-gate
techmque is the gratmg-gate techmque, which may be used to define a 2DEG
with a penodic density modulation 62

The second widely used approach is the shallow-mesa depletion techmque
(Fig 4c), introduced m Ref 63 This techmque relies on the fact that a 2DEG

53J P Kirtley, Z Schlesmger, T N Theis, F P Milhken, S L Wnght, and L F Palmateer,
Phys Rev B 34, 5414 (1986)

54L Bhek, E Braun, G Hern, V Kose, J Niemeyer, G Weimann, and W Schlapp, Semicond
Sa Technol l, 110(1986)

55K K Choi, D C Tsui, and S C Palmateer, Phys Rev B 33, 8216 (1986)
56A D C Grassie, K M Hutchmgs, M Laknmi.C T Foxon.andJ J Harns, Phys Rev B 36,

4551 (1987)
57T Demel, D Heitmann, P Grambow, and K Ploog, Appl Phys Lett 53, 2176 (1988)
58T J Thornton, M Pepper, H Ahmed, D Andrews, and G J Davies, P/iys Rev Lett 56, 1198

(1986)
59H van Houten, B J van Wees, J E Mooij, C W J Beenakker, J G Wilhamson, and C T

Foxon, Europhys Lett 5, 721 (1988)
60S E Laux, D J Frank, and F Stern, Surf Sa 196, 101 (1988)
61A Kumar, S E Laux, and F Stern, Appl Phys Lett 54, 1270 (1989)
62K Ismail, W Chu D A Antomadis, and H I Smith, Appl Phys Lett 52, 1071 (1988)
63H van Houten, B J van Wees, M G J Heyman, and J P Andre, Appl Phys Lett 49, 1781

(1986)
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can be depleted by removal of only a thm layer of the AlGaAs, the required
thickness bemg a sensitive function of the parameters of the heterostructure
matenal, and of details of the lithographic process (which usually mvolves
electron beam hthography followed by dry etchmg) The shallow-mesa etch
technique has been perfected by two groups,64"66 for the fabncation of
multiprobe electron waveguides and rings 67~70 Submicron trenches71 are
still another way to define the channel For simple analytical estimates of
lateral depletion widths m the shallow-mesa geometry, see Ref 72

A clever vanant of the split-gate technique was introduced by Ford et
al73 74 A patterned layer of electron beam resist (an organic msulator) is used
äs a gate dielectnc, in such a way that the Separation between the gate and the
2DEG is largest m those regions where a narrow conductmg channel has to
remam after apphcation of a negative gate voltage As illustrated by the cross-
sectional view m Fig 4d, in this way one can define a ring structure, for
example, for use m an Aharonov-Bohm expenment A similar approach was
developed by Smith et al75 Instead of an organic resist they use a shallow-
mesa pattern in the heterostructure äs a gate dielectnc of variable thickness
Initially, the latter technique was used for capacitive studies of one- and zero-
dimensional confinement75 76 More recently it was adopted for transport
measurements äs well77 Still another Variation of this approach was

64R E Behrmger P M Mankiewich and R E Howard J Vac Sa Technol B5, 326 (1987)
65A Scherer M L Roukes, H G Craighead, R M Ruthen, E D Beebe, and J P Harbison,

Appl Phys Leu 51,2133(1987)
66A Scherer and M L Roukes, Appl Phys Leu 55, 377 (1989)
67M L Roukes, A Scherer, S J Allen, Jr, H G Craighead, R M Ruthen, E D Beebe, and J

P Harbison, Phys Rev Lett 59, 3011 (1987)
68G Tirap A M Chang, P Mankiewich, R Behrmger, J E Cunmngham, T Υ Chang, and R

E Howard, Phys Rev Lett 59, 732 (1987)
69G Timp, A M Chang, J E Cunmngham, T Υ Chang, P Mankiewich, R Behrmger, and R

E Howard, Phys Rev Lett 58, 2814 (1987)
70A M Chang, G Timp, T Υ Chang, J E Cunmngham, P M Mankiewich, R E Behrmger,

and R E Howard, Solid State Comm 67, 769 (1988)
7'K Υ Lee, T P Smith, III, C J B Ford, W Hansen, C M Knoedler, J M Hong, and D P

Kern, Appl Phys Lett 55, 625 (1989)
72J H Davies and J A Nixon, Phys Rev B 39, 3423 (1989), J H Davies, m Ref 15
73C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, G J Davies, and D

Andrews, Superlattices and Microstructures 4, 541 (1988)
74C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, C T Foxon, J J Harris,

and C Roberts, J Phys C 21, L325 (1988)
75T P Smith III, H Arnot, J M Hong, C M Knoedler, S E Laux, and H Schmid, Phys Rev

Lett 59, 2802 (1987)
76T P Smith, III, J A Brum, J M Hong, C M Knoedler, H Arnot, and L Esaki, Phys Rev

Lett 6l, 585 (1988)
77C J B Ford, S Washburn, M Buttiker, C M Knoedler, and J M Hong, Phys Rev Lett 62,

2724 (1989)
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FIG. 5. Scanning electron micrographs of nanostructures in GaAs-AlGaAs heterostructures.
(a) Narrow channel (width 75 nm), fabricated by means of the confinement scheme of Fig. 4c. The
channel has side branches (at a 2-μηι Separation) that serve äs voltage probes. Taken from M. L.
Roukes et al., Phys. Rev. Lett. 59, 3011 (1987). (b) Double quantum point contact device, based on
the confinement scheme of Fig. 4b. The bar denotes a length of l μιη. Taken from H. van Houten
et al., Phys. Rev. B 39, 8556 (1989).

developed by Hansen et a/.,78'79 primarily for the study of one-dimensional
subband structure using infrared spectroscopy. Instead of electron beam
lithography, they employ a photolithographic technique to define a pattern in
the insulator. An array with a very large number of narrow lines is obtained
by projecting the interference pattern of two laser beams onto light-sensitive
resist. This technique is known äs Holographie Illumination (see Section llb).

As two representative examples of state-of-the-art nanostructures, we
show in Fig. 5a a miniaturized Hall bar,67 fabricated by a shallow-mesa etch,
and in Fig. 5b a double-quantum-point contact device,80 fabricated by means
of the split-gate technique.

Other techniques have been used äs well to fabricate narrow electron gas
channels. We mention selective-area ion Implantation using focused ion
beams,81 masked ion beam exposure,82 strain-induced confinement,83 lateral

78W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett.
58, 2586 (1987).

79F. Brinkop, W. Hansen, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 37, 6547 (1988).
80H. van Houten, C. W. J. Beenakker, J. G. Williamson, M. E. I. Broekaart, P. H. M. van

Loosdrecht, B. J. van Wees, J. E. Mooij, C. T. Foxon, and J. J. Harris, Phys. Rev. B 39, 8556
(1989).

81T. Hiramoto, K. Hirakawa, Y. lye, and T. Ikoma, Appl. Phys. Lett. 54, 2103 (1989).
82T. L. Cheeks, M. L. Roukes, A. Scherer, and H. G. Graighead, Appl. Phys. Lett. 53, 1964

(1988).
83K. Kash, J. M. Worlock, M. D. Sturge, P. Grabbe, J. P. Harbison, A. Scherer, and P. S. D. Lin,

Appl. Phys. Lett. 53, 782 (1988).
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p-n junctions,84 85 gates m the plane of the 2DEG,86 and selective epitaxial
growth 87~92 For more detailed and complete accounts of nanostructure
fabncation techmques, we refer to Refs 9 and 13-15

4 BASIC PROPERTIES

a Density of States m Two, One, and Zero Dimenswns

The energy of conduction electrons m a smgle subband of an unbounded
2DEG, relative to the bottom of that subband, is given by

E(k) = h2 k2/2m, (4 1)

äs a function of momentum hk The effective mass m is considerably smaller
than the free electron mass me (see Table I), äs a result of mteractions with the
lattice potential (The mcorporation of this potential into an effective mass is
an approximation20 that is completelyjustified for the present purposes) The
density of states p(E) = dn(E)/dE is the derivative of the number of electronic
states n(E) (per umt surface area) with energy smaller than E In /c-space, these
states are contamed withm a circle of area A = 2nmE/h2 [according to Eq
(4 1)], which contams a number gsgvA/(2n)2 of distinct states The factors gs

and gv account for the spin degeneracy and valley degeneracy, respectively
(Table I) One thus finds that n(E) = gsgvmE/2nh2, so the density of states
correspondmg to a smgle subband m a 2DEG,

p(E) = gsgvm/2nh2, (42)

is independent of the energy As illustrated m Fig 6a, a sequence of subbands
is associated with the set of discrete levels m the potential well that confmes
the 2DEG to the mterface At zero temperature, all states are filled up to the
Fermi energy £F (this remams a good approximation at finite temperature if
the thermal energy kBT« EF) Because of the constant density of states, the
electron (sheet) density ns is hnearly related to EF by ns = EFgsgvm/2nh2 The
Fermi wave number kF = (2mEF/h2)112 is thus related to the density by
kp = (4nns/gsgv)

1/2 The second subband Starts to be populated when EF

exceeds the energy of the second band bottom The stepwise increasmg

84U Meirav, M Heiblum, and F Stern, Appl Phys Lett 52, 1268 (1988)
85U Meirav M A Kastner, M Heiblum, and S J Wind, Phys Rev B 40, 5871 (1989)
86A D Wieck and K Ploog, Suif Sa 229, 252 (1990), Appl Phys Lett 56, 928 (1990)
87P M Petroff, A C Gossard, and W Wiegmann, Appl Phys Lett 45, 620 (1984)
88T Fukui and H Saito Appl Phys Lett 50, 824 (1987)
89H Asai, S Yamada, and T Fukui Appl Phys Lett 51, 1518(1987)
90T Fukui, and H Saito, J Vac Sei Technol B6, 1373 (1988)
91J Motohisa, M Tanaka, and H Sakaki, Appl Phys Lett 55, 1214 (1989)
92H Yamaguchi and Υ Honkoshi, Jpn J Appl Phys 28, L1456 (1989)
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FIG. 6. Density of states p(E) äs a function of energy. (a) Quasi-2D density of states, with only
the lowest subband occupied (hatched). Inset: Confinement potential perpendicular to the plane
of the 2DEG. The discrete energy levels correspond to the bottoms of the first and second 2D
subbands. (b) Quasi-lD density of states, with four 1D subbands occupied. Inset: Square-well
lateral confinement potential with discrete energy levels indicating the 1D subband bottoms. (c)
Density of states for a 2DEG in a perpendicular magnetic field. The occupied ÖD subbands or
Landau levels are shown in black. Impurity scattering may broaden the Landau levels, leading to
a nonzero density of states between the peaks.
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density of states shown in Fig. 6a is referred to äs <jwas('-two-dimensional. As
the number of occupied subbands increases, the density of states eventually
approaches the ^/E dependence characteristic for a three-dimensional
System. Note, however, that usually only a single subband is occupied.

If the 2DEG is confined laterally to a narrow channel, then Eq. (4.1) only
represents the kinetic energy from the free motion (with momentum hk)
parallel to the channel axis. Because of the lateral confmement, a single two-
dimensional (2D) subband is split itself into a series of one-dimensional (1D)
subbands, with band bottoms at E„, n = 1,2, ____ The total energy E„(k) of an
electron in the nth l D subband (relative to the bottom of the 2D subband) is
given by

E„(k) = £„ + h2k2/2m. (4.3)

Two frequently used potentials to model analytically the lateral confmement
are the square-well potential (of width W, illustrated in Fig. 6b) and the
parabolic potential well (described by V(x) = ^πιω^χ2). The confinement
levels are then given either by E„ = (nnh)2/2mW2 for the square well or by
E„ = (n — i)fto>0 for the parabolic well. When one considers electron trans-
port through a narrow channel, it is useful to distinguish between states with
positive and negative k, since these states move in opposite directions along
the channel. We denote by p„+ (E) the density of states with k > 0 per unit
channel length in the nth l D subband. This quantity is given by

The density of states p~ with k < 0 is identical to p„+. (This identity holds
because of time-reversal symmetry; In a magnetic field, p„+ φ ρ~ , in general.)
The total density of states p(E), drawn in Fig. 6b, is twice the result (4.4)
summed over all n for which £„ < E. The density of states of a quasi-one-
dimensional electron gas with many occupied l D subbands may be approxi-
mated by the 2D result (4.2).

If a magnetic field B is applied perpendicular to an unbounded 2DEG, the
energy spectrum of the electrons becomes fully discrete, since free trans-
lational motion in the plane of the 2DEG is impeded by the Lorentz force.
Quantization of the circular cyclotron motion leads to energy levels at93

E„ = (n-i)fccoc, (4.5)

with ως = eB/m the cyclotron frequency. The quantum number n= 1,2, ...
labels the Landau levels. The number of states is the same in each Landau
level and equal to one state (for each spin and valley) per flux quantum h/e

93L. D. Landau and E. M. Lifshitz, "Quantum Mechanics." Pergamon, Oxford, 1977.
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through the sample. To the extent that broadening of the Landau levels by
disorder can be neglected, the density of states (per unit area) can be
approximated by

eB °°
P(E) = gsgv -r- Σ δ(Ε - £„), (4.6)

n n=l

äs illustrated in Fig. 6c. The spin degeneracy contained in Eq. (4.6) is resolved
in strong magnetic fields äs a result of the Zeeman Splitting gμΏB of the
Landau levels (^b = eh/2me denotes the Bohr magneton; the Lande g-factor is
a complicated function of the magnetic field in these Systems).20 Again, if a
large number of Landau levels is occupied (i.e., at weak magnetic fields), one
recovers approximately the 2D result (4.2). The foregoing considerations are
for an unbounded 2DEG. A magnetic field perpendicular to a narrow 2DEG
channel causes the density of states to evolve gradually from the l D form of
Fig. 6b to the effectively ÖD form of Fig. 6c. This transition is discussed in
Section 10.

b. Drude Conductivity, Einstein Relation, and Landauer Formula

In the presence of an electric field E in the plane of the 2DEG, an electron
acquires a drift velocity v = — eE Δ t/m in the time Δί since the last impurity
collision. The average of Δί is the scattering time τ, so the average drift
velocity vdri f l is given by

Vdri f t = -μ» Ε, με = ex /m. (4.7)

The electron mobility με together with the sheet density ns determine the
conductivity σ in the relation — ensvdrift = σΕ. The result is the familiär Drude
conductivity,94 which can be written in several equivalent forms:

e2nsi e2 k¥l
σ = ens^e = —— = gsgv — — . (4.8)

In the last equality we have used the identity ns = gsgvkp/4n (see Section 4a)
and have defined the mean free path l = tyr. The dimensionless quantity kFl
is much greater than unity in metallic Systems (see Table I for typical values in
a 2DEG), so the conductivity is large compared with the quantum unit

From the preceding discussion it is obvious that the current induced by
the applied electric field is carried by all conduction electrons, since each
electron acquires the same average drift velocity. Nonetheless, to determine
the conductivity it is sufficient to consider the response of electrons near the

94N. W. Ashcroft and N. D. Mermin, "Solid State Physics." Holt, Rinehart and Winston, New
York, 1976.
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Fermi level to the electric field. The reason is that the states that are more
than a few times the thermal energy kBT below E¥ are all filled so that in
response to a weak electric field only the distribution of electrons among
states at energies close to EF is changed from the equilibrium Fermi-Dirac
distribution

f(E - £F) = l + exp . (4.9)
V kBT J

The Einstein relation94

σ = e2p(EF)D (4.10)

is one relation between the conductivity and Fermi level properties (in this
case the density of states p(E) and the diffusion constant D, both evaluated at
Ep). The Landauer formula4 [Eq. (4.21)] is another such relation (in terms of
the transmission probability at the Fermi level rather than in terms of the
diffusion constant).

The Einstein relation (4.10) for an electron gas at zero temperature follows
on requiring that the sum of the drift current density — σΕ/e and the diffusion
current density — DVns vanishes in thermodynamic equilibrium, character-
ized by a spatially constant electrochemical potential μ:

- σΕ/e - DVns = 0, when V μ = 0. (4.11)

The electrochemical potential is the sum of the electrostatic potential energy
— eV (which determines the energy of the bottom of the conduction band)
and the chemical potential £F (being the Fermi energy relative to the
conduction band bottom). Since (at zero temperature) dEF/dns — l/p(EF), one
has

νμ = βΕ + p(EF)-1Vns. (4.12)

The combination of Eqs. (4.11) and (4.12) yields the Einstein relation (4.10)
between σ and D. To verify that Eq. (4.10) is consistent with the earlier
expression (4.8) for the Drude conductivity, one can use the result (see below)
for the 2D diffusion constant:

D = ±c|t = i»F/, (4.13)

in combination with Eq. (4.2) for the 2D density of states.
At a finite temperature T, a chemical potential (or Fermi energy) gradient

VEF induces a diffusion current that is smeared out over an energy ränge of
order /cBT around £F. The energy interval between E and E + dE contributes
to the diffusion current density j an amount dj given by

4uff = -DV{p(E)f(E - EF)dE} = -dEDp(E) ^- VEF, (4.14)
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where the diffusion constant D is to be evaluated at energy E. The total
diffusion current density follows on Integration over E:

j = -VEFe~2 dEa(E, 0) -, (4.15)
Jo ahp

with σ(Ε, 0) the conductivity (4.10) at temperature zero for a Fermi energy
equal to E. The requirement of vanishing current for a spatially constant
electrochemical potential implies that the conductivity σ(ΕΡ, Γ) at temper-
ature Tand Fermi energy £F satisfies σ(Ε¥, T)e~2VEf + j = 0. Therefore, the
finite-temperature conductivity is given simply by the energy average of the
zero-temperature result

σ(ΕΡ, Τ) = α Ε σ ( Ε , Ο ) - - . (4.16)
Jo dEr

As T-> 0, df/dEf -> δ(Ε — Ef\ so indeed only E = EF contributes to the
energy average. Result (4.16) contains exclusively the effects of a finite
temperature that are due to the thermal smearing of the Fermi-Dirac
distribution. A possible temperature dependence of the scattering processes is
not taken into account.

We now want to discuss one convenient way to calculate the diffusion
constant (and hence obtain the conductivity). Consider the diffusion current
density jx due to a small constant density gradient, n(x) = n0 + ex. We write

jx = lim <υχ(ί = 0)η(χ(ί = -Δί))> = lim c(vx(Q)x(- Αφ
At -> CG Δί -» CO

= lim -c Λ<^(0)νχ(-ί)>, (4.17)
Δί -» αο J 0

where t is time and the brackets <···> denote an isotropic angular average
over the Fermi surface. The time interval Δί -> oo, so the velocity of the
electron at time 0 is uncorrelated with its velocity at the earlier time — Δί.
This allows us to neglect at x( — Δί) the small deviations from an isotropic
velocity distribution induced by the density gradient [which could not have
been neglected at x(0)]. Since only the time difference matters in the velocity
correlation function, one has (vx(Q)vx( — 1)> = (ΐλ^φ^Ο)). We thus obtain for
the diffusion constant D = —jx/c the familiär linear response formula95

D=\ Λ<»χ(ί)»,(0)>. (4.18)
Jo

Since, in the semiclassical relaxation time approximation, each scattering
event is assumed to destroy all correlations in the velocity, and since a

95R. Kubo, M. Toda, and N. Hashitsume, "Statistical Physics II." Springer, Berlin, 1985.
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fraction exp( — ί/τ) of the electrons has not been scattered in a time t, one has
(in 2D)

<vx(t)vx(0)y = <^(0)2>e-^ = täe-'*. (4.19)

Substituting this correlation function for the integrand in Eq. (4.18), one
recovers on Integration the diffusion constant (4.13).

The Drude conductivity (4.8) is a semiclassical result, in the sense that
while the quantum mechanical Fermi-Dirac statistic is taken into account,
the dynamics of the electrons at the Fermi level is assumed to be classical. In
Section II we will discuss corrections to this result that follow from
correlations in the diffusion process due to quantum interference. Whereas
for classical diffusion correlations disappear on the time scale of the
scattering time τ [äs expressed by the correlation function (4.19)], in quantum
diffusion correlations persist up to times of the Order of the phase coherence
time. The latter time τφ is associated with inelastic scattering and at low
temperatures can become much greater than the time τ associated with elastic
scattering.

In an experiment one measures a conductance rather than a conductivity.
The conductivity σ relates the local current density to the electric field,
j — σΕ, while the conductance G relates the total current to the voltage drop,
/ = GV. For a large homogeneous conductor the difference between the two
is not essential, since Ohm's law teils us that

G = (W/L)a (4.20)

for a 2DEG of width W and length L in the current direction. (Note that G
and σ have the same units in two dimensions.) If for the moment we disregard
the effects of phase coherence, then the simple scaling (4.20) holds provided
both W and L are much larger than the mean free path /. This is the diffusive
transport regime, illustrated in Fig. 7a. When the dimensions of the sample
are reduced below the mean free path, one enters the ballistic transport
regime, shown in Fig. 7c. One can further distinguish an intermediate quasi-
ballistic regime, characterized by W < l < L (see Fig. 7b). In ballistic
transport only the conductance plays a role, not the conductivity. The
Landauer formula

G = (e2/h)T (4.21)

plays a central role in the study of ballistic transport because it expresses the
conductance in terms of a Fermi level property of the sample (the trans-
mission probability T\ see Section 12). Equation (4.21) can therefore be
applied to situations where the conductivity does not exist äs a local quantity,
äs we will discuss in Sections III and IV.

If phase coherence is taken into account, then the minimal length scale
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L« l

FIG 7. Electron trajectones charactenstic for the diffusive (/ < W, L), quasi-balhstic
(W < l < L), and balhstic (W,L<1) transport regimes, for the case of specular boundary
scattenng Boundary scattenng and mternal impunty scattermg (astensks) are of equal
importance in the quasi-balhstic regime A nonzero resistance m the balhstic regime results from
backscattenng at the connection between the narrow channel and the wide 2DEG regions
Taken from H van Houten et al, m "Physics and Technology of Submicron Structures" (H
Heinrich, G Bauer, and F Kuchar, eds) Springer, Berlin, 1988

required to characterize the conductivity becomes larger. Instead of the
(elastic) mean free path / = νρτ, the phase coherence length Ιφ = (ΰτψ)1/2

becomes this characteristic length scale (up to a numerical coefficient
Ιφ equals the average distance that an electron diffuses in the time τφ). Ohm's
law can now only be applied to add the conductances of parts of the sample
with dimensions greater than Ιφ. Since at low temperatures Ιφ can become
quite large (cf. Table I), it becomes possible that (for a small conductor) phase
coherence extends over a large part of the sample. Then only the conductance
(not the conductivity) plays a role, even if the transport is fully in the diffusive
regime. We will encounter such situations repeatedly in Section II.

c. Magnetotransport

In a magnetic field B perpendicular to the 2DEG, the current is no longer
in the direction of the electric field due to the Lorentz force. Consequently,
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the conductivity is no longer a scalar but a tensor σ, related via the Einstein
relation σ = e2p(EF)D to the diffusion tensor

D = dt <v(t)v(0)>. (4.22)
Jo

Equation (4.22) follows from a straightforward generalization of the argu-
ment leading to the scalar relation (4.18) [but now the ordering of v(i) and v(0)
matters]. Between scattering events the electrons at the Fermi level execute
circular orbits, with cyclotron frequency coc = eB/m and cyclotron radius
'cyci = mvF/eB. Taking the 2DEG in the x — y plane, and the magnetic field in
the positive z-direction, one can write in complex number notation

v(t) Ξ vx(t) + ivy(t) = νρζχρ(ίφ + i'coct). (4.23)

The diffusion tensor is obtained from

f 2 " dd> C™ _ . D
Dxx + iD = — dtv(t)vFcos <£e "* = —— -j (l + ϊωκτ), (4.24)

Jo 2π J 0 l +(ω0τ)2

where D is the zero-field diffusion constant (4.13). One easily verifies that
Dyy = Dxx and Dxy =
conductivity tensor
Dyy = Dxx and Dxy = —Dyx. From the Einstein relation one then obtains the

-)
with σ the zero-field conductivity (4.8). The resistivity tensor p = σ 1 has the
form

l cocz
1

with ρ = σ""1 = m/nse
2T the zero-field resistivity.

The off-diagonal element pxy = RH is the classical Hall resistance of a
2DEG:

B l h hwr

Note that in a 2D channel geometry there is no distinction between the Hall
resistivity and the Hall resistance, since the ratio of the Hall voltage
VH = WEX across the channel to the current / = Wjy along the channel does
not depend on its length and width (provided transport remains in the
diffusive regime). The diagonal element pxx is referred to äs the longitudinal
resistivity. Equation (4.26) teils us that classically the magnetoresistivity is
zero (i.e., pxx(B) — pxx(0) = 0). This counterintuitive result can be understood
by considering that the force frorh the Hall voltage cancels the average
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FIG 8 Schematic dependence on the reciprocal fillmg factor v" 1 = 2eB/hns of the longi-
tudmal resistivity p x (normahzed to the zero-field resistivity p) and of the Hall resistance
RH = Pxy (normahzed to h/2e2) The plot is for the case of a smgle valley with twofold spm
degeneracy Deviations from the semiclassical result (4 26) occur m strong magnetic fields, m the
form of Shubnikov-De Haas oscillations m pxx and quantized plateaus [Eq (4 30)] m pxr

Lorentz force on the electrons A general conclusion that one can draw from
Eqs (4 25) and (4 26) is that the classical effects of a magnetic field are
important only if ω,,τ ^ l In such fields an electron can complete several
cyclotron orbits before bemg scattered out of orbit In a high-mobility 2DEG
this cntenon is met at rather weak magnetic fields (note that ω0τ = μ,,Β, and
see Table I)

In the foregoing apphcation of the Einstein relation we have used the zero-
field density of states Moreover, we have assumed that the scattermg time is
ß-mdependent Both assumptions are justified m weak magnetic fields, for
which Er/ha>c » l, but not in strenger fields (cf Table I) As illustrated in Fig
8, deviations from the semiclassical result (4 26) appear äs the magnetic field is
increased These deviations take the form of an oscillatory magnetoresistivity
(the Shubmkov-De Haas effect) and plateaux in the Hall resistance (the
quantum Hall effect) The ongm of these two phenomena is the formation of
Landau levels by a magnetic field, discussed m Section 4a, that leads to the B-
dependent density of states (4 6) The main effect is on the scattermg rate τ"1,
which in a simple (Born) approximation96 is proportional to p(EF)

= (n/h)p(EF)ctu
2 (428)

95A A Abnkosov, "Fundamentals of the Theory of Metals" North-Holland, Amsterdam, 1988
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Here c, is the areal density of impurities, and the impurity potential is
modeled by a 2D delta function of strength u. The diagonal element of the
resistivity tensor (4.26) is pxx = (ιη/β2ηί)τ~1 oc p(EF). Oscillations in the
density of states at the Fermi level due to the Landau level quantization are
therefore observable äs an oscillatory magnetoresistivity. One expects the
resistivity to be minimal when the Fermi level lies between two Landau levels,
where the density of states is smallest. In view of Eq. (4.6), this occurs when
the Landau level filling factor v = (ns/g^gv)h/eB) equals an integer N = 1,2,
... (assuming spin-degenerate Landau levels). The resulting Shubnikov-De
Haas oscillations are periodic in l/B, with spacing Δ(1/Β) given by

h ns

providing a means to determine the electron density from a magnetoresis-
tance measurement. This brief explanation of the Shubnikov-De Haas effect
needs refinement,20 but is basically correct. The quantum Hall effect,8 being
the occurrence of plateaux in RH versus B at precisely

#H= — ~2^, N =1,2,..., (4.30)

is a more subtle effect97 to which we cannot do justice in a few lines (see
Section 18). The quantization of the Hall resistance is related on a funda-
mental level to the quantization in zero magnetic field of the resistance of a
ballistic point contact.6·7 We will present a unified description of both these
effects in Sections 12 and 13.

II. Diffusive and Quasi-Ballistic Transport

5. CLASSICAL SIZE EFFECTS

In metals, the dependence of the resistivity on the size of the sample has
been the subject of study for almost a Century.98 Because of the small Fermi
wave length in a metal, these are classical size effects. Comprehensive reviews
of this field have been given by Chambers," Brändli and Olsen,100 Sond-
heimer,101 and, recently, Pippard.102 In semiconductor nanostructures both

97R E Prange and S M Girvm, eds , The Quantum Hall Effect " Springer, New York, 1987
98I. Stone, Phys Rev 6, l (1898).
"R G Chambers, m "The Physics of Metals," Vol l (J M Ziman, ed ) Cambridge Umversity

Press, Cambridge, 1969
100G Brandh and J L Olsen, Mater Sei Eng 4, 61 (1969)
101E H Sondheimer, Adv Phys l, l (1952)
102A B Pippard, "Magnetoresistance in Metals." Cambridge Umversity Press, Cambridge,

1989
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classical and quantum size effects appear, and an understandmg of the former
is necessary to distmguish them from the latter Classical size effects m a
2DEG are of intrmsic mterest äs well First of all, a 2DEG is an ideal model
System to study known size effects without the complications of nonsphencal
Fermi surfaces and polycrystallmity, charactenstic for metals Furthermore,
it is possible m a 2DEG to study the case of nearly complete specular
boundary scattermg, whereas m a metal diffuse scattermg dommates The
much smaller cyclotron radius m a 2DEG, compared with a metal at the
same magnetic field value, allows one to enter the regime where the cyclotron
radius is comparable to the ränge of the scattermg potential The resulting
modifications of known effects m the quasi-balhstic transport regime are the
subject of this section A vanety of new classical size effects, not known from
metals, appear m the ballistic regime, when the resistance is measured on a
length scale below the mean free path These are discussed in Section 16, and
require a reconsideration of what is meant by a resistance on such a short
length scale

In the present section we assume that the channel length L (or, more
generally, the Separation between the voltage probes) is much larger than the
mean free path / for impunty scattermg so that the motion remams diffusive
along the channel Size effects in the resistivity occur when the motion across
the channel becomes ballistic ( le , when the channel width W< l) Diffuse
boundary scattermg leads to an increase in the resistivity m a zero magnetic
field and to a nonmonotonic magnetoresistivity in a perpendicular magnetic
field, äs discussed in the followmg two subsections The 2D channel geometry
is essentially equivalent to the 3D geometry of a thin metal plate m a parallel
magnetic field, with the current flowmg perpendicular to the field Size effects
in this geometry were ongmally studied by Fuchs103 m a zero magnetic field
and by MacDonald104 for a nonzero field The alternative configuration in
which the magnetic field is perpendicular to the thin plate, studied by
Sondheimer,105 does not have a 2D analog We discuss in this section only
the classical size effects, and thus the discreteness of the l D subbands and of
the Landau levels is ignored Quantum size effects in the quasi-balhstic
transport regime are treated m Section 10

a Boundary Scattermg

In a zero magnetic field, scattermg at the channel boundanes increases the
resistivity, unless the scattermg is specular Specular scattermg occurs if the
confining potential V(x, y) does not depend on the coordmate y along the
channel axis In that case the electron motion along the channel is not
103K Fuchs, Proc Cambridge Philos Soc 34, 100 (1938)
104D K C MacDonald, Nature 163, 637 (1949), D K C MacDonald and K Sarginson, Proc

Roy Soc A 203, 223 (1950)
105E H Sondheimer, Nature 164, 920 (1949), Phys Rev 80, 401 (1950)
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influenced at all by the lateral confinement, so the resistivity p retains its 2D
bulk value p0 = m/e2nsr. More generally, specular scattering requires any
roughness of the boundaries to be on a length scale smaller than the Fermi
wavelength AF. The confining potential created electrostatically by means of a
gate electrode is known to cause predominantly specular scattering (äs has
been demonstrated by the electron focusing experiments59 discussed in
Section 14). This is a unique Situation, not previously encountered in metals,
where äs a result of the small AF (on the order of the interatomic Separation)
diffuse boundary scattering dominates.102

Diffuse scattering means that the velocity distribution at the boundary is
isotropic for velocity directions that point away from the boundary. Note
that this implies that an incident electron is reflected with a (normalized)
angular distribution P(a) = \ cos a, since the reflection probability is pro-
portional to the flux normal to the boundary. Diffuse scattering increases the
resistivity above p0 by providing an upper bound W to the effective mean free
path. In order of magnitude, p ~ (l/W)p0 if / <; W (a more precise expression
is derived later). In general, boundary scattering is neither fully specular nor
fully diffuse and, moreover, depends on the angle of incidence (grazing
incidence favors specular scattering since the momentum along the channel is
large and not easily reversed). The angular dependence is often ignored for
simplicity, and the boundary scattering is described, following Fuchs,103 by a
single parameter p, such that an electron colliding with the boundary is
reflected specularly with probability p and diffusely with probability l — p.
This specularity parameter is then used äs a fit parameter in comparison with
experiments. Soffer106 has developed a more accurate, and more complicated,
modeling in terms of an angle of incidence dependent specularity parameter.

In the extreme case of fully diffuse boundary scattering (p = 0), one is
justified in neglecting the dependence of the scattering probability on the
angle of incidence. We treat this case here in some detail to contrast it with
fully specular scattering, and because diffuse scattering can be of importance
in 2DEG channels defined by ion beam exposure rather than by gates.107'108

We calculate the resistivity from the diffusion constant by means of the
Einstein relation. Fuchs takes the alternative (but equivalent) approach of
calculating the resistivity from the linear response to an applied electric
field.103 Impurity scattering is taken äs isotropic and elastic and is described
by a scattering time τ such that an electron is scattered in a time interval dt
with probability dt/τ, regardless of its position and velocity. This is the
commonly employed "scattering time" (or "relaxation time") approximation.

106S. B. Soffer, J. Appl. Phys. 38, 1710 (1967).
!07T. J. Thornton, M. L. Roukes, A. Scherer, and B. P. van der Gaag, Phys. Rev. Lett. 63, 2128

(1989).
108K. Nakamura, D. C. Tsui, F. Nihey, H. Toyoshima, and T. Itoh, Appl. Phys. Lett. 56, 385

(1990).
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The channel geometry is defined by hard walls at χ = ± W/2 at which the
electrons are scattered diffusely The stationary electron distnbution function
at the Fermi energy F(r, a) satisfies the Boltzmann equation

, _ _ , +8τ τ τ J0 2π

where r = (x, y) is the position and α is the angle that the velocity v = %(cos a,
sin a) makes with the x-axis The boundary condition correspondmg to
diffuse scattermg is that F is mdependent of the velocity direction for
velocities pomtmg away from the boundary In view of current conservation
this boundary condition can be wntten äs

1 Γπ/2 W π 3π
F(r, α) = - da.' F(r, a') cos a', for x = — , — < a < — ,

2 J -π/2 2 2 2

1 Γ3 π/2 W π π
= - du.' F(r, a') cos a', for χ = — — , — — < a < — (52)

2 J n / 2 2 2 2

To determme the diffusion constant, we look for a solution of Eqs (5 1) and
(5 2) correspondmg to a constant density gradient along the channel,
F(r, a) = — cy + /(x, a) Smce there is no magnetic field, we anticipate that the
density will be uniform across the channel width so that Jo" / da = 0 The
Boltzmann equation (5 1) then simplifies to an ordmary differential equation
for/, which can be solved straightforwardly The solution that satisfies the
boundary conditions (5 2) is

Γ ( W x \1
F(r, a) = -cy + c/sma l - exp - — - - - - - - L (5 3)

|_ \ 2/|cosa| /cosa/J
where we have wntten / = vl τ One easily venfies that F has mdeed a uniform
density along x The diffusion current

[W/2 Γ2π

Iy = vF \ dx \ da.F sin α (5 4)
J W/2 J O

along Ihe channel in response to the density gradient dn/dy = — 2nc
determmes the diffusion constant D = —(Iy/W) (dn/dy)*1 The resistivity
p = EF/nse

2D then follows from the Einstein relation (4 10), with the 2D
density of states ns/EF The resultmg expression is

P - Po l 7Γ, άξ ξ(\ — ξ ) (l — e ξ ) \ , (55)

which can be easily evaluated numencally It is worth notmg that the
above result 109 for p/p0 in a 2D channel geometry does not differ much
(less than 20%) from the correspondmg result103 m a 3D thin film

109C W J Beenakker and H van Houten, Phys Rev B 38, 3232 (1988)
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For l/W « l one has

/ \
7 j 7 . (56)W J

which differs from Eq (5 5) by less than 10% m the ränge l/W ^ 10 For
l/W » l one has asymptotically

π l π m% l

~ 2 o W \n(l/W) ~ 2 nse
2W

In the absence of impunty scattermg (i e , m the hmit / -> oo), Eq (5 7) predicts
a vanishmg resistivity Diffuse boundary scattermg is ineffective m estabhsh-
ing a fimte resistivity m this hmit, because electrons with velocities nearly
parallel to the channel walls can propagate over large distances without
colhsions and thereby short out the current As shown by Tesanovic et al ,110

a small but nonzero resistivity m the absence of impunty scattermg is
recovered if one goes beyond the semiclassical approximation and mcludes
the effect of the quantum mechanical uncertainty m the transverse compo-
nent of the electron velocity

b Magneto Size Effects

In an unbounded 2DEG, the longitudmal resistivity is magnetic-field-
mdependent m the semiclassical approximation (see Section 4c) We will
discuss how a nonzero magnetoresistivity can anse classically äs a result of
boundary scattermg We consider the two extreme cases of specular and
diffuse boundary scattermg, and describe the impunty scattermg m the
scattermg time approximation Shortcommgs of this approximation are
discussed toward the end of this subsection

We consider first the case of specular boundary scattermg In a zero
magnetic field it is obvious that specular scattermg cannot affect the
resistivity, since the projection of the electron motion on the channel axis is
not changed by the presence of the channel boundanes If a magnetic field is
apphed perpendicular to the 2DEG, the electron trajectones m a channel
cannot be mapped m this way on the trajectones m an unbounded System In
fact, m an unbounded 2DEG in equihbnum the electrons perform closed
cyclotron orbits between scattermg events, whereas a channel geometry
Supports open orbits that skip along the boundanes One might suppose that
the presence of these skipping orbits propagatmg along the channel would
mcrease the diffusion constant and hence reduce the (longitudmal) resistivity
below the value p0 of a bulk 2DEG That is not correct, at least in the
scattermg time approximation, äs we now demonstrate

1IOZ Tesanovic, M V Jane, and S Maekawa, Phys Rev Lett 57,2760(1986)
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The stationary Boltzmann equation m a magnetic field B m the z-direction
(perpendicular to the 2DEG) is

F+ , _ _ , + , ,58)
ör σα τ τ Jo 2π

Here, we have used the identity — em~^(y χ Β)·<5/<3ν = ω^θ/θα, (with
coc Ξ eB/tn the cyclotron frequency) to rewnte the term that accounts for the
Lorentz force The distnbution function F(r, a) must satisfy the boundary
conditions for specular scattermg,

F(r, a) == F(r, π - a), for χ = + W/2 (5 9)

One readily venfies that

F(r, a) = — c(y + ωετχ) + cl sin a (5 10)

is a solution of Eqs (5 8) and (5 9) The correspondmg diffusion current
/j, = ncWvpl and density gradient along the channel dn/dy = — 2nc are both
the same äs in a zero magnetic field It follows that the diffusion constant
D = Iy/2ncW and, hence, the longitudmal resistivity p = Ef/nse

2D are B-
mdependent, that is, p = p0 = ηι/η5β

2τ äs m an unbounded 2DEG More
generally, one can show that m the scattermg üme approximation the
longitudmal resistivity is 5-mdependent for any confinmg potential V(x, y)
that does not vary with the coordmate y along the channel axis (This
Statement is proven by applymg the result of Ref 1 1 1, of a jß-independent pyy

for penodic V(x), to a set of disjunct parallel channels (see Secüon llb), the
case of a smgle channel then follows from Ohm's law )

In the case of diffuse boundary scattermg, the zero-field resistivity is
enhanced by approximately a factor l + 1/2W [see Eq (5 6)] A sufficiently
strong magnetic field suppresses this enhancement, and reduces the resistivity
to its bulk value p0 The mechamsm for this negative magnetoresistance is
illustrated in Fig 9b If the cyclotron diameter 2/cycl is smaller than the
channel width W, diffuse boundary scattermg cannot reverse the direction of
motion along the channel, äs it could for smaller magnetic fields The
diffusion current is therefore approximately the same äs m the case of
specular scattermg, in which case we have seen that the diffusion constant
and, hence, resistivity have their bulk values Figure 9 represents an example
of magnetic reduction of backscattenng Recently, this phenomenon has been
understood to occur m an extreme form m the quantum Hall effect112 and in
ballistic transport through quantum pomt contacts113 The effect was

'"C W J Beenakker, Phys Rev Leu 62,2020(1989)
112M Buttiker, Phys Rev 638,9375(1988)
113H vanHouten C W J Beenakker, P H M van Loosdrecht, T J Thornton, H Ahmed, M

Pepper, C T Foxon, and J J Harns, Phys Rev B 37, 8534 (1988), and unpublished
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FIG 9 Illustration of the effect of a magnetic field on motion through a channel with diffuse
boundary scattenng (a) Electrons which m a zero field rnove nearly parallel to the boundary can
reverse their motion m weak magnetic fields This mcreases the resistivity (b) Suppression of
backscattermg at the boundanes m strong magnetic fields reduces the resistivity.

essentially known and understood by MacDonald104 in 1949 in the course of
bis magnetoresistivity experiments on sodium wires. The ultimate reduction
of the resistivity is preceded by an initial increase in weak magnetic fields, due
to the deflection toward the boundary of electrons with a velocity nearly
parallel to the channel axis (Fig. 9a). The resulting nonmonotonic B-
dependence of the resistivity is shown in Fig. 10. The plot for diffuse
scattering is based on a calculation by Ditlefsen and Lothe114 for a 3D thin-
film geometry. The case of a 2D channel has been studied by Pippard102 in
the limit l/W-^ CG, and he finds that the 2D and 3D geometries give very
similar results.

An experimental study of this effect in a 2DEG has been performed by
Thornton et a/.107 In Fig. 11 their magnetoresistance data are reproduced for
channels of different widths W, defined by low-energy ion beam exposure. It
was found that the resistance reaches a maximum when W χ 0.5/cycl, in
excellent agreement with the theoretical predictions.114·102 Thornton et al.
also investigated channels defined electrostatically by a split gate, for which
one expects predominantly specular boundary scattering.59 The foregoing
analysis would then predict an approximately ß-independent resistance (Fig.
10), and mdeed only a small resistance maximum was observed in weak
magnetic fields. At strenger fields, however, the resistance was found to
decrease substantially. Such a monotonically decreasing resistance in

114E Ditlefsen and J Lothe, Phil Mag. 14, 759 (1966)
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Diffuse I=10W

Specular

W/lcycl

FIG 10 Magnetic field dependence of the longitudmal resistivity of a channel for the two
cases of diffuse and specular boundary scattenng, obtamed from the Boltzmann equation in the
scattermg time approximation The plot for diffuse scattenng is the result of Ref 114 for a 3D
thm film geometry with / = IOW (A 2D channel geometry is expected to give very similar
results 102)
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FIG 11 Expenmental magnetic field dependence of the resistance of channels of different
widths, defined by ιοη beam exposure in the 2DEG of a GaAs-AlGaAs heterostructure
(L= 12μιη, T= 42K) The nonmonotomc magnetic field dependence below l T is a classical
size effect due lo diffuse boundary scattenng, äs illustrated m Fig 9 The magnetoresistance
oscillations dt higher fields result from the quantum mechanical Shubmkov-De Haas effect
Taken from T J Thornton et al, Phys Rev Lett 63, 2128 (1989)
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FIG. 12. Electron trajectories in a channel with specular boundary scattering, to illustrate how

a magnetic field can suppress the backscattering by an isolated impurity close to a boundary.
This eilect would lead to a negative magnetoresistivity if one would go beyond the scattering
time approximation.

channels with predominantly specular boundary scattering was first reported
by Choi et a/.,55 and studied for a narrower channel in Ref. 27 (see Section 9.b
for some of these experimental results). We surmise that a classical negative
magnetoresistance in the case of specular boundary scattering can result if the
cyclotron radius becomes smaller than some characteristic correlation length
in the distribution of impurities (and in the resulting potential landscape).
Correlations between the positions of impurities and the channel boundaries,
which are neglected in the scattering time approximation, will then play a
role. For an example, see Fig. 12, which shows how an isolated impurity near
the boundary can reverse the direction of electron motion in a zero magnetic
field but not in a sufficiently strong magnetic field. In metals, where the
cyclotron radius is much larger than in a 2DEG, an electron will effectively
experience a random impurity potential between subsequent boundary
collisions, so the scattering can well be described in terms of an average
relaxation time. The experiments in a 2DEG suggest that this approximation
breaks down at relatively weak magnetic fields.

6. WEAK LOCALIZATION

The temperature dependence of the Drude resistivity p = m/nse
2i is

contained in that of the scattering time τ, since the electron density is constant
in a degenerate electron gas. As one lowers the temperature, inelastic
scattering processes (such äs electron-phonon scattering) are suppressed,
leading to a decrease in the resistivity. The residual resistivity is due entirely
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100 200 300

T (K)
FIG 13 Temperature dependence of the resistivity of a wide 2DEG m a GaAs-AlGaAs

heterostructure (circles) and of two narrow channels of lithographic width Wlllh = 1.5/im
(squares) and \¥ι,Λ = 05μιη (tnangles) The channel length L= ΙΟμιη The resistivity is
estimated from the measured resistance R by multiplymg by Whth/L, disregardmg the difference
between the conductmg and lithographic width in the narrow channels Taken from H. van
Houten et al, Appl Phys Leu. 49, 1781 (1986).

to elastic scattermg (with stationary impurities or other crystalline defects)
and is temperature-independent in the semiclassical theory. Experimentally,
however, one finds that below a certain temperature the resistivity of the
2DEG Starts to rise again. The increase is very small in broad samples, but
becomes quite pronounced in narrow channels. This is illustrated in Fig. 13,
where the temperature dependencies of the resistivities of wide and narrow
GaAs-AlGaAs heterostructures are compared.63

The anomalous resistivity increase is due to long-range correlations in the
diffusive motion of an electron that are purely quantum mechanical. In the
semiclassical theory it is assumed that a few scattering events randomize the
electron velocity, so the velocity correlation function decays exponentially in
time with decay time τ [see Eq. (4.19)]. As discussed in Section 4.c, this
assumption leads to the Drude formula for the resistivity. It is only in recent
years that one has come to appreciate that purely elastic scattering is not
effective in destroying correlations in the phase of the electron wave function.
Such correlations lead to quantum interference corrections to the Drude
result, which can explain the anomalous increase in the resistivity at low
temperatures.

A striking effect of quantum interference is to enhance the probability for
backscattenng in a disordered System in the metallic regime. This effect has
been interpreted äs a precursor of localization in strongly disordered Systems
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and has thus become known äs weak locahzatwn 11S 117 In Section 6 a we
descnbe the theory for weak locahzation m a zero magnetic field The
application of a magnetic field perpendicular to the 2DEG suppresses weak
locahzation,118 äs discussed in Section 6b The resulting negative mag-
netoresistivity is the most convement way to resolve expenmentally the weak
locahzation correction 119 The theory for a narrow channel m the quasi-
balhstic transport regime109 12° differs m an mterestmg way from the theory
for the diffusive regime,121 äs a consequence of theflux cancellation effect122

The diffusive and quasi-balhstic regimes are the subjects of Sections 6 b and
6 c, respectively

d Coherent Backscattenng

The theory of weak locahzation was developed by Anderson et al116 and
Gorkov et al111 This is a diagrammatic perturbation theory that does not
lend itself easily to a physical Interpretation The Interpretation of weak
locahzation äs coherent backscattenng was put forward by Bergmann123 and
by Khmernitskn and Larkm,124 125 and formed the basis of the path integral
theory of Chakravarty and Schmid 126 In this descnption, weak locahzation
is understood by considermg the interference of the probabihty amphtudes
for the classical trajectones (or "Feynman paths") from one point to another,
äs discussed later For reviews of the alternative diagrammatic approach, we
refer to Refs 127 and 128

1' 5E Abrahams, P W Anderson, D C Licciardello, and T V Ramaknshnan, Phys Rev Leu
42, 673 (1979)

iisp w Anderson, E Abrahams, and T V Ramaknshnan, Phys Rev Leu 43,718(1979)
117L P Gorkov, A I Larkm, and D E Khmernitskn, Pis'ma Zh Eksp Teor Fiz 30,248(1979)

[l ET P Leu 30, 228 (1979)]
118B L Al'tshuler, D Khmelmtskii, A I Larkm, and P A Lee, Phys Rev 522,5142(1980)
119A Kawabata, J Phys Soc Japan 49, 628 (1980)
I20V K DugaevandD E Khmernitskn, Zh Eksp Teor Fiz 86, 1784 (1984) [Sou Phys JETP

59, 1038 (1984)]
121B L Al'tshuler and A G Aronov, Pis'ma Zh Eksp Teor Fiz 33, 515 (1981) [JETP Lett 33,

499 (1981)]
122P G De Gennes and M Tmkham, Phys (N Y) l, 107 (1964), see also P G De Gennes,

"Superconductivity of Metals and Alloys," Chapter 8 Benjamin, New York, 1966
123G Bergmann, Phys Rep 107, l (1984), Phys Rev B 28, 2914 (1983)
124A I Larkm and D E Khmel'mtskii, Usp Fiz Nauk 136, 536 (1982) [Sov Phys Usp 25, 185

(1982)
125D E Khmernitskn, Physica 126B, 235 (1984)
126S Chakravarty and A Schmid, Phys Rep 140, 193 (1986)
127P A Lee and T V Ramaknshnan, Rev Mod Phys 57, 287 (1985)
128B L Al'tshuler, A G Aronov, D E Khmelmtskii, and A I Larkm, m "Quantum Theory of

Sohds,"p 130 (I M Lifshitz, ed ) Advances m Science and Technology m the USSR, Physics
Senes, MIR, Moskow
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r = r

FIG 14 Mechamsm of coherent backscattenng The
probabihty amphtudes A, and A3 of two trajectories from
r to r' have uncorrelated phases m general (a), but the
amplitudes /4 + and A of two time-reversed returnmg
trajectories are equal (b). The constructive mterference of
A* and A~ mcreases the probabihty for return to the
pomt of departure, which is the ongin of the weak
locahzation effect The volume mdicated m black is the
area λτνΓάί covered by a flux tube m a Urne mterval dt,
which enters m Eq (6 2) for the conductivity correction

In a Feynman path description129 of diffusion, the probability P(r, r', i) for
motion from point r to point r' in a time i consists of the absolute value
squared of the sum of probability amplitudes A„ one for each trajectory from
r to r' of duration t:

P(r, r', t) = Σ (6.1)

The restriction to dassical trajectories in the sum over Feynman paths is
allowed if the Separation between scattering events is much larger than the
wavelength (i.e., if kFl » 1). The classical diffusion probability corresponds to
the first term on the right-hand side of Eq. (6.1), while the second term
accounts for quantum interference. In the diffusive transport regime there is a
very large number of different trajectories that contribute to the sum. One
might suppose that for this reason the interference term averages out, because
different trajectories have uncorrelated phases. This is correct if the beginning
and end points r and r' are different (Fig. 14a), but not if the two coincide (Fig.
14b). In the latter case of "backscattered" trajectories, one can group the
contributions to the sum (6.1) in time-reversed pairs. Time-reversal inva-
riance guarantees that the probability amplitudes A+ and A~ for clockwise
and counterclockwise propagation around the closed loop are identical:
A+ = A" = A. The coherent backscattering probability \A+ + A~\2 = 4\A\2

is then twice the classical result. The enhanced probability for return to the
point of departure reduces the diffusion constant and, hence, the conductiv-
ity. This is the essence of weak locahzation. As phrased by Chakravarty and
Schmid,126 "it is one of those unique cases where the superposition principle
of quantum mechanics leads to observable consequences at the macroscopic
level."

129R P Feynman and A R Hibbs, "Quantum Mechanics and Path Integrals " McGraw-Hill,
New York, 1965.
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The magnitude of the weak localization correction <5aloc to the Drude
conductivity σ is proportional to the probability for return to the point of
departure.126 Since δσ10(. is assumed to be a small correction, one can estimate
this probability from classical diffusion. Let C(t)dr denote the classical
probability that an electron returns after a time i to within dr of its point of
departure. The weak localization correction is given by the time integral of
the return probability:126

* (6.2)
m J0

The correction is negative because the conductivity is reduced by coherent
backscattering. The factor h/m oc λρνρ follows in the path integral formalism
from the area covered by a flux tube of width λρ and length VF dt (see Fig. 14b).
The factor exp( — ί/τφ) is inserted "by hand' to account for the loss of phase
coherence after a time τφ (äs a result of inelastic scattering). The return
probability C(t) in a 2D channel of width W is given for times t » τ in the
diffusive regime by

C(t) = (4nDt) -1, if t « W2 /D, (6.3a)

C(t) = W~l(4nDtril2, if t » W2/D. (6.3b)

The l/i decay of the return probability (6.3a) assumes unbounded diffusion in

two dimensions. A crossover to a lower l/^/ί decay (6.3b) occurs when the
root-mean-square displacement (2Z)f)1/2 exceeds the channel width, so
diffusion occurs effectively in one dimension only. Because the time integral of
C(f) itself diverges, the weak localization correction (6.2) is determined by the
behavior of the return probability on the phase coherence time τφ, which
provides a long-time cutoff. One speaks of 2D or l D weak localization,
depending on whether the return probability €(τφ) on the time scale of τφ is
determined by 2D diffusion (6.3a) or by 1D diffusion (6.3b). In terms of the
phase coherence length Ιφ = (Οτφ)

1/2, the criterion for the dimensionality is
that 2D weak localization occurs for Ιφ « Wand 1D weak localization for
Ιφ » W. On short time scales £ ;$ τ, the motion is ballistic rather than diffusive,
and Eq. (6.3) does not apply. One expects the return probability to go to zero
smoothly äs one enters the ballistic regime. This short-time cutoff can be
accounted for heuristically by the factor l — exp( — ί/τ), to exclude those
electrons that at time t have not been scattered.109 The form of the short-time
cutoff becomes irrelevant for τφ » τ. (See Ref. 130 for a theoretical study of
weak localization in the regime of comparable τφ and τ.)

130H P Wittman and A Schmid, J Low Temp Phyi, 69, 131 (1987)
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The foregoing analysis gives the following expressions for the 2D and l D
weak localization corrections:

2h
lo° m J0

ß2 l n ( l + M i f L « ^ (6.4a)- s v -Γ-2Τ
4π n

7.h
= -- σ dt

m J0

where we have used the expression for the Drude conductivity σ = e2p(EF)D
with the 2D density of states (4.2). The ratio of the weak localization
correction to the Drude conductivity δσ1θί./σ is of order l/feF/ for 2D weak
localization and of order (^/W)(l/kFl) for 1D weak localization. In the 2D
case, the correction is small (cf. the values of krl given in Table I), but still
much larger than in a typical metal. The correction is greatly enhanced in the
l D case /ψ » W. This is evident in the experimental curves in Fig. 13, in which
the resistivity increase at low temperatures is clearly visible only in the
narrowest channel.

The weak localization correction to the conductance öGloc = (W/L)<5aloc is
of order (e2/h)( W /L) in the 2D case and of order (e2/h)(^/L) in the l D case. In
the latter case, the conductance correction does not scale with the channel
width W, contrary to what one would have classically. The conductance does
scale with the reciprocal of the channel length L, at least for L » Ιφ. The factor
ΙΦ/L in (5Gloc in the l D case can be viewed äs a consequence of the classical
series addition of L/Ιφ channel sections. It will then be clear that the scaling
with L has to break down when L ίΞ Ιφ, in which case the weak localization
correction saturates at its value for L χ Ιφ. The maximum conductance
correction in a narrow channel is thus of order e2/h, independent of the
properties of the sample. This "universality" is at the origin of the pheno-
menon of the universal conductance fluctuations discussed in Section 7.

b. Suppression of Weak Localization by a Magnetic Field

(1) Theory. The resistance enhancement due to weak localization can be
suppressed by the application of a weak magnetic field oriented per-
pendicular to the 2DEG. The suppression results from the fact that a
magnetic field breaks time-reversal invariance. We recall that in a zero
magnetic field, time-reversal invariance guarantees that trajectories that form
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a closed loop have equal probabihty amphtudes A+ and A~ for clockwise
and counterclockwise propagation around the loop The resultmg con-
structive mterference enhances the backscattermg probabihty, thereby lead-
mg to the weak locahzation efFect In a weak magnetic field, however, a phase
difference φ develops between A+ and A~, even if the curvature of the
trajectones by the Lorentz force can be totally neglected This Aharonov-
Bohm phase results from the fact that the canomcal momentum p = m\ — eA
of an electron m a magnetic field contams the vector potential A On
clockwise ( + ) and counterclockwise ( — ) propagation around a closed loop,
one thus acquires a phase difference

-
The phase difference is twice the enclosed area S divided by the square of the
magnetic length /m = (h/eB)1'2, or, alternatively, it is 4π times the enclosed
flux Φ in units of the elementary flux quantum Φ0 = h/e

Many trajectones, with a wide distnbution of loop areas, contnbute to the
weak locahzation effect In a magnetic field the loops with a large area S ̂  /„
no longer contnbute, smce on average the counterpropagating trajectones no
longer mterfere constructively Smce trajectones enclosing a large area
necessanly take a long time to complete, the effect of a magnetic field is
essentially to introduce a long-time cutoff in the Integrals of Eqs (6 2) and
(6 4), which is the magnetic relaxation time τΒ Recall that the long-time cutoff
m the absence of a magnetic field is the phase coherence time τφ The
magnetic field thus begins to have a significant effect on weak locahzation if
τΒ and τφ are comparable, which occurs at a charactenstic field Bc The weak
locahzation effect can be studied expenmentally by measunng the negative
magnetoresistance peak associated with its suppression by a magnetic field
The sigmficance of such expenments rehes on the possibility of directly
determmmg the phase coherence time τφ The expenmental data are most
naturally analyzed in terms of the conductance The magnitude of the zero-
field conductance correction öGloc(B = 0) follows directly from the Saturation
value of the magnetoconductance, accordmg to

G(B » ßc) - G(B = 0) = - <5Gloc(ß = 0) (6 6)

Once öG]ot.(B = 0) is known, one can deduce the phase coherence length Ιφ

from Eq (6 4), smce D and τ are easily estimated from the classical part of the
conductance (which dommates at shghtly elevated temperatures) The mag-
netoconductance contams, m addition, Information on the channel width W,
which is a parameter difficult to determme otherwise, äs will become clear in
the discussion of the expenmental Situation in subsection (2)
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The effectiveness of a magnetic field m suppressmg weak locahzation (äs
contamed m the functional dependence of τΒ on B, or m the expression for £?c)
is determmed by the average flux enclosed by backscattered trajectones of a
given duration One can distmguish different regimes, depending on the
relative magnitude of the channel width W, the mean free path / = vFr, the
magnetic length /m, and the phase coherence length Ιφ = (ϋτφ)

112 In Table II
the expressions for τΒ and Bc are summanzed, äs obtamed by vanous
authors 109 '18 121 131 In the followmg, we present a simple physical Interpre-
tation that explams these results, except for the numencal prefactors We will
not discuss the effects of spm-orbit scattermg131 or of superconductmg
fluctuations,132 smce these may be neglected m the Systems considered in this
review In this subsection we only discuss the dirty metal regime / « W The
pure metal regime l» W, m which boundary scattermg plays an rmportant
role, will be discussed m Section 6 c

If Ιφ « W the two-dimenswnal weak locahzation correction to the con-
ductivity apphes, given by Eq (6 4a) for a zero magnetic field The typical area
S enclosed by a backscattered trajectory on a time scale τΒ is then of the order
S ~ ΏτΒ (assuming diffusive motion on this time scale) The corresponding
phase shift is φ ~ ΟτΒ/1^, in view of Eq (6 5) The cntena φ ~ l and τΒ ~ τφ

thus imply

τβ ~ 12JD, Bc ~ h/βθτφ = h/el* (6 7)

TABLE II MAGNETIC RELAXATION TIME x„ AND CHARACTERISTIC FIELD Bc FOR THE SUPPRESSION
OF 2D AND l D WEAK LOCALIZATION a

PURE METALC (W « l)

TB

ßc

2D(/,«W)

s
20

h 1

*2/}

1D Strong Field
\Ό(π«Ιφ) 1 D WEAK FIELD (/2>> Wl) (Wl»l2

m»W2)

-ji4 /-· 14 /-" /2 i

W2D W3!)F PF2yF

/i 31/2 ft 1 / C, V'2 Ä C2/

e W/ψ e W VWypr^/ e W2vFi^

'All results assume a channel length L » Ιφ, a channel width W » AF, äs well äs τφ » τ
bFrom Refs 118, 131, and 121 The diffusion constant D = jvFl If W « Ιφ, a transition to 2D
weak locahzation occurs when /m S W
cFrom Ref 109 The constants are given by C t = 9 5 and C2 = 24/5 for specular boundary
scattermg (Cl = 4π and C2 = 3 for a channel with diffuse boundary scattermg) For pure metals,
the case /m < W is outside the diffusive transport regime for weak locahzation

131S Hikami, A I Larkm, and Υ Nagaoka, Prag Theor Phys 63,707(1980)
1 3 2A I Larkm, Pis'ma Zh Eksp Teor Fiz 31, 239 (1980) [J£TP Lett 31,219(1980)]
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The füll expression for the magnetoconductance due to weak localization
118 131

IS

W e2

T9s9v4^h
Ψ

2 ϊτ

(68)

where Ψ(χ) is the digamma function and τΒ = /„/2D The digamma function
has the asymptotic approximation Ψ(χ) « ln(x) — 1/x for large x, thus, in a
zero magnetic field result (6 4a) is recovered (assummg also τφ » τ) In the
case of 2D weak localization the charactenstic field Bc is usually very weak
For example, if Ιφ = l μηι, then Bc « l mT The suppression of the weak
localization effect is complete when τβ 5Ξ τ, which occurs for
B > h/eDr ~ ft/e/2 These fields are still much weaker than classically strong
fields for which ω0τ ^ l (äs can be venfied by noting that when B = h/el2, one
has ωςτ = l/kpl « 1) The neglect of the curvature of electron trajectones in
the theory of weak localization is thus entirely justified m the 2D case The
safety margin is narrower m the l D case, however, smce the charactenstic
fields can become significantly enhanced

The one-dimensional case W « Ιφ in a magnetic field has first been treated
by Al'tshuler and Aronov1 2 1 m the dirty metal regime This refers to a narrow
channel with /« W so that the wall-to-wall motion is diffusive Smce the
phase coherence length exceeds the channel width, the backscattered trajec-
tones on a time scale τβ have a typical enclosed area S ~ W(DTB)

1/2 (see Fig
15) Consequently, the condition S ~ /^ for a umt phase shift imphes

14JD W2 h/eWL (69)

The difference with the 2D case is that the enclosed flux on a given time scale
is reduced, due to the lateral compression of the backscattered trajectones
This leads to an enhancement by a factor L/W of the charactenstic field scale

w

Ιφ

Fig 15 Typical closed electron trajectory contributing to 1D weak localization (Ιφ » W) m
the dirty metal regime (/ « W) The astensks denote elastic scattenng events Tdken from H van
Houten et al, Acta Electromca 28, 27 (1988)



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 43

Bc, compared with Eq (6 7) The füll expression for the weak localization
correction if Ιφ, lm » W » l is121

~1 / 2

, (610)

with τΒ = 3/4/W2D For an elementary denvation of this result, see Ref 109
At /m ~ W a crossover from l D to 2D weak localization occurs [i e , from Eq
(6 10) to Eq (6 8)] The reason for this crossover is that the lateral
confinement becomes irrelevant for the weak localization when /m ^ W,
because the trajectones of duration τΒ then have a typical extension
(£>τΒ)1/2 ;$ W, accordmg to Eq (6 9) This crossover from 1D to 2D restncts
the available field ränge that can be used to study the magnetoconductance
associated with l D weak localization

The magnetic relaxation time τΒ in the dirty metal regime is found to be
inversely proportional to the diffusion constant D, in 2D äs well äs in l D The
reason for this dependence is clear faster diffusion imphes that less time is
needed to complete a loop of area /„ It is remarkable that m the pure metal
regime such a proportionahty no longer holds This is a consequence of the
flux cancellation effect discussed in Section 6 c

(2) Experiments in the Dirty Metal Regime. Magnetoresistance expenments
have been widely used to study the weak localization correction to the
conductivity of wide 2D electron gases m Si28 30 133~135 and GaAs 23 136 137

Here we will discuss the expenmental magnetoresistance studies of weak
localization m narrow channels m Si MOSFETs34 38 40 138 and GaAs-
AlGaAs heterostructures 24 25 58 As an illustrative example, we reproduce m
Fig 16 a set of expenmental results for ÖR/R s [J?(0) - R(BJ]/R(Q) obtamed
by Choi et al 25 m a wide and m a narrow GaAs-AlGaAs heterostructure
The quantity öR is positive, so the resistance decreases on applymg a
magnetic field The 2D results are similar to those obtamed earher by
Paalanen et al131 The qualitative difference in field scale for the suppression
of 2D (top) and l D (bottom) weak localization is mcely illustrated by the data
in Fig 16 The magnetoresistance peak is narrower m the 2D case, consistent
with the enhancement m l D of the charactenstic field Bc for the suppression
of weak localization, which we discussed m Section 6 b(l) The solid curves m

133Y Kawaguchi and S Kawaji, J Phys Soc Jpn 48, 699 (1980)
134R G Wheeler, Phys Rev B 24, 4645 (1981)
135M J Uren, R A Davis, M Kaveh, and M Pepper, J Phys C 14, L395 (1981)
136D A Poole, M Pepper, and R W Glew, J Phys C 14, L995 (1981)
137M A Paalanen, D C Tsui, and J C M Hwang, Phys Rev Lett 51, 2226 (1983)
138D M Pooke R Mottahedeh, M Pepper and A Grundlach, Swf Sa 196 59 (1988), D M

Pooke N Paqum M Pepper and A Grundlach J Phys Condens Mattei l 3289 (1989)
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FIG. 16. A comparison between the magnetoresistance AR/R = [R(0) - R(B)~]/R(Q) due to 2D
weak localization in a wide channel (upper panel) and due to l D weak localization in a narrow
channel (Iower panel), at various temperatures. The solid curves are fits based on Eqs. (6.8) and
(6.10). Taken from K. K. Choi et ai, Phys. Rev. B 36, 7751 (1987).

Fig. 16 were obtained from the 2D theoretical expression (6.8) and the l D
dirty metal result (6.10), treating W and Ιφ äs adjustable parameters. A
noteworthy finding of Choi et al.25 is that the effective channel width W is
considerably reduced below the lithographic width Wlith in narrow channels
defined by a deep-etched mesa (äs in Fig. 4a). Differences W— Wlith of about
0.8 jum were found.25 Significantly smaller differences are obtained27'63 if a
shallow-etched mesa is used for the lateral confinement, äs in Fig. 4c. A split-
gate device (äs in Fig. 4b) of variable width has been used by Zheng et al.24 to
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study weak localization in GaAs-AlGaAs heterostructure channels. Magne-
toresistance experiments in a very narrow split-gate device (fabricated using
electron beam lithography) were reported by Thornton et al58 and analyzed
in terms of the dirty metal theory. Unfortunately, in their experiment the
mean free path of 450 nm exceeded the width inferred from a fit to Eq. (6.10)
by an order of magnitude, so an analysis in terms of the pure metal theory
would have been required.

Early magnetoresistance experiments on narrow Si accumulation layers
were performed by Dean and Pepper,34 in which they observed evidence for a
crossover from the 2D to the l D weak localization regime. A comparison of
weak localization in wide and narrow Si Inversion layers was reported by
Wheeler et al.38 The conducting width of the narrow channel was taken to be
equal to the lithographic width of the gate (about 400 nm), while the mean
free path was estimated to be about lOOnm. This experiment on a low-
mobility Si channel thus meets the requirement /« W for the dirty metal
regime. The l D weak localization condition Ιφ » W was only marginally
satisfied, however. Licini et al.40 reported a negative magnetoresistance peak
in 270-nm-wide Si Inversion layers, which was well described by the 2D
theory at a temperature of 2.2 K, where Ιφ = 120nm. Deviations from the 2D
form were found at lower temperatures, but the l D regime was never fully
entered. A more recent study of l D weak localization in a narrow Si
accumulation layer has been performed by Pooke et al.138 at low temper-
atures, and the margins are somewhat larger in their case.

We note a difficulty inherent to experiments on l D weak localization in
semiconductor channels in the dirty metal regime. For 1D weak localization
it is required that the phase coherence length Ιφ is much larger than the
channel width. If the mean free path is short, then the experiment is in the
dirty metal regime / « W, but the localization will be only marginally one-
dimensional since the phase coherence length Ιφ = (Οτφ)

ί12 = (νρΙτφ/2)1/2 will
be short äs well (except for the lowest experimental temperatures). If the mean
free path is long, then the l D criterion Ιφ » W is easily satisfied, but the
requirement / « W will now be hard to meet so that the experiment will tend
to be in the pure metal regime. A quantitative comparison with the theory
(which would allow a reliable determination of Ιφ) is hampered because the
asymptotic regimes studied theoretically are not accessible experimentally
and because the channel width is not known a priori. Nanostructures are thus
not the best candidates for a quantitative study of the phase coherence length,
which is better studied in 2D Systems. An altogether different complication is
that quantum corrections to the conductivity in semiconductor nanostruc-
tures can be remarkably large (up to 100% at sufficiently low temper-
atures27'34), which puts them beyond the ränge of validity of the perturbation
theory.
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FIG 17 Illustration of the flux cancellation effect for a closed trajectory of one electron m a
narrow channel with diffuse boundary scattenng The trajectory is composed of two loops of
equal area but opposite onentation, so it encloses zero flux Taken from C W J Beenakker and
H van Houten, Phys Rev B 38, 3232 (1988)

c Boundary Scattenng and Flux Cancellation

(l)Theory. In the previous subsection we noticed that the pure metal
regime, where /» W, is charactenstic for l D weak locahzation m semicon-
ductor nanostructures This regime was first theoretically considered by
Dugaev and KhmeFmtskii,120 for the geometry of a thm metal film in a
parallel magnetic field and for diffuse boundary scattenng The geometry of a
narrow 2DEG channel in a perpendicular magnetic field, with either diffuse
or specular boundary scattenng, was treated by the present authors 109 Note
that the nature of the boundary scattenng did not play a role m the dirty
metal regime of Section 6 b, since there the channel walls only serve to impose
a geometncal restnction on the lateral diffusion 121 The flux cancellation
ejfect is charactenstic of the pure metal regime, where the electrons move
balhstically from one wall to the other This effect (which also plays a role m
the superconductivity of thm films m a parallel magnetic field122) leads to a
further enhancement of the charactenstic field scale Bc Flux cancellation
results from the fact that typically backscattered trajectones for /» W self-
intersect (cf Fig 17) and are thus composed of smaller loops that are
traversed in opposite directions Zero net flux is enclosed by closed trajec-
tories mvolving only wall colhsions (äs indicated by the shaded areas in Fig
17, which are equal but of opposite onentation), so impurity colhsions are
required for phase relaxation m a magnetic field This is in contrast to the
dirty metal regime considered before, where impurity scattenng hinders
phase relaxation by reducing the diffusion constant The resultmg nonmono-
tonous dependence of phase relaxation on impurity scattenng in the dirty
and pure metal regimes is illustrated in Fig 18, where the calculated109



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 47

I m / W = 1 0

7

D)
O

Quasi ballistic

2 1 0 1 2 3 4
1 0log ( l / W ) ^

FIG 18 Phase relaxation time τΒ m a channel with specular boundary scattermg, äs a function
of the elastic mean free path / The plot has been obtamed by a numencal Simulation of the phase
relaxation process for a magnetic field such that /m = IOW The dashed hnes are analytic
formulas vahd m the three asymptotic regimes (see Table II) Taken from C W J Beenakker and
H van Houten Phys Rev B 38, 3232 (1988)

magnetic relaxation time τβ is plotted äs a function of l/W for a fixed ratio
/ /W

Before continuing our discussion of the flux cancellation effect, we give a
more precise defmition of the phase relaxation time τΒ The effect of a
magnetic field on weak locahzation is accounted for formally by msertmg the
term

= r(0)> = (611)

in the mtegrand of Eq (6 2) The term (6 11) is the conditional average over all
closed trajectones havmg duration t of the phase factor ε'ψ(Ι), with φ the phase
difference defined in Eq (6 5) It can be shown109 that m the case of 1D weak
locahzation (and for /m » W), this term is given by an exponential decay
factor exp( —ί/τβ), which defines the magnetic relaxation time τΒ In this
regime the weak locahzation correction to the conductivity m the presence of
a magnetic field is then simply given by Eq (6 4b), after the Substitution

τ^-^τ^+τί 1 (612)

Explicitly, one obtains

1/2 l l l'1/2

· +
ΌτΒ £>τ

(613)
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One can see from Fig. 18 and Table II that in the pure metal regime / » W,
a weak and strong field regime can be distinguished, depending on the ratio
Wl/l^· This ratio corresponds to the maximum phase change on a closed
trajectory of linear extension / (measured along the channel). In the weak field
regime (Wl/fa « 1) many impurity collisions are required before a closed
electron loop encloses sufficient flux for complete phase relaxation. In this
regime a further increase of the mean free path does not decrease the phase
relaxation time (in contrast to the dirty metal regime), because äs a
consequence of the flux cancellation effect, faster diffusion along the channel
does not lead to a larger enclosed flux. On comparing the result in Table II
for J3C in the weak field regime with that for the dirty metal regime, one sees an
enhancement of the characteristic field by a factor (l/W)112. The strong field
regime is reached if Wl/l^ » l, while still lm » W. Under these conditions, a
single impurity collision can lead to a closed trajectory that encloses sufficient
flux for phase relaxation. The phase relaxation rate 1/τΒ is now proportional
to the impurity scattering rate l/τ and, thus, to l/l. The relaxation time τβ

accordingly increases linearly with / in this regime (see Fig. 18). For
comparison with experiments in the pure metal regime, an analytic formula
that interpolates between the weak and strong field regimes is useful. The
following formula agrees well with numerical calculations:109

τB = T£eak + 4lron8. (6.14)

Here Tgeak and τ^0"8 are the expressions for τβ in the asymptotic weak and
strong field regimes, äs given in Table II.

So far, we have assumed that the transport is diffusive on time scales
corresponding to τφ. This will be a good approximation only if τφ » τ.
Coherent diffusion breaks down if τφ and τ are of comparable magnitude (äs
may be the case in high-mobility channels). The modification of weak
localization äs one enters the ballistic transport regime has been investigated
by Wittmann and Schmid.130 It would be of interest to see to what extent the
ad hoc short-time cutoff introduced in our Eq. (6.4), which is responsible for
the second bracketed term in Eq. (6.13), is satisfactory.

(2) Experiments in the Pure Metal Regime. Because of the high mobility
required, the pure metal regime has been explored using GaAs-AlGaAs
heterostructures only. The first experiments on weak localization in the pure
metal regime were done by Thornton et a/.,58 in a narrow split-gate device,
although the data were analyzed in terms of the theory for the dirty metal
regime. An experimental study specifically aimed at weak localization in the
pure metal regime was reported in Refs. 26 and 27. In a narrow channel
defined by the shallow-mesa etch technique of Fig. 4c (with a conducting
width estimated at 0.12μηι), a pronounced negative magnetoresistance effect
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FIG 19 Magnetoconductance due to 1D weak locahzation m the pure metal regime
(W = 120nm, L= 350nm) The solid curves are one-parameter fits to Eq (6 13) Only the field
ränge /m > W is shown in accordance with the condition of coherent diffusion imposed by the
theory The phase coherence length Ιφ obtamed from the data at vanous temperatures is
tabulated in the msel Taken from H van Houten a al Swf Sei 196, 144 (1988)

was found, similar to that observed by Thornton et al5B A good agreement of
the expenmental results with the theory109 for weak locahzation m the pure
metal regime was obtamed (see Fig 19), assummg specular boundary
scattenng (diffuse boundary scattenng could not descnbe the data) The
width deduced from the analysis was consistent with mdependent estimates
from other magnetoresistance effects Further measurements m this regime
were reported by Chang et al70 139 and, more recently, by Hiramoto et alB1

These expenments were also well descnbed by the theory of Ref 109

7 CONDUCTANCE FLUCTUATIONS

Classically, sample-to-sample fluctuations m the conductance are neg-
ligible in the diffusive (or quasi-balhstic) transport regime In a narrow-
channel geometry, for example, the root-mean-square <5Gclas of the classical
fluctuations m the conductance is smaller than the average conductance <G>
by a factor (//L)1/2, under the assumption that the channel can be subdivided
mto L/l » l independently fluctuating segments As we have discussed m the

139A M Chang, G Timp, R E Howard, R E Behrmger, P M Mankiewich, J E Cunnmgham,
T Υ Chang, and B Chellun, Superlattices and Microstructures, 4, 515 (1988)
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previous section, however, quantum mechamcal correlations persist over a
phase coherence length Ιφ that can be much larger than the elastic mean free
path / Quantum mterference effects lead to sigmficant sample-to-sample
fluctuations m the conductance if the size of the sample is not very much
larger than Ιφ The Al'tshuler-Lee-Stone theory of Universal Conductance
Fluctuations140 141 finds that öG χ e2/h at T= 0, when phase coherence is
maintamed over the entire sample Since <G> oc L 1, it follows that
<5G/<G> oc L mcreases with mcreasmg channel length, that is, there is a total
absence of self-averagmg

Expenmentally, the large sample-to-sample conductance fluctuations
predicted theoretically are difficult to study m a direct way, because of
Problems m the preparation of samples that differ m impunty configuration
only (to allow an ensemble average) The most convement way to study the
effect is via the fluctuations m the conductance of a single sample äs a
function of magnetic field, because a small change in field has a similar effect
on the mterference pattern äs a change m impunty configuration Sections 7 c
and 7 d deal with theoretical and expenmental studies of magnetoconduc-
tance fluctuations in narrow 2DEG channels, mainly m the quasi-balhstic
regime charactenstic for semiconductor nanostructures In Sections 7 a and
7 b we discuss the surpnsmg umversahty of the conductance fluctuations at
zero temperature and the fimte-temperature modifications

a Zero-Temperature Conductance Fluctuations

The most surpnsmg feature of the conductance fluctuations is that their
magnitude at zero temperature is of order e2/h, regardless of the size of the
sample and the degree of disorder,140 141 provided at least that L » /, so that
transport through the sample is diffusive (or possibly quasi-balhstic) Lee and
Stone141 comed the term Universal Conductance Fluctuations (UCF) for this
effect In this subsection we give a simplified explanation of this umversahty
due to Lee 142

Consider first the classical Drude conductance (4 8) for a single spm
direction (and a single valley)

G=?L*-*d = e?«L NSW (71)

L h 2 h 2L ' π l

The number N equals the number of transverse modes, or one-dimensional
subbands, that are occupied at the Fermi energy in a conductor of width W
We have wntten the conductance m this way to make contact with the

140B L Al'tshuler, Pis'ma Zh Eksp Teoi Fiz 41, 530 (1985) [JET P Leu 41, 648 (1985)]
141P A Lee and A D Stone, Phys Rev Leu 55, 1622(1985)
142P A Lee, Phyuca 140A, 169 (1986)
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FIG 20 Ideahzed conductor connectmg source (S) and dram (D) reservoirs and contammg a
disordered region (crosshatched) The mcommg quantum channels (or transverse waveguide
modes) are labeled by «, the transmitted and backscattered channels by β

Landauer approach4 to conduction, which relates the conductance to the
transmission probabihties of modes at the Fermi energy (A detailed
discussion of this approach is given the context of quantum balhstic transport
in Section 12 b) The picture to have m mmd is shown in Fig 20 Current is
passed from a source reservoir S to a dram reservoir D, through a disordered
region (hatched) in which only elastic scattermg takes place The two
reservoirs are m thermal equihbnum and are assumed to be fully effecüve in
randomizmg the phase via melastic scattermg, so there is no phase coherence
between the N modes mcident on the disordered region The modes m this
context are called quantum channels If L » l, each channel has on average the
same transmission probabihty, given by nl/2L accordmg to Eqs (421) and
(71) We are interested m the fluctuations around this average The resultmg
fluctuations m G then follow from the multichannel Landauer
formula1 143 144

e2 N

— Σ
h a ß-l

(72)

where tßa denotes the quantum mechanical transmission probabihty
amphtude from the mcident channel α to the outgomg channel β (cf Fig 20)
The ensemble averaged transmission probabihty <|ta/)|

2> does not depend on
α or ß, so the correspondence between Eqs (7 1) and (7 2) requires

<|ία/,|
2> = nl/2NL (7 3)

The magnitude of the conductance fluctuations is charactenzed by its
vanance Var(G) = <(G - <G»2> As discussed by Lee, a difficulty anses m a
direct evaluation of Var(G) from Eq (7 2), because the correlation in the
transmission probabihties |ία/,|

2 for different pairs of mcident and outgomg
channels α, β may not be neglected 142 The reason is presumably that
transmission through the disordered region mvolves a large number of
impunty colhsions, so a sequence of scattermg events will m general be

143D S Fisher and P A Lee, Phys Rev B 23, 6851 (1981)
144A D Stone, m Ref 14
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shared by different channels. On the same grounds, it is reasonable to assume
that the reflection probabilities |ra/(|

2 for different pairs aß of incident and
reflected channels are uncorrelated, since the reflection back into the source
reservoir would seem to be dominated by only a few scattering events.142

(The formal diagrammatic analysis of Refs. 140 and 141 is required here for a
convincing argument.) The reflection and transmission probabilities are
related by current conservation

Σ \t«ß\2 = N- Σ M2, (7·4)
x,ß=l a, 0=1

so the vanance of the conductance equals

Var(G) = o* Var (r |rj2") = (^J N2 Var(|re/,|
2), (7.5)

assuming uncorrelated reflection probabilities. A large number M of scatter-
ing sequences through the disordered region contributes with amplitude
A(i) (i = l, 2, . . ., M) to the reflection probability amplitude raß. (The dif-
ferent scattering sequences can be seen äs independent Feynman paths
in a path integral formulation of the problem.142) To calculate
Var(|ra/,|

2) = <|Γα/,|
4> — <|ra/s

 2>2, one may then write (neglecting correlations
in A(i) for different i)

M

<M4> = Σ <A*(i)A(j)A*(k)A(l)y

M

= Σ

(7.6)

where we nave neglected terms smaller by a factor l/M (assuming M » 1).
One thus finds that the variance of the reflection probability is equal to the
square of its average:

Var(|ra/![
2) = <|ra/J|

2>2. (7.7)

The average reflection probability <|ra/!|
2> does not depend on α and ß. Thus,

from Eqs. (7.3) and (7.4) it follows that

<M2> = ^V"1(l-order(//L)). (7.8)

Combining Eqs. (7.5), (7.7), and (7.8), one obtains the result that the zero-
temperature conductance has a variance (e2/h)2, independent of / or L (in the
diffusive limit / « L). We have discussed this argument of Lee in some detail,
because no other simple argument known to us gives physical insight in this
remarkable result.
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The numencal prefactors follow from the diagrammatic analy-
sis 14° 141 145 146 The result of Lee and Stone141 for the root-mean-square
magnitude of the conductance fluctuations at T= 0 can be wntten m the
form

(79)

Here C is a constant that depends on the shape of the sample Typically, C is
of order umty, for example, C « 0 73 m a narrow channel with L » W
(However, m the opposite hmit W » L of a wide and short channel, C is of
order (W/L)1/2 ) The parameter β = l m a zero magneüc field when time-
reversal symmetry holds, β = 2 when time-reversal symmetry is broken by a
magnetic field The factor gsgv assumes complete spm and valley degeneracy
If the magnetic field is sufficiently strong that the two spm directions give
statistically mdependent contnbutions to the conductance, then the vanances
add so that the factor gs m ÖG is to be replaced by a factor gl12 We will return
to this pomt m Section 7 d

b Nonzero Temperatures

At nonzero temperatures, the magnitude of the conductance fluctuations is
reduced below öG « e2/h One reason is the effect of a fimte phase coherence
length /^ = (ΟτφΥ12, another is the effect of thermal averagmg, äs expressed by
the thermal length /T = (hD/kBT)1/2 The effect of a fimte temperature,
contamed in Ιφ and /T, is to partially restore self-averaging, albert that the
suppression of the fluctuation with sample size is much weaker than would be
the case classically The theory has been presented clearly and in detail by
Lee, Stone, and Fukuyama 145 We hmit the present discussion to the 1D
regime W « Ιφ « L, charactenstic for narrow 2DEG channels

The effects of thermal averagmg may be neglected if Ιφ « 1Ί (see below)
The channel may then be thought to be subdivided m uncorrelated Segments
of length Ιφ The conductance fluctuation of each segment mdividually will be
of order e2/h, äs it is at zero temperature The root-mean-square conductance
fluctuation of the entire channel is easily estimated The segments are m
senes, so their resistances add accordmg to Ohm's law We denote the
resistance of a channel segment of length Ιφ by Ä j The vanance of Ri is
Var(Ki) « <,R1>4Var(R1

 x) χ (Κ^\ε2/Η)2 The average resistance of the
whole channel <#> = (L/l^R^ increases hnearly with the number Ll\$ of
uncorrelated channel segments, just äs its vanance Var(Ä) =

14bP A Lee, A D Stone, and H Fukuyama, Phys Rev B 35, 1039 (1987)
146B L Al'tshulerandD E Khmermtskn, Pis'ma Zh Eksp Teor Fiz 42,291 (1985) [JETT Lett

42 359(1985)]
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(L/yVar^j) κ (L/l^R^^2/h)2 (The root-mean-square resistance fluc-
tuation thus grows äs (L//^)1/2, the square root of the number of channel
Segments m senes) Expressed m terms of a conductance, one thus has
Var(G) κ <K> 4Var(K) « (yL)3(e2/h)2, or

e2 // \3/2

OG = constant χ — -̂  , if L « /T (7 10)
h \LJ

The constant prefactor is given m Table III
We now turn to the second effect of the finite temperature, which is the

smearmg of the fluctuations by the energy average withm an mterval of order
kRT around the Fermi energy EF Note that we did not have to consider this
thermal averagmg m the context of the weak locahzation effect, smce that is
a systematic, rather than a fluctuatmg, property of the sample Two mter-
fermg Feynman paths, traversed with an energy difference 6E, have to be con-
sidered äs uncorrelated after a time f l5 if the acquired phase difference t^E/h
is of order unity In this time the electrons diffuse a distance
Lj = (DiJ1'2 ~ (hD/öE)112 One can now define a correlation energy E^L^,
äs the energy difference for which the phase difference followmg diffusion over
a distance Ll is unity

(711)

The thermal length /T is defined such that £C(/T) = kvT, which imphes

/T EE (hD/kBT)l/2 (l 12)

TABLE III ASYMPTOTIC EXPRESSIONS FOR THE ROOT-MEAN-SQUARE
CONDUCTANCE FLUCTUATIONS IN A NARROW CHANNEL "

r = o
'τ, k » L

2 e2

SGx ß1/2 C —

r > o

Ιφ « L, Ιτ 1Ί « Ιφ « L

£2 /l \3/2 el /τ;1/2

" h \U ~ h L3'2

073

aThe results assume a narrow channel (W « L), with a 2D density of
states (W » AF), which is m the l D hmit for the conductance fluctua-
tions (W « Ιφ) The expressions for 5G are from Refs 140, 141,145, and
146 The numencal prefactor C for T= 0 is from Ref 141, for T > 0
from Ref 147 If time-reversal symmetry apphes, then β = l, but m the
presence of a magnetic field strong enough to suppress the cooperon
contnbutions then β = 2 If the spm degeneracy is hfted, g, is to be
replaced by 9S

1/2
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(Note that this definition of /T differs by a factor of (2π)1/2 from that in Ref.
145.) The thermal smearing of the conductance fluctuations is of importance
only if phase coherence extends beyond a length scale /T(i.e., if Ιφ » /T). In this
case the total energy interval /c„T around the Fermi level that is available for
transport is divided into subintervals of width Ε€(1φ) = ϊι/τφ in which phase
coherence is maintained. There is a number N χ kvT/Ec(l^ of such subinter-
vals, which we assume to be uncorrelated. The root-mean-square Variation
öG of the conductance is then reduced by a factor N~1/2 κ Ιτ/1φ with respect
to the result (7.10) in the absence of energy averaging. (A word of caution: äs
discussed in Ref. 145, the assumption of N uncorrelated energy intervals is
valid in the l D case W « Ιφ considered here, but not in higher dimensions.)
From the foregoing argument it follows that

e2 l 11/2

ÖG = constantx— :L~r, i f / 0 » /T. (7.13)
n

The asymptotic expressions (7.10) and (7.13) were derived by Lee, Stone,
and Fukuyama145 and by Al'tshuler and KhmeFnitskii146 up to unspecified
constant prefactors. These constants have been evaluated in Ref. 147, and are
given in Table III. In that paper we also gave an Interpolation formula

3'2 9 / 7 \ 2Ί~ 1 / 2

, (7.14)
2 h \L

with β defined in the previous subsection. This formula is valid (within 10%
accuracy) also in the intermediate regime when Ιφ χ Ιτ, and is useful for
comparison with experiments, in which generally Ιφ and /T are not well
separated (cf. Table I).

c. M agnetoconductance Fluctuations

Experimentally, one generally studies the conductance fluctuations result-
ing from a change in Fermi energy £F or magnetic field B rather than from a
change in impurity configuration. A comparison with the theoretical en-
semble average becomes possible if one assumes that, insofar äs the
conductance fluctuations are concerned, a sufficiently large change in E¥ or B
is equivalent to a complete change in impurity configuration (this "ergodic
hypothesis" has been proven in Ref. 148). The reason for this equivalence is
that, on one hand, the conductance at £F + A£F and B + Aß is uncorrelated
with that at £F and B, provided either A£F or Aß is larger than a correlation
energy A£c or correlation field Aßc. On the other hand, the correlation
energies and fields are in general sufficiently small that the statistical
properties of the ensemble are not modified by the increment in £F or ß, so
one is essentially studying a new member of the same ensemble, without
changing the sample.
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This subsection deals with the calculation of the correlation field Aßc. (The
correlation energy is discussed in Ref. 145 and will not be considered here.)
The magnetoconductance correlation function is defined äs

F(AB) = <[<5G(ß) - <G(ß)>][G(ß + AB) - <G(B

(7.15)

where the angle brackets <···} denote, äs before, an ensemble average. The
root-mean-square Variation <5G considered in the previous two subsections is
equal to F(0)1/2. The correlation field ABC is defined äs the half-width at half-
height F(ABC) = F(0)/2. The correlation function F(AB) is determined
theoretically141·145'146 by temporal and spatial integrals of two propagators:
the diffuson Pd(r, r', £) and the cooperon Pc(r, r', i). As discussed by Chakrav-
arty and Schmid,126 these propagators consist of the product of three terms:
(1) the classical probability to diffuse from r to r' in a time i (independent of B
in the field ränge ω0τ « l of interest here); (2) the relaxation factor exp( — ί/τφ),
which describes the loss of phase coherence due to inelastic scattering events;
(3) the average phase factor <exp(£A</>)>, which describes the loss of phase
coherence due to the magnetic field. The average <···> is taken over all
classical trajectories that diffuse from r to r' in a time t. The phase difference
Αφ is different for a diffuson or cooperon:

e f r '
A^(diffuson) = - A A - r f l , (7.16a)

" Jr

e f r '
A(ji>(cooperon) = - (2A + AA)-dl , (7.16b)

n Jr

where the line integral is along a classical trajectory. The vector potential A
corresponds to the magnetic field B = V χ A, and the vector potential
increment ΔΑ corresponds to the field increment AB in the correlation
function F(AB) (according to AB = V χ ΔΑ). An explanation of the different
magnetic field dependencies of the diffuson and cooperon in terms of
Feynman paths is given shortly.

In Ref. 109 we have proven that in a narrow channel (W « Ιφ) the average
phase factor <exp(;'A<ji>)> does not depend on initial and final coordinates r
and r', provided that one works in the Landau gauge and that t » τ. This is a
very useful property, since it allows one to transpose the results for
<exp(i'A<j!>)> obtained for r = r' in the context of weak localization to the
present problem of the conductance fluctuations, where r can be different
from r'. We recall that for weak localization the phase difference Αφ is that of
the cooperon, with the vector potential increment ΔΑ = 0 [cf. Eq. (6.5)]. The
average phase factor then decays exponentially äs <exp(i A0)> = exp( — ί/τΒ)
[cf. Eq. (6.11)], with the relaxation time τΒ given äs a function of magnetic
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field B m Table II We conclude that the same exponential decay holds for the
average cooperon and diffuson phase factors after Substitution of
B -> B + AB/2 and B -» AB/2, respectively, m the expressions for τβ

<elA*>(diffuson) = exp ( - ί/τΔβ/2), (7 17a)

<e'A*>(cooperon) = 6χρ(-ί/τΒ + ΔΒ/2) (7 17b)

The cooperon is suppressed when τβ + ΔΒ/2 ^ τ^,, which occurs on the same
field scale äs the suppression of weak locahzation (determmed by τΒ ;$ τφ)
The suppression of the cooperon can be seen äs a consequence of the
breakmg of the time-reversal mvanance by the magnetic field, similar to the
suppression of weak locahzation In a zero field the cooperons and the
diffusons contnbute equally to the vanance of the conductance, therefore,
when the cooperon is suppressed, Var(G) is reduced by a factor of 2 (The
Parameter β m Table III thus changes from l to 2 when B mcreases beyond
Bc ) In general, the magnetoconductance fluctuations are studied for B > Bc

(i e , for fields beyond the weak locahzation peak) Then only the diffuson
contnbutes to the conductance fluctuations, smce the relaxation time of the
diffuson is determmed by the field maement AB in the correlation function
F(AB), not by the magnetic field itself This is the cntical difference with weak
locahzation The conductance fluctuations are not suppressed by a weak
magnetic field 141 146 The diiferent behavior of cooperons and diffusons can
be understood m terms of Feynman paths The correlation function F(AB)
contams the product of four Feynman path amphtudes A(i, B), A*(j,B),
A(k, B + AB), and A*(l, B + AB) along vanous paths i, j , k, l from r to r'
Consider the diffuson term for which ( = / and j = k The phase of this term
A(i, B)A*(j, B)A(j, B + AB)A*(i, B + AB) is

= ΔΦ, (718)
hj h J h

where the hne integral is taken along the closed loop formed by the two paths
ι and j (cf Fig 2 1 a) The phase is thus given by the flux mcrement ΔΦ = S AB
through this loop and does not contain the flux Φ = SB itself The fact that
the magnetic relaxation time of the diffuson depends only on AB and not on B
is a consequence of the cancellation contamed in Eq (7 18) For the cooperon,
the relevant phase is that of the product of Feynman path amphtudes
A _ ( i , B)A*(j, B)A + (j, B + AB)A*+(i, B + AB), where the - sign refers to a
trajectory from r' to r and the + sign to a trajectory from r to r' (see Fig 21b)
This phase is given by

Γ Γ

- ΦΑ · d\ + e- φ(Α + ΔΑ) · dl = e- (2Φ + ΔΦ) (7 19)
h T h T h
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(a) (b)

B i

Β + Δ Β

FIG 21 Illustration of the different flux sensitivity of the interference terms of diffuson type

(a) and of cooperon type (b). Both contnbute to the conductance fluctuations in a zero magnetic
field, but the cooperons are suppressed by a weak magnetic field, äs discussed m the text.

In contrast to the diffuson, the cooperon is sensitive to the flux Φ through the
loop and can therefore be suppressed by a weak magnetic field.

In the following, we assume that B > Bc so that only the diffuson
contributes to the magnetoconductance fluctuations. The combined effects of
magnetic field and inelastic scattering lead to a relaxation rate

τ«ί=τϊι+τΪΒΐ2, (7-20)

which describes the exponential decay of the average phase factor
(e'

A<l>y = exp( —i/Tef f). Equation (7.20) contains the whole effect of the
magnetic field on the diffuson. Without having to do any diagrammatic
analysis, we therefore conclude147 that the correlation function F(AB) can be
obtained from the variance F(0) = VarG = ((5 G)2 (given in Table III) by
simply replacing τφ by the effective relaxation time Te f f defined in Eq. (7.20).
The quantity τΔΒ/2 corresponds to the magnetic relaxation time τΒ obtained
for weak localization (see Table II) after Substitution of B —»· AB/2. For easy
reference, we give the results for the dirty and clean metal regimes
explicitly:109·147

l

DW2'

ΤΔΒ/2 —

if / « W,

2C, - -
eAB vFW

2'

(7.21)

i f l » W , (7.22)

7C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).
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where Cl = 9.5 and C2 = 24/5 for a channel with specular boundary
scattering (C^ = 4π and C2 = 3 for a channel with diffuse boundary scatter-
ing). These results are valid under the condition W2 AB « h/e, which follows
from the requirement Tef f » τ that the electronic motion on the effective phase
coherence time scale ref f be diffusive rather than ballistic, äs well äs from the
requirement (ÖTcff)

1/2 » W for one-dimensionality.
With results (7.20)-(7.22), the equation F(ABQ) = F(0)/2, which defines the

correlation field Aßc, reduces to an algebraic equation that can be solved
straightforwardly. In the dirty metal regime one finds145

(7.23)

where the prefactor C decreases from147 0.95 for Ιφ » /T to 0.42 for Ιφ « Ιτ.
Note the similarity with the result (6.9) for weak localization. Just äs in weak
localization, one finds that the correlation field in the pure metal regime is
significantly enhanced above Eq. (7.23) due to the flux cancellation effect
discussed in Section 6.c. The enhancement factor increases from (l/W)il2 to
l/W äs Ιφ decreases from above to below the length 13I2W~1/2. The relevant
expression is given in Ref. 147. As an Illustration, the dimensionless
correlation flux ABC W^e/h in the pure and dirty metal regimes is plotted äs a
function of Ιφ/1 in Fig. 22 for /T « Ιφ.

In the following discussion of the experimental Situation in semiconductor
nanostructures, it is important to keep in mind that the Al'tshuler-Lee-
Stone theory of conductance fluctuations was formulated for an application

e 6

Quasi-
ballistic

Diffusive

10 12

FIG 22. Plot of the dimensionless correlation flux Φ«. s kBJ^We/h for the magnetoconduc-
tance fluctuations äs a function of Ιφ/1 m the regime /T « Ιφ The solid curve is for the case / = 5W;
the dashed hne is for / « W Taken from C W. J. Beenakker and H van Houten, Phys Rev B 37,
6544 (1988)
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to metals. This has justified the neglect of several possible complications,
which may be important in a 2DEG. One of these is the classical curvature of
the electron trajectones, which affects the conductance when /cycl ;$ min(W^ /).
A related comphcation is the Landau level quantization, which in a narrow
channel becomes important when lm 5Ξ W. Furthermore, when W~ λ¥ the
lateral confmement will at low fields mduce the formation of l D subbands.
No quantization effects are taken into account m the theory of conductance
fluctuations discussed before. Finally, the present theory is valid only in the
regime of coherent diffusion (τφ,τίΠ ^ τ). In high-mobility samples τφ and τ
may be comparable, however, äs discussed in Section 7.d. It would be of
mterest to study the conductance fluctuations in this regime theoretically.

In the following discussion of experimental studies of conductance
fluctuations, we will have occasion to discuss briefly one further development.
This is the modification of the theory149"154 to account for the differences
between two- and four-terminal measurements of the conductance fluctua-
tions, which becomes important when the voltage probes are separated by
less than the phase coherence length.155'156

d. Experiments

The experimental observation of conductance fluctuations in semicon-
ductors has preceded the theoretical understanding of this phenomenon.
Weak irregulär conductance fluctuations in wide Si Inversion layers were
reported in 1965 by Howard and Fang.157 More pronounced fluctuations
were found by Fowler et al. m narrow Si accumulation layers in the strongly
localized regime.32 Kwasnick et al. made similar observations in narrow Si
Inversion layers in the metalhc conduction regime.39 These fluctuations in the
conductance äs a function of gate voltage or magnetic field have been
tentatively explamed by various mechanisms.158 One of the explanations
suggested is based on resonant tunneling,159 another on variable ränge
hoppmg.160 At the 1984 Conference on "Electronic Properties of Two-
148B L Al'tshuler, V E Kravtsov, and I V Lerner, Pis'ma Zh Eksp Teor Fiz 43, 342 (1986)

[JETP Lett 43, 441 (1986)]
149M Buttiker, Phys Rev B 35, 4123 (1987)
150S Maekawa, Υ Isawa, and H Ebisawa, J Phys Soc Jpn 56,25(1987)
1 5 1H U Baranger, A D Stone, and D P DiVmcenzo, Phys Rev 537,6521(1988)
152S Hershfield and V Ambegaokar, Phys Rev B 38, 7909 (1988)
153C L Kane, P A Lee, and D P DiVmcenzo, Phys Rev B 38, 2995 (1988)
154D P DiVmcenzo and C L Kane, Phys Rev 538,3006(1988)
155A D Benoit,C P Umbach, R B Laibowitz, and R A V/ebb, Phys Rev Lett 58,2343(1987)
1 5 6W J Skocpol, P M Mankiewich, R E Howard, L D Jackel, D M Tennant, and A D

Stone, Phys Rev Lett 58, 2347 (1987)
1 5 7W E Howard and F F Fang, Solid State Electronics 8, 82 (1965)
158A Hartstein, R A Webb, A B Fowler, and J J Warner, Surf Sa 142, l (1984)
159M Ya Azbel, Phys Rev 528,4106(1983)
160P A Lee, Phyi Rev Lett 53, 2042 (1984)
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H (koe)

FIG 23 Negative magnetoresistance and apenodic magnetoresistance fiuctuations m a
narrow Si Inversion layer channel for several values of the gate voltage V0 Note that the vertical
offset and scale is difierent for each KG Taken from J C Licmi et al, Phys Rev Lett 55, 2987
(1985)

Dimensional Systems" Wheeler et al161 and Skocpol et al162 reported
pronounced structure äs a function of gate voltage m the low-temperature
conductance of narrow Si Inversion layers, observed m the course of their
search for a quantum size effect

After the pubhcation m 1985 of the Al'tshuler-Lee-Stone
theory140 141 163 of universal conductance fluctuations, a consensus has
rapidly developed that this theory properly accounts for the conductance
fluctuations m the metalhc regime, up to factor of two uncertamties m the
quantitative descnption46 144 164 Followmg this theoretical work, Licmi et
al40 attnbuted the magnetoresistance oscillations that they observed m
narrow Si Inversion layers to quantum mterference m a disordered con-
ductor Their low-temperature measurements, which we reproduce in Fig 23,

1Ö1R G Wheeler, K K. Choi, and R Wismeff, Surf Sa 142, 19 (1984)
162W J Skocpol, L D Jackel, R E Howard, H G Craighead, L A Fetter, P M Mankiewich,

P Grabbe, and D M Tennant, Surf Sei 142, 14 (1984)
163A D Stone, Phys Rev Lett 54, 2692 (1985)
164R A Webb, S Washburn, H J Haucke, A D Benoit, C P Umbach, and F P Milhken, m

Ref 14
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show a large negative magnetoresistance peak due to weak localization at
low magnetic fields, m addition to apenodic fluctuations that persist to high
fields Such a clear weak localization peak is not found m shorter samples,
where the conductance fluctuations are larger The reason is that the
magnitude of the conductance fluctuations AG is proportional to (/0/L)3/2

[for Ιφ « Ιτ, cf Eq (7 10)], while the weak localization conductance cor-
rection scales with Ιψ/L [äs discussed below Eq (6 4)] Weak localization thus
predommates m long channels (L » Ιφ) where the fluctuations are relatively
unimportant

The most extensive quantitative study of the umversahty of the con-
ductance fluctuations m narrow Si Inversion layers (over a wide ränge of
channel widths, lengths, gate voltages, and temperatures) was made by
Skocpol et al4S 46 156 In the followmg, we review some of these expenmental
results We will not discuss the similarly extensive mvestigations by Webb et
al 155 164 165 Qn smajj metallic samples, which have played an equally
important role m the development of this subject To analyze their expen-
ments, Skocpol et al estimated Ιφ from weak localization expenments (with
an estimated uncertamty of about a factor of 2) They then plotted the root-
mean-square Variation öG of the conductance äs a function ofL/Ιφ, with L the
Separation of the voltage probes m the channel Their results are shown m
Fig 24 The pomts for L > Ιφ convmcmgly exhibit for a large vanety of data
sets the (L/l#) 3/2 scalmg law predicted by the theory descnbed m Section 7 c
(for Ιψ < Ιτ, which is usually the case m Si Inversion layers)

For L < Ιφ the expenmental data of Fig 24 show a crossover to a (L/y~2

scalmg law (dashed line), accompamed by an mcrease of the magnitude of the
conductance fluctuations beyond the value öG κ e2/h predicted by the
AFtshuler-Lee-Stone theory for a conductor of length L < Ιφ A similar
observation was made by Benoit et al155 on metallic samples The disagree-
ment is explamed1 5 5 1 5 6 by considenng that the expenmental geometry
differs from that assumed in the theory discussed m Section 7 c Use is made
of a long channel with voltage probes at different spacings The expenmental
L is the spacmg of two voltage probes, and not the length of a channel
connectmg two phase-randomizing reservoirs, äs envisaged theoretically The
difference is irrelevant if L > Ιφ If the probe Separation L is less than the
phase coherence length Ιφ, however, the measurement still probes a channel
segment of length Ιφ rather than L In this sense the measurement is
nonlocallss 156 The key to the L~2 dependence of 6G found experimentally is
that the voltages on the probes fluctuate independently, implymg that the

165R A Webb, S Washburn, C P Umbach, and R B Laibowitz, in "Localization, Interaction,
and Transport Phenomena," p 121 (B Kramer, G Bergmann, and Υ Bruynseraede, eds)
Springer, New York, 1984
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FIG 24 Root-mean-square amplitude ög of the conductance fluctuations (m units of e2/h) äs a
function of the ratio of the distance between the voltage probes L to the estimated phase
coherence length 1$ for a set of Si Inversion layer channels under widely varymg expenmental
conditions The solid and dashed hnes demonstrate the (£//ψ) ~ 3/2 an 2 scalmg of dg m the
regimes L > Ιφ and L < Ιφ, respectively Taken from W J Skocpol, Physica Scripta T19, 95 (1987).

resistance fluctuations öR are independent of L in this regime so that
öG χ R~2öR oc L~2. This explanation is consistent with the anomalously
small correlation field ßc found for L < /0.46'156 One might have expected
that the result Bc χ h/eW^ for L > Ιφ should be replaced by the larger value
ßc χ h/eWL if L is reduced below Ιφ. The smaller value found experimentally
is due to the fact that the flux through parts of the channel adjacent to the
segment between the voltage probes, äs well äs the probes themselves, has to
be taken into account. These qualitative arguments155'156 are supported by
detailed theoretical investigations.149"154 The important message of these
theories and experiments is that the transport in a small conductor is phase
coherent over large length scales and that phase randomization (due to
inelastic collisions) occurs mainly äs a result of the voltage probes. The
Landauer-Büttiker formalism4·5 (which we will discuss in Section 12) is
naturally suited to study such problems theoretically. In that formalism,
current and voltage contacts are modeled by phase-randomizing reservoirs
attached to the conductor. We refer to a paper by Büttiker149 for an
instructive discussion of conductance fluctuations in a multiprobe conductor
in terms of interfering Feynman paths.

Conductance fluctuations have also been observed in narrow-channel
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GaAs-AlGaAs heterostructures 166 167 These Systems are well m the pure
metal regime (W< l), but unfortunately they are only margmally m the
regime of coherent diffusion (charactenzed by τφ » τ) This hampers a
quantitative companson with the theoreücal results147 for the pure metal
regime discussed in Section 7 c (A phenomenological treatment of con-
ductance fluctuations m the case that τφ ~ τ is given in Refs 168 and 169)
The data of Ref 167 are consistent with an enhancement of the correlation
field due to the flux cancellation effect, but are not conclusive 147 We note
that the flux cancellation effect can also explain the correlation field
enhancement noticed in a Computer Simulation by Stone 163

In the analysis of the aforementioned expenments on magnetoconduc-
tance fluctuations, a twofold spin degeneracy has been assumed The vanance
(δ G)2 is reduced by a factor of 2 if the spin degeneracy is hfted by a strong
magneüc field B > ßc2 The Zeeman energy βμκΒ should be sufficiently large
than the spin-up and spm-down electrons give statistically independent
contnbutions to the conductance The degeneracy factor g2 m (δο)2 (mtro-
duced in Section 7 a) should then be replaced by a factor gs, since the
vanances of statistically independent quanüties add Since gs = 2, one
obtains a factor-of-2 reduction m ((5G)2 Note that this reduction comes on
top of the factor-of-2 reduction m (<5G)2 due to the breakmg of time-reversal
symmetry, which occurs at weak magnetic fields Bc Stone has calculated170

that the field ßc2 m a narrow channel (Ιφ » W) is given by the cntenon of umt
phase change gμlίBτφ|h m a coherence time, resultmg in the estimate
Bc2 χ h/gμEτφ Surpnsmgly, the thermal energy kvT is irrelevant for Bc2 m
the 1D case Ιφ » W (but not in higher dimensions170)

For the narrow-channel expenment of Ref 167 just discussed, one finds
(using the estimates τφ κ 7 ps and g « 0 4) a crossover field ßc2 of about 2 T,
well above the field ränge used for the data analysis 147 Most importantly, no
magnetoconductance fluctuations are observed if the magnetic field is applied
parallel to the 2DEG (see Section 9), demonstrating that the Zeeman Splitting
has no effect on the conductance in this field regime More recently, Debray et
ali71 performed an expenmental study of the reduction by a perpendicular
magnetic field of the conductance fluctuations äs a funcüon of Fermi energy

i66T j jhornton, M Pepper, H Ahmed, G J Davies, and D Andrews, Phys Rev B 36, 4514
(1987)

167H van Houten, B J van Wees, J E Mooij, G Roos, and K-F Berggren, Superlatüces and
Microstructures 3, 497 (1987)

168R P Taylor, M L Leadbeater, G P Wittmgton, P C Main, L Eaves, S P Beaumont, I
Mclntyre S Thoms, and C D W Wilkmson, Surf Sei 196, 52 (1988)

169T Fukui and H Saito, Jpn J Appl Phys 27 L1320 (1988)
170A D Stone, Phys Rev B 39, 10736 (1989)
17'P Debray, J-L Pichard, J Vicente, and P N Tung, Phys Rev Lett 63,2264(1989)
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(vaned by means of a gate) The estimated value of τφ is larger than that of
Ref 167 by more than an order of magnitude Consequently, a very small
Bc2 sä 0 07 T is estimated m this expenment The channel is relatively wide
(2 μηι lithographic width), so the field Bc for time-reversal symmetry breakmg
is even smaller (Bc χ l χ 10~4T) A total factor-of-4 reduction m (<5G)2 was
found, äs expected The values of the observed crossover fields Bc and Bc2

also agree reasonably well with the theoretical prediction Unfortunately, the
magnetoconductance m a parallel magnetic field was not mvestigated by
these authors, which would have provided a definitive test for the effect of
Zeeman Splitting on the conductance above Bc2 We note that related
expenmental172 173 and theoretical174175 work has been done on the
reduction of temporal conductance fluctuations by a magnetic field

The AI'tshuler-Lee-Stone theory of conductance fluctuations ceases
to be applicable when the dimensions of the sample approach the mean
free path In this ballistic regime observations of large apenodic, äs well
äs quasi-penodic, magnetoconductance fluctuations have been repor-
ted es 69 139 168 176-179 Quantum mterference effects in this regime are
determmed not by impunty scattermg but by scattenng off geometncal
features of the device, äs will be discussed m Section III

8 AHARONOV-BOHM EFFECT

Magnetoconductance fluctuations m a channel geometry m the diffusive
regime are apenodic, since the mterfenng Feynman paths enclose a cont-
muous ränge of magnetic flux values A ring geometry, in contrast, encloses a
well-defined flux Φ and thus imposes a fundamental penodicity

G(<£) = G(<D + n(h/e)\ n =1,2, 3, , (81)

on the conductance äs a function of perpendicular magnetic field B (or flux
Φ = BS through a ring of area S) Equation (8 1) expresses the fact that a flux
mcrement of an integer number of flux quanta changes by an integer multiple
of 2π the phase difference between Feynman paths along the two arms of the
ring The penodicity (8 1) would be an exact consequence of gauge invanance
if the magnetic field were nonzero only m the mtenor of the ring, äs m the

172N O Birge, B Goldmg, and W H Haemmerle, Phys Rev Lett 62, 195 (1989)
173D Mailly, M Sanquer, J-L Pichard, and P Pari, Europhys Lett 8,471(1989)
174S Feng, P A Lee, and A D Stone, Phys Rev Lett 56, 1960 (1986), erratum 56, 2772 (1986)
175B L Al'tshuler and B Z Spivak, Pis'ma Zh Eksp Teor Fiz 42, 363 (1985) [JETT Lett 42,

447 (1985)]
176A M Chang, K Owusu-Sekyere, and T Υ Chang, Solid State Comm 67,1027(1988)
1 7 7A M Chang, G Timp,J E Cunnmgham, P M Mankiewich, R E Behrmger, R E Howard,

and H U Baranger, Phys Rev B 37, 2745 (1988)
178J A Simmons, D C Tsui, and G Weimann, Surf Sa 196, 81 (1988)
179S Yamada, H Asai, Υ Fukai, and T Fukui, Phys Rev B (to be pubhshed)
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FIG 25 Illustration of the Aharonov-Bohm eflect m a ring geometry Interfermg trajectones
responsible for the magnetoresistance oscillations with h/e penodicity m the enclosed flux Φ are
shown (a) (b) The pair of time-reversed trajectones lead to oscillations with h/2e penodicity

original thought experiment of Aharonov and Bohm.180 In the present
experiments, however, the magnetic field penetrates the arms of the ring äs
well äs its interior so that deviations from Eq. (8.1) can occur. Since in many
situations such deviations are small, at least in a limited field ränge, one still
refers to the magnetoconductance oscillations äs an Aharonov-Bohm effect.

The fundamental periodicity

e S
(8.2)

is caused by interference between trajectories that make one half-revolution
around the ring, äs in Fig. 25a. The first harmonic

ΔΒ = — - (8.3)

results from interference after one revolution. A fundamental distinction
between these two periodicities is that the phase of the h/e oscillations (8.2) is
sample-specific, whereas the h/2e oscillations (8.3) contain a contribution
from time-reversed trajectories (äs in Fig. 25b) that has a minimum con-
ductance at B = 0, and thus has a sample-independent phase. Consequently,
in a geometry with many rings in series (or in parallel) the h/e oscillations
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average out, but the h/2e oscillations remam. The h/2e oscillations can be
thought of äs a penodic modulation of the weak localization efFect due to
coherent backscattering.

The first observation of the Aharonov-Bohm effect in the solid state was
made by Sharvm and Sharvin181 in a long metal cylinder. Since this is
effectively a many-ring geometry, only the h/2e oscillations were observed, m
agreement with a theoretical prediction by Al'tshuler, Aronov, and
Spivak,182 which motivated the expenment. (We refer to Ref. 125 for a simple
estimate of the order of magnitude of the h/2e oscillations m the dirty metal
regime.) The effect was studied extensively by several groups.183^185 The h/e
oscillations were first observed in single metal rings by Webb et a/.186 and
studied theoretically by several authors.1'144'187'188 The self-averaging of the
h/e oscillations has been demonstrated exphcitly in experiments with a
varymg number of rings in series.189 Many more experiments have been
performed on one- and two-dimensional arrays and networks, äs reviewed m
Refs. 190 and 191.

In this connection, we mention that the development of the theory of
apenodic conductance fluctuations (discussed in Section 7) has been much
stimulated by their observation in metal rings by Webb et al.,165 in the course
of their search for the Aharonov-Bohm effect. The reason that aperiodic
fluctuations are observed in rings (in addition to periodic oscillations) is that
the magnetic field penetrates the width of the arms of the ring and is not
confined to its mtenor. By fabricatmg rings with a large ratio of radius r to
width W, researchers have proven it is possible to separate190 the magnetic
field scales of the penodic and aperiodic oscillations (which are given by a
field mterval of order h/er2 and h/eW^, respectively). The penetration of the
magnetic field in the arms of the ring also leads to a broadening of the peak in

180Y Aharonov and D Bohm, Phys Rev 115, 485 (1959)
181D Yu Sharvin and Yu V Sharvm, Pis'ma Zh Teor Fiz 34, 285 (1981) \_JETP Lett 34,272

(1981)
182B L Al'lshuler, A G Aronov, and B Z Spivak, Pis'ma Zh Teoi Fiz 33, 101 (1981) IJETP

Lett 33, 94(1981)]
183B L Al'tshuler, A G Aronov, B Z Spivak, D Yu Sharvin, and Yu V Sharvin, Pis'ma Zh

Eksp Teor Fiz 35, 476 (1982) IJETP Lett 35, 588 (1982)]
184Yu V Sharvin, Phyuca B 126, 288 (1984)
185M Gys, C van Haesendonck, and Υ Bruynseraede, Phys Rev Lett 52, 2069 (1984), Phys

Rev B 30, 2964 (1984)
1 8 6R A Webb, S Washburn, C P Umbach, and R B Laibowitz, Phys Rev Lett 54, 2696

(1985)
1 8 7Y Gefen.Y Imry, and M Ya Azbel, Surf Sa 142, 203 (1984), Phys Rev Lett 52,129(1984)
188M Buttiker, Υ Imry, R Landauer, and S Pmhas, Phys Rev 531,6207(1985)
189C P Umbach, C Van Haesendonck, R B Laibowitz, S Washburn, and R A Webb, Phys

Rev Lett 56, 386 (1986)
190S Washburn and R A Webb, Adv Phys 35, 375 (1986)
1 9 1A G Aronov and Yu V Sharvin, Rev Mod Phys 59, 755 (1987)
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the Founer transform at the e/h and 2e/h penodicities, associated with a
distribution of enclosed flux 192 The width of the Founer peak can be used äs
a rough estimate for the width of the arms of the ring In addition, the
nonzero field m the arms of the ring also leads to a dampmg of the amphtude
of the ensemble-averaged h/2e oscillations when the flux through the arms is
sufficiently large to suppress weak locahzation 191

Two excellent reviews of the Aharonov-Bohm effect m metal rings and
cylmders exist 19° 191 In the followmg we discuss the expenments in semicon-
ductor nanostructures in the weak-field regime ωςτ < l, where the effect of
the Lorentz force on the trajectones can be neglected The strong-field regime
CU C T > l (which is not easily accessible in the usual polycrystallme metal
rings) is only bnefly mentioned, it is discussed more extensively in Section 21
To our knowledge, no observation of Aharonov-Bohm magnetoresistance
oscillations in Si Inversion layers has been reported The first observation of
the Aharonov-Bohm effect in a 2DEG ring was pubhshed by Timp et al ,69

who employed high-mobihty GaAs-AlGaAs heterostructure matenal
Similar results were obtamed independently by Ford et al 73 and Ishibashi et
al193 More detailed studies soon followed 74 139 176 194 195 A charactenstic
feature of these expenments is the large amphtude of the h/e oscillations (up
to 10% of the average resistance), much higher than m metal rings (where the
effect is at best192 196 197 of order 0 1%) A similar difference in magmtude is
found for the apenodic magnetoresistance fluctuations m metals and semi-
conductor nanostructures The reason is simply that the amphtude öG of the
penodic or apenodic conductance oscillations has a maximum value of order
e2/h, so the maximum relative resistance oscillation dR/R » RöG χ Re2/h is
proportional to the average resistance R, which is typically much smaller in
metal rings

In most studies only the h/e fundamental penodicity is observed, although
Ford et al13 74 found a weak h/2e harmomc in the Founer transform of the
magnetoresistance data of a very narrow ring It is not quite clear whether
this harmomc is due to the Al'tshuler-Aronov-Spivak mechamsm involving
the constructive interference of two time-reversed trajectones182 or to the
random interference of two non-time-reversed Feynman paths winding
around the entire ring * 144 187 The relative weakness of the h/2e effect m
smgle 2DEG rings is also typical for most expenments on single metal rings
192R A Webb, A Hartstem, J J Warner, and A B Fowler, Phys Rev Lett 54, 1577 (1985)
193K Ishibashi Υ Takagaki, K Gamo, S Naraba, S Ishida, K Murase, Υ Aoyagi, and M

Kawabe, Solid State Comm 64, 573 (1987)
194 A M Chang, G Timp, T Υ Chang, J E Cunnmgham, B Chellun, P M Mankiewich, R E

Behrmger, and R E Howard, Surf Sei 196, 46 (1988)
195C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, D C Peacock, D A

Ritchie, J E F Frost, and G A C Jones, Appl Phys Lett 54, 21 (1989)
196C P Umbach, S Washburn, R B Laibowitz, and R A Webb, Phys Rev B 30, 4048 (1984)
197V Chandrasekhar, M J Rooks, S Wind, and D E Prober, Phys Rev Lett 55,1610(1985)
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(although the opposite was found to be true m the case of aluminum rings by
Chandrasekhar et a/,197 for reasons which are not understood) This is m
contrast to the case of arrays or cylmders, where, äs we mentioned, the h/2e
oscillations are predommant—the h/e effect being "ensemble-averaged" to
zero because of its sample-specific phase In view of the fact that the
expenments on 2DEG rings explore the borderlme between diffusive and
balhstic transport, they are rather difficult to analyze quantitatively A
theoretical study of the Aharonov-Bohm effect m the purely balhstic
transport regime was performed by Datta and Bandyopadhyay,198 m
relation to an expenmental observation of the effect in a double-quantum-
well device 199 A related study was pubhshed by Barker 20°

The Aharonov-Bohm oscillations m the magnetoresistance of a small ring
m a high-mobihty 2DEG are quite impressive As an Illustration, we
reproduce m Fig 26 the results obtamed by Timp et al 201 Low-frequency
modulations were filtered out, so that the rapid oscillations are supenmposed
on a constant background The amphtude of the h/e oscillations dimimshes
with mcreasmg magnetic field until eventually the Aharonov-Bohm effect is
completely suppressed The reduction m amphtude is accompamed by a
reduction m frequency A similar observation was made by Ford et al 74 In
metals, m contrast, the Aharonov-Bohm oscillations persist to the highest
expenmental fields, with constant frequency The different behavior in a
2DEG is a consequence of the effect of the Lorentz force on the electrons m
the ring, which is of importance when the cyclotron diameter 2/cycl becomes
smaller than the width W of the arm of the ring, provided (W< l) (note that
/cycl = hkF/eB is much smaller in a 2DEG than in a metal, at the same
magnetic field value) We will return to these effects in Section 21

An electrostatic potential V affects the phase of the electron wave function
through the term (e/h) J V dt in much the same way äs a vector potential
does 18° If the two arms of the ring have a potential difference V, and an
electron traverses an arm in a time t, then the acquired phase shift would lead
to oscillations in the resistance with penodicity AV = h/et The electrostatic
Aharonov-Bohm effect has a penodicity that depends on the transit time i,
and is not a geometncal property of the ring, äs it is for the magnetic effect A
distnbution of transit times could easily average out the oscillations Note
that the potential difference effectuates the phase difference by changing the
wavelength of the electrons (via a change in their kinetic energy), which also
distmguishes the electrostatic from the magnetic effect (where a phase shift is

198S Datta and S Bandyopadhyay, Phys Rev Lett 58, 717 (1987)
199S Datta, M R Melloch, S Bandyopadhyah, R Noren, M Vazin, M Miller, and R

Reifenberger, Phys Rev Lett 55, 2344 (1985)
200 J R Barker, m Ref 15
201G Timp A M Chang, P DeVegvar, R E Howard, R Behrmger, J E Cunnmgham, and P

Mankiewich Swf Sei 196 68 (1988)
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FIG 26 Expenmental magnetoresistance of a ring of 2 μηι diameter, defined m the 2DEG of a
high-mobility GaAs-AlGaAs heterostructure (T = 270 mK) The different traces are consecutive
parts of a magnetoresistance measurement from 0 to l 4 T, digitally filtered to suppress a slowly
varymg background The oscillations are seen to persist for fields where ω,.τ > l, but their
amphtude is reduced substantially for magnetic fields where 2;cycl « W (The field value where
2/cyc, = 2rc = W is mdicated) Taken from G Timp et al, Surf Sei 196, 68 (1988)
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induced by the vector potential without a change m wavelength) An
expenmental search for the electrostatic Aharonov-Bohm effect m a small
metal ring was performed by Washburn et al202 An electnc field was apphed
m the plane of the ring by small capacitive electrodes They were able to shift
the phase of the magnetoresistance oscillations by varymg the field, but the
effect was not sufficiently strong to allow the observation of purely electrosta-
tic oscillations Unfortunately, this expenment could not discnmmate be-
tween the effect of the electnc field penetratmg in the arms of the ring (which
could mduce a phase shift by changing the trajectones) and that of the elec-
trostatic potential Experiments have been reported by De Vegvar et al 203

on the mampulation of the phase of the electrons by means of the voltage on a
gate electrode positioned across one of the arms of a heterostructure ring In
this system a change m gate voltage has a large effect on the resistance of the
ring, primanly because it strongly affects the local density of the electron gas
No clear penodic Signal, indicative of an electrostatic Aharonov-Bohm
effect, could be resolved As discussed m Ref 203, this is not too surpnsmg, in
view of the fact that m that device l D subband depopulation m the region
under the gate occurs on the same gate voltage scale äs the expected
Aharonov Bohm effect The observation of an electrostatic Aharonov-
Bohm effect thus remams an expenmental challenge A successful expenment
would appear to require a ring in which only a single l D subband is occupied,
to ensure a umque transit time 198 20°

9 ELECTRON-ELECTRON INTERACTIONS

a Theory

In addition to the weak locahzation correction to the conductivity
discussed in Section 6, which anses from a smgle-electron quantum inter-
ference effect, the Coulomb mteraction of the conduction electrons gives also
nse to a quantum correction 204 20S In two dimensions the latter correction
has a loganthmic temperature dependence, just äs for weak locahzation [see
Eq (6 4)] A perpendicular magnetic field can be used to distinguish the two
quantum corrections, which have a different field dependence118204"210

202S Washburn, H Schmid, D Kern, and R A Webb, Phys Rev Leu 59, 1791 (1987)
203P G N de Vegvar, G Timp P M Mankiewich, R Behrmger, and J Cunnmgham, Phys

Rev B 40, 3491 (1989)
20*B L Al'tshuler A G Aronov and P A Lee, Phy-i Rev Lett 44, 1288 (1980)
205H Fukuyama, J Phys Soc Japan, 48, 2169 (1980)
206B L Al'tshuler, A G Aronov, A I Larkm, and D E Khmel'mtskn, Zh Eksp Teor Fiz 81,

768 (1981) [Sou Phys JETP 54, 411 (1981)]
207B L Al'tshuler, and A G Aronov, Solid State Comm 46, 429 (1983)
208E Abrahams P W Anderson, P A Lee, and T V Ramaknshnan, Phys Rev B 24, 6783

(1981)
209H Fukuyama, J Phy-i Soc Japan, 50, 3407, 3562 (1981), 51, 1105 (1982)
210P A Lee and T V Ramaknshnan, Phys Rev ß 26, 4009 (1982)
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This field of research has been reviewed m detail by Al'tshuler and
Aronov,211 by Fukuyama,212 and by Lee and Ramaknshnan,127 with an
emphasis on the theory A broader review of electronic correlation effects m
2D Systems has been given by Isihara m this senes 213 In the present
subsection we summanze the relevant theory, äs a preparation for the
followmg subsection on expenmental studies m semiconductor nanostruc-
tures We do not discuss the diagrammatic perturbation theory, smce it is
highly techmcal and does not lend itself to a discussion at the same level äs for
the other subjects dealt with m this review

An attempt at an intuitive Interpretation of the Feynman diagrams was
made by Bergmann 214It is argued that one important class of diagrams may
be interpreted äs diffraction of one electron by the oscillations m the
electrostatic potential generated by the other electrons The Coulomb
mteraction between the electrons thus introduces a purely quantum mechan-
ical correlation between their motion, which is observable in the conductiv-
ity The diffraction of one electron wave by the mterference pattern generated
by another electron wave will only be of importance if their wavelength
difference, and thus their energy difference, is small At a fimte temperature T,
the charactenstic energy difference is kBT The time ττ = h/kBT enters äs a
long-time cutoff m the theory of electron-electron mteractions m a disor-
dered conductor, in the usual case127 211 ττ ^ τφ (Fukuyama212 also
discusses the opposite hmit ττ » τφ ) Accordmgly, the magmtude of the
thermal length /T = (Οττ)

1/2 compared with the width W determmes the
dimensional crossover from 2D to l D [for /T < Ιφ = φτφ)1/2] In the
expression for the conductivity correction associated with electron-electron
mteractions, the long-time cutoff ττ enters loganthmically in 2D and äs a
square root m l D These expressions thus have the same form äs for weak
localization, but with the phase coherence time τφ replaced by ττ The ongm
of this difference is that a fimte temperature does not introduce a long-time
cutoff for the single-electron quantum mterference effect responsible for weak
localization, but merely mduces an energy average of the correspondmg
conductivity correction

In terms of effective mteraction parameters #2ο
 an<3 όΊο> the conductivity

211B L Al'tshuler and A G Aronov, m "Electron-Electron Interactions m Disordered Systems,"
p l (A L Efros and M Pollak, eds) North-Holland, Amsterdam, 1985

212H Fukuyama, m "Electron-Electron Interactions m Disordered Systems," p 155 (A L Efros
and M Pollak, eds) North-Holland, Amsterdam, 1985

2 1 3A Isihara, Solid State Physics, Vol 42, p 271 (H Ehrenreich and D Turnbull, eds)
Academic Press, New York, 1989

214G Bergmann, Phys Rev B 35, 4205 (1987)
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corrections due to electron-electron interactions can be written äs (assuming
τ « ττ « τ φ)

7' for /τ ̂  w' (9'la)

' {OTW <<C /T <<C L' (9' lb)

Under typical experimental conditions,55 the constants g2D
 an<3 <7io are

positive and of order unity. Theoretically, these effective interaction para-
meters depend in a complicated way on the ratio of screening length to Fermi
wavelength and can have either sign. We do not give the formulas here, but
refer to the reviews by Al'tshuler and Aronov2 1 1 and Fukuyama.212 In 2D
the interaction correction öaee shares a logarithmic temperature dependence
with the weak localization correction <5ff loc, and both corrections are of the
same order of magnitude. In l D the temperature dependences of the two
effects are different (unless τφ oc T~ 1/2). Moreover, in the 1D case <5aec « <5σ1ο<;

if /T « Ιφ.
A weak magnetic field fully suppresses weak localization, but has only a

small effect on the quantum correction from electron-electron interactions.
The conductance correction <5Gee contains contributions of diffuson type and
of cooperon type. The diffusons (which give the largest contributions to (5Gee)
are affected by a magnetic field only via the Zeeman energy, which removes
the spin degeneracy when gnBB ^ kBT. In the Systems of interest here, spin
Splitting can usually be ignored below l T, so the diffusons are insensitive to a
weak magnetic field. Since the spin degeneracy is removed regardless of the
orientation of the magnetic field, the ß-dependence of the diffuson is
isotropic. The smaller cooperon contributions exhibit a similar sensitivity äs
weak localization to a weak perpendicular magnetic field, the characteristic
field being determined by /^ χ /f in 2D and by /^ « MT in 1D (in the dirty
metal regime W » /, so flux cancellation does not play a significant role). The
magnetic length lm ~ (fe/eß±)1/2 contains only the component ß± of the field
perpendicular to the 2DEG, since the magnetic field affects the cooperon via
the phase shift induced by the enclosed flux. The anisotropy and the small
characteristic field are two ways to distinguish experimentally the cooperon
contribution from that of the diffuson. It is much more difficult to distinguish
the cooperon contribution to <SGee from the weak localization correction,
since both effects have the same anisotropy, while their characteristic fields
are comparable (/T and Ιφ not being widely separated in the Systems
considered here). This complication is made somewhat less problematic by
the fact that the cooperon contribution to <5Gee is often considerably smaller
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than (5Gioc, in which case it can be ignored. In 1D the reduction factor55'211 is
of order [l + λ\η(ΕΡ/^Τ)']~1(1·τ/Ιφ), with λ a numerical coefficient of order
unity.

There is one additional aspect to the magnetoresistance due to electron-
electron interactions that is of little experimental relevance in metals but
becomes important in semiconductors in the classically strong-field regime
where ω0τ > l (this regime is not easily accessible in metal nanostructures
because of the typically short scattering time). In such strong fields only the
diffuson contributions to the conductivity corrections survive. According to
Houghton et a/.215 and Girvin et a/.,216 the diffuson does not modify the off-
diagonal elements of the conductivity tensor, but only the diagonal elements

öaxy = öayx = Ο, δσχχ = öayy = öaec, (9.2)

where <5ffcc is approximately field-independent (provided spin Splitting does
not play a role). In a channel geometry one measures the longitudinal
resistivity pxx, which is related to the conductivity tensor elements by

order(^ec)
2. (9.3)

Here pxx = p and σχχ = σ[1 + (ω,,τ)2]"1 are the classical results (4.25) and
(4.26). In obtaining this result the effects of Landau level quantization on the
conductivity have been disregarded (see, however, Ref. 55). The longitudinal
resistivity thus becomes magnetic-field-dependent:

Pxx = P (l + ΕΚτ)2 - 1]<5σ0». (9.4)

To the extent that the ß-dependence of <5aee can be neglected, Eq. (9.4) gives a
parabolic negative magnetoresistance, with a temperature dependence that is
that of the negative conductivity correction öaee. This effect can easily be
studied up to ω<,τ = 10, which would imply an enhancement by a factor of
100 of the resistivity correction in zero magnetic field. (The Hall resistivity pxy

also contains corrections from <5aee, but without the enhancement factor.) In
2D it is this enhancement that allows the small effect of electron-electron
interactions to be observable experimentally (in äs far äs the effect is due to
diffuson-type contributions).

Experimentally, the parabolic negative magnetoresistance associated with
electron-electron interactions was first identified by Paalanen et a/.137 in
high-mobility GaAs-AlGaAs heterostructure channels. A more detailed
study was made by Choi et al.55 In that paper, äs well äs in Ref. 1 1 3, it was
found that the parabolic magnetoresistance was less pronounced in narrow

21 5A. Houghton, J R. Senna, and S. C Ymg, Pftys. Rev. l) 25, 2196 (1982).
216S. M. Girvm, M. Jonson, and P. A. Lee, Phys. Rev. B 26, 1651 (1982).
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channels than in wider ones. Choi et al. attributed this suppression to
specular boundary scattering. It should be noted, however, that specular
boundary scattering has no effect at all on the classical conductivity tensor σ°
(in the scattering time approximation; cf. Section 5.b). Since the parabolic
magnetoresistance results from the (wct)

2 term in 1/σ°χ [see Eq. (9.4)], one
would expect that specular boundary scattering does not suppress the
parabolic magnetoresistance (assuming that the result öaxy = öayx = 0 still
holds in the pure metal regime / > W). Diffuse boundary scattering does
affect σ°, but only for relatively weak fields such that 2/cycl ^ W (see Section
5); hence, diffuse boundary scattering seems equally inadequate in explaining
the observations. In the absence of a theory for electron-electron interaction
effects in the pure metal regime, this issue remains unsettled.

b. Narrow-Channel Experiments

Wheeler et a/.38 were the first to use magnetoresistance experiments äs a
tool to distinguish weak localization from electron-electron interaction
effects in narrow Si MOSFETs. As in most subsequent studies, the negative
magnetoresistance was entirely attributed to the suppression of weak
localization; the cooperon-type contributions from electron-electron inter-
actions were ignored. After subtraction of the weak localization correction,
the remaining temperature dependence was found to differ from the simple
T"1/2 dependence predicted by the theory for W < 1Ί < Ιφ [Eq. (9.1b)]. This
was attributed in Ref. 38 to temperature-dependent screening at the relatively
high temperatures of the experiment. Pooke et al.13S found a nice T~1 / 2

dependence in similar experiments at lower temperatures in narrow Si
accumulation layers and in GaAs-AlGaAs heterostructures.

The most detailed study by far of the 2D to l D crossover of the electron-
electron interaction effect in narrow channels was made by Choi et al.55 in a
GaAs-AlGaAs heterostructure. In Fig. 27 we reproduce some of their
experimental traces for channel widths from 156 to Ι.ίμιη and a channel
length of about 300 μιη. The weak localization peak in the magnetoresistance
is not resolved in this experiment, presumably because the channels are not in
the l D regime for this effect (the 2D weak localization peak would be small
and would have a width of 10 ~4 T). The negative magnetoresistance that they
found below 0. l -0.2 T in the narrowest channels is temperature-independent
between l and 4 K and was therefore identified by Choi et al.55 äs a classical
size effect. The classical negative magnetoresistance extends over a field ränge
for which 2/cycl 5; W. This effect has been discussed in Section 5 in terms of
reduction of backscattering by a magnetic field. The electron-electron
interaction effect is observed äs a (temperature-dependent) parabolic negative
magnetoresistance above 0.1 T for the widest channel and above 0.3 T for the
narrowest one. From the magnitude of the parabolic negative magnetoresis-
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FIG 27 Negative magnetoresistance m wide and narrow GaAs-AlGaAs channels at 4 2 and
l 6 K The temperature-mdependent negative magnetoresistance at low fields is a classical size
effect The temperature-dependent parabohc magnetoresistance at higher fields is a quantum
interference effect associated with electron-electron interactions Shubmkov-De Haas oscilla-
tions are visible for fields greater than about 0 3 T Taken from K K Choi et al, Phys Rev B 33,
8216 (1986)

tance, Choi et al.55 could find and analyze the crossover from 2D to l D
mteraction effects. In addition, they investigated the cross over to ÖD by
performmg experiments on short channels. As seen in Fig. 27, Shubnikov-De
Haas oscillations are superimposed on the parabolic negative magnetoresis-
tance at low temperatures and strong magnetic fields. It is noteworthy that
stronger fields are required in narrower channels to observe the Shubnikov-
De Haas oscillations, an effect discussed in terms of specular boundary
scattenng by Choi et al. The Shubnikov-De Haas oscillations in narrow
channels are discussed further in Section lO.b.

In Refs. 63, 167, and 27 the work by Choi et al.55 was extended to even
narrower channels, well into the l D pure metal regime. The results for a
conducting channel width of 0.12μηι are shown in Fig. 28. The l D weak
localization peak in the magnetoresistance is quite large for this narrow
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FIG 28 Magnetoresistance at vanous temperatures of a GaAs-AlGaAs channel
(Ρ^=012μιη, L= ΙΟμ) defined by a shallow-mesa etch technique The central negative
magnetoresistance peak between -01 and +0.1 T at low temperatures is due to 1D weak
locahzation m the quasi-balhstic regime Conductance fluctuations are seen at larger fields The
negative magnetoresistance that persists to high temperatures is a classical size effect äs in Fig
27 The temperature dependence of the resistance at ß = 0 is due to a combmation of weak
locahzation and electron-electron mteraction effects (see Fig 30) Taken from H van Houten et
al, Appl Phys Leu 49, 1781 (1986)

channel (even at the rather high temperatures shown) and clearly visible
below 0.1 T. The classical size effect due to reduction of backscattering now
leads to a negative magnetoresistance on a larger field scale of about l T, in
agreement with the criterion 2/cycl ~ W. This is best seen at temperatures
above 20 K, where the quantum mechanical effects are absent. The
temperature-dependent parabolic negative magnetoresistance is no longer
clearly distinguishable in the narrow channel of Fig. 28, in contrast to wider
channels.27'55 The suppression of this effect in narrow channels is not yet
understood (see Section 9.a). Superimposed on the smooth classical mag-
netoresistance, one sees large aperiodic fluctuations on a field scale of the
same magnitude äs the width of the weak locahzation peak, in qualitative
agreement with the theory of universal conductance fluctuations in the pure
metal regime147 (see Section 7.d). Finally, Shubnikov-De Haas oscillations
are beginning to be resolved around 1.2 T, but they are periodic in l/B at
stronger magnetic fields only (not shown). As discussed in Section 10, this
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FIG 29 Angular dependence of the magnetoresistance of Fig 28, at 4 K, provmg that it has a
purely orbital ongm Taken from H van Houten et al Superlattices and Microstructures 3, 497
(1987)

anomaly in the Shubmkov-De Haas effect is a manifestation of a quantum
size effect167 217 218 This one figure thus summanzes the wealth of classical
and quantum magnetoresistance phenomena m the quasi-ballistic transport
regime

Essentially similar results were obtamed by Taylor et al219 In the field
ränge of these expenments,27 55 63 167 219 the magnetoresistance is exclusive-
ly caused by the enclosed flux and the Lorentz force (so called orbital effects)
The Zeeman energy does not play a role This is demonstrated in Fig 29,

217K-F Berggren,T J Thornton, D J Newson, and M Pepper, Phys Rev Lett 57,1769(1986)
2 I 8K-F Berggren, G Roos, and H van Houten, Phys Rev B 37, 10118 (1988)
219R P Taylor, P C Main, L Eaves, S P Beaumont, I Mclntyre, S Thoms, and C D W

Wilkmson, J Phys Condens Matter l, 10413 (1989)
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FIG 30 Zero-fleld conductance (circles) and conductance corrected for the weak localization
effect (squares) for the channel of Fig 28 äs a function of T 1/2, to demonstrate the T~l/2

dependence on the temperature of the electron-electron mteraction effect expected from Eq
(9 Ib) The solid and dashed hnes are guides to the eye The extrapolated value at high
temperatures is the classical pari of the conductance Taken from H van Houten et al , Acta
Electromca 28, 27 (1988)

where the magnetoresistance (obtamed on the same sample äs that used in
Fig 28) is shown to vanish when B is m the plane of the 2DEG (similar results
were obtamed m Ref 168) In wide 2DEG channels a negative mag-
netoresistance has been found by Lin et al in a parallel magnetic field 23 This
effect has been studied m detail by Mensz and Wheeler,220 who attnbuted it
to a residual orbital effect associated with deviations of the 2DEG from a
perfectly flat plane Fal'ko221 has calculated the effect of a magnetic field
parallel to the 2DEG on weak localization, and has found a negative
magnetoresistance, but only if the scattermg potential does not have
reflection symmetry m the plane of the 2DEG

In Fig 30 the temperature dependence of the zero-field conductance27 is
plotted äs a function of T~1/2, together with the conductance after sub-

220P M Mensz, R G Wheeler, C T Foxon, and J J Harris, Appl Phys Lett 50, 603 (1987), P
M Mensz and R G Wheeler, Phys Rev B 35, 2844 (1987)

221 V Falko J Phys Comlens Mattet 2 3797(1990)
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traction of the weak locahzation correction The straight Ime through the
latter data points demonstrates that the remaming temperature dependence
may, mdeed, be attnbuted to the electron-electron mteractions A similar
T~1 / 2 dependence was found by Thornton et a/ 5 8 m a narrow GaAs-
AlGaAs channel defined usmg the spht-gate method The slope of the straight
hne m Fig 30 gives g1D κ l 5 m Eq (9 Ib), which is close to the value found
by Choi etal55 It should be noted, however, that this expenment is already m
the regime where the quantum corrections are by no means small, so the
perturbation theory is of questionable validity For this reason, and also m
view of other problems (such äs the difficulty in determmmg the effective
channel width, the presence of channel width vanations, and a frequently
observed Saturation of the weak locahzation correction at low temperatures
due to loss of phase coherence associated with external noise or radio-
frequency mterference), a quantitative analysis of the parameters obtamed
from the weak locahzation and electron-electron corrections m narrow
channels (τφ and glD) is not fully warranted Indeed, most of the narrow-
channel studies available today have not been optimized for the purpose of a
detailed quantitative analysis Instead, they were primanly mtended for a
phenomenological exploration, and äs such we feel that they have been quite
successful

10 QUANTUM SIZE EFFECTS

Quantum size effects on the resistivity result from modifications of the 2D
density of states m a 2DEG channel of width comparable to the Fermi
wavelength The electrostatic lateral confinement in such a narrow channel
leads to the formation of l D subbands m the conduction band of the 2DEG
(see Section 4 a) The number N κ kFW/n of occupied l D subbands is
reduced by decreasing the Fermi energy or the channel width This de-
population of individual subbands can be detected via the resistivity An
alternative method to depopulate the subbands is by means of a magnetic
field perpendicular to the 2DEG The magnetic field B has a negligible effect
on the density of states at the Fermi level if the cyclotron diameter 2/cycl » W
(i e, for B « Bcril = 2hkF/eW) If B » ßcrit, the electrostatic confinement can
be neglected for the density of states, which is then descnbed by Landau levels
[Eq (4 6)] The number of occupied Landau levels N χ EF/hcoc χ /cF/cycl/2
decreases hnearly with B for B » Bcnl In the intermediate field ränge where B
and ßcnl are comparable, the electrostatic confinement and the magnetic field
together determme the density of states The correspondmg magnetoelectnc
subbands are depopulated more slowly by a magnetic field than are the
Landau levels, which results m an increased spacmg of the Shubnikov-De
Haas oscillations in the magnetoresistivity (cf Section 4 d)

In the followmg subsection we give a more quantitative description of
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magnetoelectric subbands. Experiments on the electric and magnetic de-
population of subbands in a narrow channel are reviewed in Section 9.b. We
only consider here the case of a long channel (L » /) in the quasi-ballistic
regime. Quantum size effects in the fully ballistic regime (L < l) are the
subject of Section III.

a. Magnetoelectric Subbands

Consider first the case of an unbounded 2DEG in a perpendicular
magnetic field B = V χ A. The Hamiltonian for motion in the plane of the
2DEG is given by

_ (p + eA)2

~ 2m '

for a single spin component. In the Landau gauge A = (0, Bx, 0), with B in the
z-direction, this may be written äs

•*= + <*-*o)', (10-2)

with a>c = eB/m and x0 = —py/eB. The y-momentum operator py Ξ —ihd/dy
can be replaced by its eigenvalue hky, since py and Jtf' commute. The effect of
the magnetic field is then represented by a harmonic oscillator potential in
the x-direction, with center x0 = —hky/eB depending on the momentum in
the y-direction. The energy eigenvalues E„ = (n — i)ficoc, n = l, 2, 3, . . . , do
not depend on ky and are therefore highly degenerate. States with the same
quantum number n are referred to collectively äs Landau levels.93 The
number of Landau levels below energy E is given by

N = Int[l/2 + E/fuo^, (10.3)

where Int denotes truncation to an integer.
A narrow channel in the y-direction is defined by an electrostatic confining

potential V(\). The case of a parabolic confinement is easily solved ana-
lytically.36·218·222·223 Adding a term V(x) = ^mco2,*2 to the hamiltonian
(10.2), one finds, after a rearrangement of terms,

* - " -** + .
with ω = (ω2 + ω2,)1'2, 5c0

 Ξ ^οωο/ω> and M = mo»2/«2,. The first two terms
describe the motion in the x-direction in a harmonic potential with effective
frequency ω ̂  ω0, and the third term describes free motion in the y-direction

2 2 2L Smrcka, H Havlova, and A Ishara, J Phys. C 19, L457 (1986)
223K -F Berggren, and D J Newson, Sermcond. Sei Technol. l, 327 (1986)
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with an effective mass M ^ m This last term removes the degeneracy of the
Landau levels, which become l D subbands with energy

E„(k) = (n - £)Αω + h2k2/2M (10 5)

The subband bottoms have energy E„ = (n — ^)ha>, and the number of
subbands occupied at energy E is N = Int[| + E/ftco] The quasi-lD density
of states is obtamed from Eq (44) on substitutmg m for M For the
companson with expenments it is useful to define an effective width for the
parabolic potential One can take the width Wp!ir to be the Separation between
the equipotentials at the Fermi energy

Wp„ = 2ftfcF/mca0 (106)

(An alternative, which differs only m the numencal prefactor, is to take
Wpar = niD/« s>

 Wltn «s = 9$βν^/4π the 2D sheet density and n1D the number
of electrons per unit length in the narrow channel218) The number of
occupied magnetoelectnc subbands at energy EF m a parabolic confimng
potential may then be wntten äs

N = Intft + i/cFWpar[l + (Wpar/2/cycI)
2]-1/2], (107)

where /cycl = hkF/eB is the cyclotron radius at the Fermi energy For easy
reference, we also give the result for the number of occupied subbands at the
Fermi energy in a square-well confinement potential of width W

W w w \ ί w \2Τ / 2\Ί
-̂  arcsm —- + —- l - ——
mc V 2/cycl 2/cycl [_ \2lcyclJ J y j

Λ Γ τ Γ2 £F / W W [, ( W ΥΎ/2\] ., W
N « Int l - -̂ l arcsm —— + —— l l - l —— l l l L if /cycl > —,

(10 8a)

W

2 ' fcco, Γ " "cyci ~ 2
(10 8b)

(This result is denved m Section 12 a in a semiclassical approximation The
accuracy is + l ) One easily venfies that, for B « ßcnt = 2hkF/eW, Eq (10 8)
yields N χ kFW/n The parabolic confimng potential gives N χ kFWpiir/4· in
the weak-field hmit In the strong-field hmit B » Bcril, both potentials give
the result N χ EF/ftcuc = /cF/cyc!/2 expected for pure Landau levels In Fig 31
we compare the depopulation of Landau levels m an unbounded 2DEG with
its charactenstic l/B dependence of N (dashed curve), with the slower
depopulation of magnetoelectnc subbands in a narrow channel The dash-
dotted curve is for a parabolic confining potential, the solid curve for a
square-well potential These results are calculated from Eqs (107) and (108),
with kFWpar/n = kFW/n = 10 A ß-mdependent Fermi energy was assumed m
Fig 31 so that the density n1D oscillates around its zero-field value (For a
long channel, it is more appropnate to assume that ηιτ> is ß-mdependent, to
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2° ι 1 FIG. 31 Magnetic field dependence of the
number N of occupied subbands in a narrow
channel for a parabolic confinmg potential
according to Eq. (10.7) (dot-dashed curve),

N 10 |— and for a square-well confinmg potential ac-
cordmg to Eq. (10.8) (füll curve). The dashed
curve gives the magnetic depopulation of
Landau levels m a wide 2DEG, which has a
l/B dependence. The calculations are done for

0 l 2 s ä f ixed Fermi energy and for channel width
H/2U: W= Wf„ = ΙΟπ/fcr

preserve Charge neutrality, in which case EF oscillates. This case is studied in
Ref. 218.) Qualität!vely, the two confining potentials give similar results. The
numerical differences reflect the uncertainty in assigning an effective width to
the parabolic potential. Self-consistent Solutions of the Poisson and Schröd-
inger equations42·60·61·72·224 for channels defined by a split gate have shown
that a parabolic potential with a flat bottom section is a more realistic model.
The subband depopulation for this potential has been studied in a semiclass-
ical approximation in Ref. 223. A disadvantage of this more realistic model is
that an additional parameter is needed for its specification (the width of the
flat section). For this practical reason, the use of either a parabolic or a
square-well potential has been preferred in the analysis of most experiments.

b. Experiments on Electric and Magnetic Depopulation of Subbands

The observation of l D subband effects unobscured by thermal smearing
requires low temperatures, such that 4/cBT« ΔΕ, with AE the energy
difference between subband bottoms near the Fermi level (4fcBT being the
width of the energy averaging function df/dEF; see Section 4.b; For a square
well ΔΕ χ 2EF/N, and for parabolic confinement ΔΕ « EF/N). Moreover,
the formation of subbands requires the effective mean free path (limited by
impurity scattering and diffuse boundary scattering) to be much larger than
W (cf. also Ref. 218). The requirement on the temperature is not difficult to
meet, A£/4/cBT being on the order of 50 K for a typical GaAs-AlGaAs
channel of width W= 100 nm, and the regime / > W is also well accessible.
These simple considerations seem to suggest that l D subband effects should
be rather easily observed in semiconductor nanostructures. This conclusion is
misleading, however, and in reality manifestations of l D subband structure
have been elusive, at least in the quasi-ballistic regime W < l < L. The main
reason for this is the appearance of large conductance fluctuations that mask
the subband structure if the channel is not short compared with the mean free
path.

224J. A. Brum and G. Bastard, Superlattices and Microstructures 4, 443 (1988).
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Calculations225"227 of the average conductivity of an ensemble of narrow
channels do m fact show oscillations from the electnc depopulation of
subbands [resultmg from the modulation of the density of states at the Fermi
level, which determmes the scattermg time, see Eq (4 28)] The oscillations
are not äs large äs the Shubnikov-De Haas oscillations from the magnetic
depopulation of Landau levels or magnetoelectnc subbands One reason for
this difference is that the peaks m the density of states become narrower,
relative to their Separation, on applymg a magnetic field (The quantum hmit
of a single occupied 1D subband has been studied in Refs 42 and 228-230)

In an mdividual channel, apenodic conductance fluctuations due to
quantum mterference (see Section 7) are the dominant cause of structure m
the low-temperature conductance äs a function of gate voltage (which
corresponds to a Variation of the Fermi energy), äs was found in expenments
on narrow Si Inversion layers 46 161 162 Warren et al44 were able to suppress
these fluctuations by performing measurements on an array of narrow
channels in a Si Inversion layer In Fig 32 we reproduce their results The
structure due to the electnc depopulation of l D subbands is very weak in the
current-versus-gate-voltage plot, but a convmcmgly regulär oscillation is
seen if the derivative of the current with respect to the gate voltage is taken
(this quantity is called the transconductance) Warren et al pointed out that
the observation of a quantum size effect m an array of 250 channels indicates
a rather remarkable umformity of the width and density of the mdividual
channels

More recently a similar expenmental study was performed by Ismail et
al231 on 100 parallel channels defined m the 2DEG of a GaAs-AlGaAs
heterostructure The effects were found to be much more pronounced than m
the earlier expenment on Si Inversion layer channels, presumably because of
the much larger mean free path (estimated at l μηι), which was not much
shorter than the sample length (5 μιη) Quantum size effects m the quantum
balhstic transport regime (m particular, the conductance quantization of a
quantum point contact) are discussed extensively m Section 13

In a wide 2DEG the minima of the Shubnikov-De Haas oscillations m the
magnetoresistance are penodic m l/B, with a penodicity A(l/ß) determmed
by the sheet density ns accordmg to Eq (4 29) In a narrow channel one

225M J Kearney and P N Butcher, J Phys C 20, 47 (1987)
226S Das Sarma and X C Xie, Phy; Rev B 35, 9875 (1987)
227P Vasilopoulos and F M Peeters, Phy; Rev 540,10079(1989)
228H Sakaki, Jap J Appl Phys 19, L735 (1980)
229G Fishman, Phys Rev B 36, 7448 (1987)
230J Lee and M O Vasseil,./ Phys C 17, 2525 (1984), J Lee and H N Spector, J Appl Phys 57

366 (1985)
2 3 1K Ismail, D A Antomadis, and H T Smith,/!/)/;/ Phys Leu 54, 1130(1989)
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(Volts)

FIG 32 (a) Dependence on the gate voltage of the current / through 250 parallel narrow Si
Inversion layer channels at l 2 K, showmg the electnc depopulation of subbands (b) The effect is
seen more clearly m the transconductance dl/dVa Note the absence of universal conductance
fluctuations, which have been averaged out by the large number of channels Taken from A C
Warren et al, IEEE Electron Demce Lett EDL-7, 413 (1986)
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observes an mcrease m Δ(1/Β) for weak magnetic fields because the
electrostatic confinement modifies the density of states, äs discussed m
Section 10 a Such a deviation is of mterest äs a mamfestation of mag-
netoelectnc subbands, but also because it can be used to estimate the effective
channel width usmg the cntenon W χ 2icycl for the crossover field167 ßcnl

(the electron density m the channel, and hence /cycl, may be estimated from
the strong-field penodicity) The phenomenon has been studied m many
pubhcations 36 56 57 74 79 167 217 218 223 232 233

As an Illustration, we reproduce m Fig 33a an expenmental mag-
netoresistance trace167 218 obtamed for a narrow (W κ 140nm) GaAs-
AlGaAs channel, defined usmg a shallow-mesa etch 63 The arrows mdicate
the magnetoresistance mimma thought to be associated with magnetic
depopulation The assignment becomes ambiguous m weak magnetic fields,
because of the presence of apenodic conductance fluctuations Nevertheless,
the deviation from a straight hne m the N versus ß"1 plot in Fig 33b is
sufficiently large to be reasonably convincing Also shown in Fig 33b is the
result of a fit to a theoretical N(B) function (assummg a parabohc confimng
potential and a ß-mdependent electron density) The parameter values found
from this fit for the width and electron density are reasonable and agree with
independent estimates 21

We have hmited ourselves to a discussion of transport studies, but wish to
point out that l D subbands have been studied succesfully by capacitance75

measurements and by mfrared78 spectroscopy As mentioned earlier, the
formation of l D subbands also requires a reformulation of the theones of
weak locahzation and conductance fluctuations m the presence of boundary
scattering Weak locahzation m the case of a small number of occupied
subbands has been studied by Tesanovic et a/1 1 0 2 3 4 (m a zero magnetic
field)

We will not discuss the subject of quantum size effects further in this part
of our review, smce it has found more stnking mamfestations m the balhstic
transport regime (the subject of Section III), where conductance fluctuations
do not play a role The most prominent example is the conductance
quantization of a pomt contact

11 PERIODIC POTENTIAL

a Lateral Superlattices

In a crystal, the penodic potential of the lattice opens energy gaps of zero
density of electronic states An electron with energy in a gap is Bragg-

232M Laknmi, A D C Grassie, K M Hutchmgs, J J Harris, and C T Foxon, Seimcond Sei
Technol 4, 313 (1989)

233J J Alsmeier, Ch Sikorski, and U Merkt, Phys Rev 537,4314(1988)
234Z Tesanovic, J Phys C 20, L829 (1987)



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 87

60

40

20

0.
3 4 5 6

B(T)

χ
ÜJ
Q
H

_J
LU
>
LU
_l
ω
D
CO

10

8

6

4

2
f\

(b)

"" -O

+,-''

Jf
*- fr"

-*·'

0 05 1 15 2

FIG 33 (a) Magnetoresistance at 24K of a narrow GaAs-AlGaAs channel (äs m Fig 28)
The arrows mdicate magnetic field values assigned to the depopulation of magnetoelectnc
subbands (b) Subband mdex n = N — l versus mverse magnetic field (crosses) The dashed hne
mterpolates between theoretical pomts for a parabohc confmmg potential (circles) The
electrostatic confinement causes deviations from a linear dependence of n on B~l Taken from
K-F Berggren et al, Phys Rev B 37, 10118 (1988)

reflected and hence cannot propagate through the crystal Esaki and Tsu235

proposed m 1970 that an artificial energy gap might be created by the
epitaxial growth of alternatmg layers of different semiconductors In such a
superlattice a penodic potential of spacmg α is supenmposed on the crystal
lattice potential Typically, a κ lOnm is chosen to be much larger than the
crystal lattice spacmg (0 5 nm), leadmg to the formation of a large number of
narrow bands withm the conduction band (mmibands), separated by small
energy gaps (mmigaps) Quahtatively new transport properties may then be
expected For example, the presence of mmigaps may be revealed under

235L Esaki and R Tsu, IBM J Res Dev 14, 61 (1970)
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strong apphed voltages by a negative differential resistance—a phenomenon
predicted by Esaki and Tsu m their original proposal and observed
subsequently by Esaki and Chang 236 237 In contrast to a 3D crystal lattice, a
superlattice formed by alternating layers is l D As a consequence of the free
motion m the plane of the layers, the density of states is not zero m the
mimgaps, and electrons may scatter between two overlappmg minibands Of
interest m the present context is the possibihty of defimng lateral super-
lattices238 239 by a penodic potenüal in the plane of a 2D electron gas True
mmigaps of zero density of states may form in such a System if the potenüal
vanes penodically m two directions Lateral superlattice effects may be
studied in the Imear-response regime of small apphed voltages (to which we
hmit the discussion here) by varymg EF or the strength of the penodic
potenüal by means of a gate voltage The conductivity is expected to vamsh if
Ep is in a true mmigap (so that electrons are Bragg-reflected) Cal-
culations240 241 show pronounced mimma also m the case of a l D penodic
potential

The condiüons required to observe the mmibands in a lateral superlattice
are similar to those discussed m Secüon 10 for the observaüon of 1D
subbands m a narrow channel The mean free path should be larger than the
lattice constant a, and 4kBT should be less than the width of a mmigap near
the Ferrm level For a weak penodic potential,94 the nth mmigap is
approximately AEn x2V„, with V„ the amphtude of the Founer component of
the potential at wave number kn = 2πη/α The gap is centered at energy
E„ κ (hk„/2)2/2m If we consider, for example, a l D smusoidal potenüal
V(x, y) = V0 sm(2ny/a), then the first energy gap AEj « V0 occurs at
EI « (tm/a)2/2m (Higher-order mimgaps are much smaller) Bragg reflecüon
occurs when E± « EF (le, for a lattice penodicity α « λρ/2) Such a short-
penod modulation is not easy to achieve hthographically, however (typically
λρ = 40 nm), and the expenments on lateral superlattices discussed later are
not m this regime

Warren et al242 have observed a weak but regulär structure m the
conductance of a l D lateral superlattice with a = 02μιη defined in a Si
Inversion layer (usmg the dual-gate arrangement of Fig 2c) Ismail et al62

used a grating-shaped gate on top of a GaAs-AlGaAs heterostructure to

236L Esaki and L L Chang, Phys Rev Leu 33, 495 (1974)
237L Esaki, Rev Mod Phys 46, 237 (1974)
238H Sakaki, K Wagatsuma, J Hamasaki, and S Saito, Thm Solid Films 36, 497 (1976)
239R T Bäte, Bull Am Phys Soc 22, 407 (1977)
240M J Kelly, J Phys C 18, 6341 (1985), Surf Sei 170, 49 (1986)
241P F Bagwell and T P Orlando, Phys Rev B 40, 3735 (1989)
242 A C Warren, D A Antoniadis, H I Smith, and J Melngaihs, IEEE Electron Device Letts,

EDL-6, 294 (1985)
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FIG. 34. Gräting gate (in black) on top of a GaAs-AlGaAs heterostructure, used to define a
2DEG with a periodic density modulation. Taken from K. Ismail et al, Appl. Phys. Leu. 52, 1071
(1988).

define a lateral superlattice. A schematic cross section of their device is shown
in Fig. 34. The period of the grating is 0.2 μπι. One effect of the gate voltage is
to change the overall carrier concentration, leading to a large but essentially
smooth conductance Variation (at 4.2 K). This Variation proved to be
essentially the same äs that found for a continuous gate. As in the experiment
by Warren et a/., the transconductance äs a function of the voltage on the
grating revealed a regulär oscillation. As an example, we reproduce the
results of Ismail et al. (for various source-drain voltages) in Fig. 35. No such
structure was found for control devices with a continuous, rather than a
grating, gate. The observed structure is attributed to Bragg reflection in Ref.
62. A 2D lateral superlattice was defined by Bernstein and Ferry,243 using a
grid-shaped gate, but the transport properties in the linear response regime
were not studied in detail. Smith et al.244 have used the split-gate technique to
define a 2D array of 4000 dots in a high-mobility GaAs-AlGaAs hetero-
structure (a = 0.5 μπι, / = 10 μπι). When the 2DEG under the dots is depleted,

243G. Bernstein and D. K. Ferry, J. Vac. Sä. Technol. B 5, 964 (1987).
244C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. Frost,

D. A. Ritchie, and G. A. C. Jones, J. Phys. Condens. Matter 2, 3405 (1990).
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FIG 35 Transconductance gm = BI/dVSD of the device of Fig 34 measured äs a function of

gate voltage for vanous values of the source-dram voltage The oscillations, seen m particular at
iow source-dram voltages, are attnbuted to Bragg reflection m a penodic potential Taken from
K Ismail et al, Appl Phys Leu Sa, 1071 (1988)

a gnd of conductmg channels is formed In this expenment the amphtude of
the penodic potential exceeds EF Structure m the conductance is found
related to the depopulation of 1D subbands m the channels, äs well äs to
standmg waves between the dots The analysis is thus considerably more
comphcated than it would be for a weak penodic potential It becomes
difficult to distmguish between the effects due to quantum mterference withm
a smgle unit cell of the penodic potential and the effects due to the formation
of mmibands requirmg phase coherence over several unit cells Devices with a
2D penodic potential with a penod comparable to the Fermi wavelength and
much shorter than the mean free path will be required for the reahzation of
true miniband effects It appears that the fabrication of such devices will have
to await further developments m the art of makmg nanostructures Epitaxy
on tilted surfaces with a staircase surface structure is bemg investigated for
this purpose 87 88 169 179 245 246 Nonepitaxial growth on Si surfaces shghtly
tilted from (100) is known to lead to miniband formation in the Inversion
layer 20 247 A final interesting possibihty is to use dopmg quantum wires, äs
proposed m Ref 248

As mentioned, it is rather difficult to discnminate expenmentally between
true miniband effects and quantum mterference effects occurrmg withm one
245 J M Games, P M Petroff, H Kroemer, R J Simes, R S Geels, and J H Enghsh, J Vac Sa

Technol B 6 1378 (1988)
246H Sdkaki, Jap J Appl Phys 28, L314 (1989)
247T Cole, A A Lakham, and P J Stiles, Phys Rev Lett 38, 722 (1977)
248G E W Bauer and A A van Gorkum, m Ref 16
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umt cell The reason is that both phenomena give nse to structure m the
conductance äs a function of gate voltage with essentially the same penodic-
ity This difficulty may be circumvented by studymg lateral superlattices with
a small number of umt cells The miniband for a fimte superlattice with P umt
cells consists of a group of P discrete states, which merge mto a contmuous
mmiband m the limit P -> co The discrete states give nse to closely spaced
resonances in the transmission probabihty through the superlattice äs a
function of energy, and may thus be observed äs a senes of P peaks m the
conductance äs a function of gate voltage, separated by broad rmmma due to
the mimgaps Such an observation would demonstrate phase coherence over
the entire length L = Pa of the fimte superlattice and would constitute
conclusive evidence of a mimband The conductance of a fimte l D super-
lattice m a narrow 2DEG channel m the ballistic transport regime has been
mvestigated theoretically by Ulloa et al249 Similar physics may be studied in
the quantum Hall effect regime, where the expenmental requirements are
considerably relaxed A successful expenment of this type was recently
performed by Kouwenhoven et al 25° (see Section 22)

Weak-field magnetotransport in a 2D penodic potential (a gnd) has been
studied by Ferry et al251 252 and by Smith et al 244 Both groups reported
oscillatory structure m the magnetoconductance, suggestive of an
Aharonov-Bohm effect with penodicity AB = h/eS, where S is the area of a
umt cell of the "lattice " In strong magnetic fields no such oscillations are
found A similar suppression of the Aharonov-Bohm effect in strong fields is
found in single rings, äs discussed m detail m Section 21 a Magnetotransport
m a l D penodic potential is the subject of the next subsection

b Guidmg-Center-Dnft Resonance

The mfluence of a magnetic field on transport through layered super-
lattices253 has been studied mainly m the regime where the (first) energy gap
Δ£ ~ lOOmeV exceeds the Landau level spacing fccoc (l 7meV/T in GaAs)
The magnetic field does not easily mduce transitions between different
mimbands in this regime Magnetotransport through lateral superlattices is
often m the opposite regime hco,. » ΔΕ, because of the relatively large
penodicity (a ~ 300 nm) and small amphtude (V0 ~ ImeV) of the penodic
potential The magnetic field now changes qualitatively the structure of the

249S E Ulloa, E Castano, and G Kirczenow, Phys Rev B 41, 12350 (1990)
250L P Kouwenhoven, F W J Hekkmg, B J van Wees, C J P M Harmans, C E Timmenng,

and C T Foxon, Phys Rev Lett 65, 361 (1990)
251D K Ferry, m Ref 14
252P A Puechner, J Md, R Mezenner, W -P Liu, A M Knman, G N Maracas, G Bernstein,

and D K Ferry, Surf Sei 27, 137 (1987)
253J C Maan, Festkorperprobleme 27, 137 (1987)
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FIG 36 (a) A bnef Illumination of a GaAs-AlGaAs heterostructure with an mterference
pattern due to two User beams (black arrows) leads to a persistent penodic Variation m the
concentration of lonized donors m the AlGaAs, thereby imposmg a weak penodic potential on
the 2DEG The resulting spatial Variation of the electron density in the 2DEG is mdicated
schematically (b) Expenmental arrangement used to produce a modulated 2DEG by means of
the "holographic Illumination" of (a) The sample layout shown allows measurements of the
resistivity parallel and perpendicular to the equipotentials Taken from D Weiss et al, in "High
Mdgnetic Fields m Semiconductor Physics II" (G Landwehr, ed) Springer, Berlin, 1989

energy bands, which becomes nchly complex in the case of a 2D periodic
potential.254 Much of this structure, however, is not easily observed, and the
expenments discussed in this subsection involve mostly the classical effect of
a weak periodic potential on motion in a magnetic field.

Weiss et a/.255·256 used an mgenious technique to impose a weak periodic
potential on a 2DEG in a GaAs-AlGaAs heterostructure. They exploit the
well-known persistent lonization of donors in AlGaAs after brief Illumination
at low temperatures. For the Illumination, two interfering laser beams are
used, which generate an mterference pattern with a period depending on the
wavelength and on the angle of incidence of the two beams. This technique,
known äs holographic Illumination, is illustrated in Fig. 37. The interference
pattern selectively ionizes Si donors in the AlGaAs, leading to a weak

254D R Hofstadter, Phys Rev B 14, 2239 (1976)
255D Weiss, K von Khtzmg, K Ploog, and G Weimann, Europhys Lett 8, 179 (1989), also m

"High Magnetic Fields m Semiconductor Physics II" (G Landwehr, ed) Springer, Berlin,
1989

256D Weiss, C Zhang, R R Gerhardts, K von Khtzmg, and G Weimann, Phys Rev B 39,
13020 (1989)
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B (T)
FIG 37 Solid curves Magnetic field dependence of the resistivity ρλ for current flowmg

perpendicular to a potential gratmg The expenmental curve is the measurement of Weiss et
al ,255 the theoretical curve follows from the guidmg-center-dnft resonance Note the phase shift
of the oscillations, mdicated by the arrows at integer 2;cycl/a The potential gratmg has
penodicity a = 382 nm and is modeled by a smusoidal potential with root-mean-square
amphtude of ε = l 5% of the Fermi energy, The mean free path m the 2DEG is 12μηι, much
larger than a The dash-dotted curve is the expenmental resistivity p^ for current flowmg
parallel to the potential gratmg, äs measured by Weiss et al Taken from C W J Beenakker,
Phys Rev Lett 62, 2020 (1989)

penodic modulation V(y) of the bottom of the conduction band in the 2DEG,
which persists at low temperatures if the sample is kept in the dark. The
sample layout, also shown m Fig. 36, allows independent measurements of
the resistivity pyy( = pi), perpendicular to, and pxx( = p\\) parallel to the
gratmg. In Fig. 37 we show experimental results of Weiss et al.255 for the
magnetoresistivity of a 1D lateral superlattice (a = 382nm). In a zero
magnetic field, the resistivity tensor p is approximately isotropic: p± and p ^
are mdistinguishable expenmentally (see Fig. 37). This indicates that the
amphtude of V(y) is much smaller than the Fermi energy £F = 11 nie V. On
application of a small magnetic field B (;$ 0.4 T) perpendicular to the 2DEG,
a large oscillation periodic in i/B develops in the resistivity pL for current
flowmg perpendicular to the potential grating. The resistivity is now strongly
anisotropic, showing only weak oscillations in p\\ (current parallel to the
potential grating). In appearance, the oscillations resemble the Shubnikov-
De Haas oscillations at higher fields, but their different periodicity and much
weaker temperature dependence point to a different origin.

The effect was not anticipated theoretically, but now a fairly complete and
consistent theoretical picture has emerged from several ana-
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lyses lil 227 257~259 The strong oscillations m pL result from a resonance111

between the penodic cyclotron orbit motion and the oscillatmg E χ Β dnft of
the orbit center mduced by the electnc field E = — W Such guidmg-center-
dnft resonances are known from plasma physics,260 and the expenment by
Weiss et al appears to be the first observation of this phenomenon m the
solid state Magnetic quantization is not essential for these strong oscilla-
tions, but plays a role m the transition to the Shubmkov-De Haas
oscillations at higher fields and m the weak oscillations m ρ\\22Ί 259 Α
simplified physical picture of the guidmg-center-dnft resonance can be
obtamed äs follows U1

The guidmg center (X, Y) of an electron at position (x, y) having velocity
(vx,vy) is given by X = χ — vy/coc, 7= y + ux/coc The time derivative of the
guidmg center is X = E(y)/B, Y= 0, so its motion is parallel to the x-axis
This is the E χ B dnft In the case of a strong magnetic field and a slowly
varying potential (/cycl « a), one may approximate E(y) κ Ε(Υ) to close the
equations for X and Ϋ This so-called adiabatic approximation cannot be
made in the weak-field regime (/cycl <; a) of interest here We consider the case
of a weak potential, such that eVrms/EF = ε « l, with Vrms the root mean
square of V(y) The guidmg center dnft m the x-direction is then simply
supenmposed on the unperturbed cyclotron motion Its time average ydnft is
obtamed by mtegrating the electnc field along the orbit

vdtlit(Y) = (27LB)-1 P" άφΕ(Υ+ /C y c lsin0) (11 1)
Jo

For /cycl » a the field oscillates rapidly, so only the dnft acquired close to the
two extremal pomts Y+ /cycl does not average out It follows that i;drift is
large or small dependmg on whether E(Y+ /cycl) and E(Y— /cycl) have the
same sign or opposite sign (see Fig 38) For a smusoidal potential

V(y) = ^/2Vrmssm(2ny/a), one easily calculates by averaging over 7 that, for
/cycl » a, the mean square dnft is

Od2„f,> = (%ε)2 M cos2 î - (11 2)

The guidmg center dnft by itself leads, for /cycl « /, to l D diffusion with
diffusion coefficient ÖD given by

SD = Γ <yd

2

nfl>e *dt = T<!;d

2

rif(> (11 3)
Jo

257R R Gerhardts, D Weiss, and K von Klitzmg, Phys Rev Lett 62, 1173 (1989)
258R W Winkler, J P Kotthaus, and K Ploog, Phys Rev Lett 62, 1177(1989)
259P Vasilopoulos and F M Peeters, Phys Rev Lett 63, 2120 (1989), R R Gerhardts and C

Zhang, Phys Rev Lett 64, 1473 (1990)
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FIG 38 (a) Potential gratmg with a cyclotron orbit supenmposed When the electron is close
to the two extremal pomts Y± lcycl, the guidmg center at Υ acquires an E χ B dnft m the
direction of the arrows (The dnft along nonextremal parts of the orbit averages out,
approximately) A resonance occurs if the dnft at one extremal pomt remforces the dnft at the
other, äs shown (b) Numencally calculated trajectones for a smusoidal potential (ε = 0 015) The
horizontal Imes are equipotentials at integer y/a On resonance (2/cycl/a = 6 25) the guidmg
center dnft is maximal, off resonance (2lcycl/a = 5 75) the dnft is neghgible Taken from C W J
Beenakker, Phys Rev Lett 62, 2020 (1989)

The term ÖD is an additional contnbution to the xx-element of the un-
perturbed diffusion tensor D°, given by D°xx = D°y = D0, D°xy = -D°y =
— cocTD0, with D0 Ξ 5TOp[l + (ω^)2]"1 (cf. Section 4.c). At this point we
assume that for /cycl « / the contnbution ÖD from the guiding center dnft is
the dominant effect of the potential gratmg on the diffusion tensor D. A
justification of this assumption requires a more systematic analysis of the
transport problem, which is given m Ref. 111. Once D is known, the resistivity
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tensor p follows from the Ernstem relation p = D ~ 1/e2p(EF), with p(E¥) the
2D density of states (cf Section 4b) Because of the large off-diagonal
components of D°, an additional contnbution SD to D°x modifies pre-
dommantly pyy = p± To leadmg order m ε, one finds that

£i = l + 2ε2 (JjL.} cos2 ( 2π^1 _ *} (114)
Po \alcyj \ a 4J

with p0 = m/nse
2T the unperturbed resistivity A ngorous solution111 of the

Boltzmann equation (for a ß-mdependent scattenng time) confirms this
simple result m the regime α « /cyc, « / and is shown in Fig 37 to be in quite
good agreement with the expenmental data of Weiss et a/ 2 5 5 Similar
theoretical results have been obtamed by Gerhardts et al 257 and by Winkler
et al258 (usmg an equivalent quantum mechanical formulation, see below)

As illustrated by the arrows in Fig 37, the maxima in pL are not at integer
2/cyc,/a, but shifted somewhat toward lower magnetic fields This phase shift is
a consequence of the fimte extension of the segment of the orbit around the
extremal pomts 7+/ c y c l, which contnbutes to the guidmg center dnft
üdr,f t(7) Equation (11 4) implies that p± in a smusoidal potenüal grating has
mmima and maxima at approximately

2/cycl/a(mimma) = n — |,

2/cycl/a(maxima) = n + ^ — order(l/n), (H 5)

with n an integer We emphasize that the phase shift is not universal, but
depends on the functional form of V(y) The fact that the expenmental phase
shift m Fig 37 agrees so well with the theory mdicates that the actual
Potential grating m the expenment of Weiss et al is well modeled by a
smusoidal potential The maxima in pjp0 have amphtude e2(/2/a/cycl), which
for a large mean free path / can be of order unity, even if ε « l The guiding-
center-dnft resonance thus explams the surpnsmg expenmental findmg that a
penodic modulation of the Fermi velocity of order 10 ~2 can double the
resistivity

At low magnetic fields the expenmental oscillations are damped more
rapidly than the theory would predict, and, moreover, an unexplamed
positive magnetoresistance is observed around zero field m pL (but not m p\\)
Part of this disagreement may be due to nonumformities in the potential
grating, which become especially important at low fields when the cyclotron
orbit overlaps many modulation penods At high magnetic fields B S; 04Τ
the expenmental data show the onset of Shubnikov-De Haas oscillations,
which are a consequence of oscillations m the scattenng time τ due to Landau
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level quantization (cf Section 4 c) This effect is neglected m the semiclassical
analysis, which assuraes a constant scattenng time

The quantum mechamcal ß-dependence of τ also leads to weak-field
oscillations in p\\, with the same penodicity äs the oscillations m p± discussed
earher, but of much smaller amphtude and shifted m phase (see Fig 37, where
a maximum m the expenmental σ n around O S T Imes up with a mimmum m
p±) These small antiphase oscillations m p^ were explamed by Vasilopoulos
and Peeters227 and by Gerhardts and Zhang259 äs resultmg from oscillations
m τ due to the oscillatory Landau bandwidth The Landau levels
En = (n — ̂ )hmc broaden mto a band of fimte width in a penodic potential 261

This Landau band is descnbed by a dispersion law E„(k\ where the wave
number k is related to the classical orbit center (X, Y) by k = YeB/h (cf the
similar relation m Section 12) The classical guidmg-center-dnft resonance
can also be explamed m these quantum mechamcal terms, if one so desires, by
noticmg that the bandwidth of the Landau levels is proportional to the root-
mean-square average of i>drift = dE„(k)/hdk A maximal bandwidth thus
corresponds to a maximal guidmg center dnft and, hence, to a maximal pL A
maximum m the bandwidth also implies a mimmum in the density of states at
the Fermi level and, hence, a maximum m τ [Eq (4 28)] A maximal
bandwidth thus corresponds to a minimal pn, whereas the ß-dependence oft
can safely by neglected for the oscillations m pL (which are dommated by the
classical guiding-center-dnft resonance)

In a 2D penodic potential (a gnd), the guidmg center dnft dommates the
magnetoresistivity in both diagonal components of the resistivity tensor
Classically, the effect of a weak penodic potential V(x, y) on pxx and pyy

decouples if V(x,y) is separable mto V(x, y) =f(x) + g(y) For the 2D
smusoidal potential V(x, y) oc 5ΐη(2πχ/α) + sm(2ny/b), one finds that the effect
of the gnd is simply a superposition of the effects for two perpendicular
gratmgs of penods a and b (No such decouplmg occurs quantum mechani-
cally 254) Experiments by Alves et al262 and by Weiss et al263 confirm this
expectation, except for a disagreement m the phase of the oscillations As
noted, however, the phase is not universal but depends on the form of the
penodic potential, which need not be smusoidal

Because of the predommance of the classical guiding-center-dnft re-
sonance in a weak penodic potential, magnetotransport expenments are not
well suited to study miniband structure in the density of states Magnetocapa-

260G Knorr, F R Hansen, J P Lynov, H L Pecseh, and J J Rasmussen, Physica Scnpta 38,
829 (1988)

261 A. V Chaplik, Solid State Comm , 53, 539 (1985)
262E S Alves, P H Beton, M Hemm, L Eaves, P C Main, O H Hughes, G A Toombs, S P

Beaumont, and C D W Wilkmson, J Phys Condens Matter l, 8257 (1989)
263D Weiss K von Khtzmg, G Ploog, and G Weimann, Surf Sei (to be pubhshed)
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citance measurements256 264 265 are a more direct means of mvesügation, but
somewhat outside the scope of this review

III. Ballistic Transport

12 CONDUCTION AS A TRANSMISSION PROBLEM

In the balhstic transport regime, it is the scattermg of electrons at the
sample boundanes which limits the current, rather than impunty scattermg
The canonical example of a balhstic conductor is the pomt contact illustrated
in Fig 7c The current / through the narrow constnction m response to a
voltage difference V between the wide regions to the left and nght is fimte
even m the absence of impunües, because electrons are scattered back at the
entrance of the constnction The contact conductance G = I/Vis proportional
to the constnction width but independent of its length One cannot therefore
descnbe the contact conductance m terms of a local conductivity, äs one can
do in the diffusive transport regime Consequently, the Einstein relation (4 10)
between the conductivity and the diffusion constant at the Fermi level, of
which we made use repeatedly in Section II, is not applicable m that form to
determme the contact conductance The Landauer formula is an alternative
relation between the conductance and a Fermi level property of the sample,
without the restriction to diffusive transport We discuss this formulation of
conduction m Section 12 2 The Landauer formula expresses the conductance
in terms of transmission probabilities of propagating modes at the Fermi
level (also referred to äs quantum channels m this context) Some elementary
properties of the modes are summanzed in Section 12 a

a Electron Waveguide

We consider a conducting channel m a 2DEG (an "electron waveguide"),
defmed by a lateral confining potential V(x), in the presence of a per-
pendicular magnetic field B (in the z-direction) In the Landau gauge
A = (0, Bx, 0) the hamiltoman has the form

+

for a smgle spm component (cf Section 10 a) Because the canonical
momentum py along the channel commutes with Jf , one can diagonahze py

and 2? simultaneously For each eigenvalue hk of py, the hamiltoman (12 1)

264K Ismail T P Smith III, W T Masselink, and H I Smith, Appl Phys Leu 55, 2766 (1989)
265W Hansen, T P Smith, III, K Υ Lee, i A Brum, C M Knoedler, i M Hong, and D P

Kern, Phys Rev Lett 62, 2168 (1989)
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has a discrete spectrum of energy eigenvalues E„(k), n — l, 2, , correspond-
mg to eigenfunctions of the form

n, fc> = T„lt(x)e'*' (122)

In waveguide termmology, the mdex n labels the modes, and the dependence
of the energy (or "frequency") E„(k) on the wave number k is the dispersion
relation of the nth mode A propagating mode at the Fermi level has cutoff
frequency £„(0) below £F The wave funcüon (12 2) is the product of a
transverse amphtude profile *¥nk(x) and a longitudmal plane wave elky The
average velocity vn(k) along the channel m state \n, k) is the expectation value
of the y-component of the velocity operator p + eA

^ <n, k\ - \n, ky = <n, k\ - \n, fc> = (12 3)
m öp,

For a zero magnetic field, the dispersion relaüon E„(k) has the simple form
(4 3) The group velocity vn(k) is then simply equal to the velocity hk/m
obtamed from the canomcal momentum This equahty no longer holds m the
presence of a magnetic field, because the canomcal momentum contams an
extra contnbution from the vector potential The dispersion relation in a
nonzero magnetic field was denved m Section 10 a for a parabohc confining
potential V(x) = ^ιηω^χ2 From Eq (105) one calculates a group velocity
hk/M that is smaller than hk/m by a factor of l + (o>c/o>0)

2

Insight into the nature of the wave functions in a magnetic field can be
obtamed from the correspondence with classical trajectones These are most
easily visuahzed in a square-well confining potential, äs we now discuss
(followmg Ref 266) The position (x, y) of an electron on the circle with center
coordmates (X, Y) can be expressed m terms of its velocity v by

χ = X + vy/coc, y=Y- ο,/ωβ, (12 4)

with coc = eB/m the cyclotron frequency The cyclotron radius is (2mE)i/2/eB,
with E = jmv2 the energy of the electron Both the energy E and the
Separation X of the orbit center from the center of the channel are constants
of the motion The coordmate 7 of the orbit center parallel to the channel
walls changes on each specular reflection One can classify a trajectory äs a
cyclotron orbit, skipping orbit, or traversing trajectory, depending on
whether the trajectory collides with zero, one, or both channel walls In (X, E)
space these three types of trajectones are separated by the two parabolas
(X ± W/2)2 = 2mE(eB) 2 (Fig 39) The quantum mechamcal dispersion
relation E„(k) can be drawn mto this classical "phase diagram" because of the
correspondence k = — XeB/h This correspondence exists because both k and
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-W/2 +W/2

-X-

FIG 39 Energy-orbit center phase space The two parabolas divide the space mto four
regions, which correspond to different types of ciassical trajectones m a magnetic field (clockwise
from left skippmg orbits on one edge, traversmg trajectones, skippmg orbits on the other edge,
and cyclotron orbits) The shaded region is forbidden The region at the upper center contams
traversmg trajectones movmg in both directions, but only one region is shown for clanty Taken
from C W J Beenakker et al, Superlattices and Microstructures 5, 127 (1989)

X are constants of the motion and it follows from the fact that the component
hk along the channel of the canonical momentum p = m\ — eA. equals

hk = mvy — eAy = mvy — eBx = — eBX (12.5)

m the Landau gauge.
In Fig. 40 we show E„(k) both in weak and in strong magnetic fields,

calculated266 for typical parameter values from the Bohr-Sommerfeld
quantization rule discussed here. The regions in phase space occupied by
ciassical skippmg orbits are shaded. The unshaded regions contain cyclotron
orbits (at small E) and traversing trajectories (at larger E) (cf. Fig. 39). The
cyclotron orbits correspond quantum mechanically to states in Landau levels.
These are the flat portions of the dispersion relation at energies
E„ = (n — 7)fecoc. The group velocity (12.3) is zero in a Landau level, äs one
would expect from the correspondence with a circular orbit. The traversing
trajectones correspond to states in magnetoelectric subbands, which interact

266C W J Beenakker, H van Houten, and B J van Wees, Superlattices and Microstructures 5,
127 (1989)
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Fio 40 Dispersion relation E„(k), calculated for parameters (a) W= 100 nm, B = l T, (b)
W = 200 nm, B — l 5 T The horizontal Ime at 17meV mdicates the Fermi energy The shadeci
area is the region of classical skipping orbits and is bounded by the two parabolas shown m Fig
39 (with the correspondence k — — XeB/h) Note that m (a) edge States coexist at the Fermi level
with states mteractmg with both boundanes (B < ßcr„ = 2hkF/eB), while m (b) all states at the
Fermi level mteract with one boundary only (B > ß„„) Taken from C W J Beenakker et al,
Superlattices and Microstructures 5, 127 (1989)
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with both the opposite channel boundanes and have a nonzero group
velocity The skippmg orbits correspond to edge states, which interact with a
smgle boundary only The two sets of edge states (one for each boundary) are
disjunct m (k, E) space Edge states at opposite boundanes move m opposite
directions, äs is evident from the correspondence with skippmg orbits or by
inspection of the slope of E„(k) in the two shaded regions m Fig 40

If the Fermi level lies between two Landau levels, the states at the Fermi
level consist only of edge states if B > 5cril, äs m Fig 40b The "cntical" field
ßcnt = 2hkF/eW is obtamed from the classical correspondence by requirmg
that the channel width W should be larger than the cyclotron diameter
2hkF/eB at the Fermi level This is the same charactenstic field that played a
role m the discussion of magneto size effects in Sections 5 and 10 At fields
B < Bcni, äs in Fig 40a, edge states coexist at the Fermi level with
magnetoelectnc subbands In still lower fields B < ßthres all states at the
Fermi level interact with both edges The cntenon for this is that W should be
smaller than the transverse wavelength267 λι = (h/2kFeB)il3 of the edge
states, so the threshold field ßthres ~ h/ekF W

3 Contrary to initial expecta-
tions,268 this lower charactenstic field does not appear to play a decisive role
in magneto size effects

A quick way to arnve at the dispersion relation En(k), which is sufficiently
accurate for our purposes, is to apply the Bohr-Sommerfeld quantization
rule80 269 to the classical motion m the x-direction

l Γ
- Φ px dx + γ = 2πη, η =1,2, (126)

«J

The integral is over one penod of the motion The phase shift γ is the sum of
the phase shifts acquired at the two turning points of the projection of the
motion on the x-axis The phase shift upon reflection at the boundary is π, to
ensure that incident and reflected waves cancel (we consider an infinite
barner potential at which the wave function vamshes) The other turnmg
pomts (at which vx vanes smoothly) have a phase shift of —π/2 93 Conseq-
uently, for a traversing trajectory y = π + π = 0 (mod 2π), for a skippmg
orbit j = π — π/2 = π/2, and for a cyclotron orbit y = — π/2 — π/2 = π
(ιτ^2π) In the Landau gauge one has px = mvx = eB(Y— y), so Eq (12 6)
takes the form

267R E Prange and T -W Nee, Phys Rev 168 779(1968)
268C W J Beenakker and H van Houten, Phys Rev Leu 60, 2406 (1988)
269A M Kosevich and I M Lifshitz, Zh Eksp Teor Fiz 29, 743 (1955) [Soy Phys JETP 2, 646

(1956)], M S Khaikm, Adv Phys 18, l (1969)
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O w

FIG. 41 Classical trajectones m a magnetic field The
flux through the shaded area is quantized accordmg to
the Bohr-Sommerfeld quantization rule (12.7) The
shaded area in (b) is bounded by the channel walls and
the circle formed by the conünuation (dashed) of one
circular arc of the traversmg trajectory

This quantization condition has the appealing geometrical Interpretation
that n — γ/2π flux quanta h/e are contained in the area bounded by the
channel walls and a circle of cyclotron radius (2mE)1/2/eB centered at X (cf.
Fig. 41). It is now straightforward to find for each integer n and coordinate X
the energy E that satisfies this condition. The dispersion relation En(k) then
follows on identifying k = —XeB/h, äs shown in Fig. 40.

The total number N of propagating modes at energy E is determined by
the maximum flux <Dmax contained in an area bounded by the channel walls
and a circle of radius (2mE)il2/eB, according to N = Int[e<Dmax/A + ν/2π].
Note that a maximal enclosed flux is obtained by centering the circle on the
channel axis. Some simple geometry then leads to the result80 (10.8), which is
plotted together with that for a parabolic confinement in Fig. 31. Equation
(10.8) has a discontinuity at magnetic fields for which the cyclotron diameter
equals the channel width, due to the Jump in the phase shift γ äs one goes
from a cyclotron orbit to a traversing trajectory. This Jump is an artifact of
the present semiclassical approximation in which the extension of the wave
function beyond the classical orbit is ignored. Since the discontinuity in N is
at most +1, it is unimportant in many applications. More accurate formulas
for the phase shift γ, which smooth out the discontinuity, have been derived in
Ref. 270. If necessary, one can also use more complicated but exact Solutions
of the Schrödinger equation, which are known.267

b. Landauer Formula

Imagine two wide electron gas reservoirs having a slight difference δη in
electron density, which are brought into contact by means of a narrow
channel, äs in Fig. 42a. A diffusion current J will flow in the channel, carried
by electrons with energies between the Fermi energies £F and £F + δμ in the
low- and high-density regions. For small δη, one can write for the Fermi
energy difference (or chemical potential difference) δμ = ön/p(Ef), with p(EF)
the density of states at EF in the reservoir (cf. Section 4.1). The diffusion

270R Vawter, Phys Rev 174, 749 (1968), A. Isihara and K. Ebma, J Phys C 21, L1079 (1988)
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constant (or "diffusance")4 D is defined by J = Don and is related to the
conductance G by

G = e2p(EF)D (12 8)

Equation (128) generalizes the Einstein relation (4 10) and is denved m a
completely analogeus way [by requmng that the sum of dnft current GV/e
and diffusion current Don be zero when the sum of the electrostatic potential
difference eV and chemical potential difference ön/p(EF) vanishes]

Smce the diffusion current (at low temperatures) is carned by electrons
withm a narrow ränge δ μ above £F, the diffusance can be expressed m terms
of Fermi level properties of the channel (see below) The Einstein relation
(128) then yields the required Fermi level expression of the conductance This
by no means imphes that the dnft current induced by an electrostatic
potential difference is carned entirely by electrons at the Fermi energy To the
contrary, all electrons (regardless of their energy) acquire a nonzero dnft
velocity in an electnc field This point has been the cause of some confusion in
the hterature on the quantum Hall effect, so we will return to it in Section
18 c In the following we will refer to electrons at the Fermi energy äs
"current-carrymg electrons" and show that "the current in the channel is
shared equally among the modes at the Fermi level" These and similar
Statements should be interpreted äs refernng to the diffusion problem, where
the current is induced by density differences without an electnc field We
make no attempt here to evaluate the distnbution of current m response to an
electnc field m a System of uniform density That is a difficult problem, for
which one has to determme the electnc field distnbution self-consistently
from Poisson's and Boltzmann's equations Such a calculation for a quantum
pomt contact has been performed m Refs 271 and 272 Fortunately, there is
no need to know the actual current distnbution to determme the con-
ductance, m view of the Einstein relation (12 8) The distnbution of current
(and electnc field) is of importance only beyond the regime of a linear relation
between current and voltage We will not venture beyond this linear response
regime

To calculate the diffusance, we first consider the case of an ideal electron
waveguide between the two reservoirs By "ideal" it is meant that withm the
waveguide the states with group velocity pointmg to the nght are occupied
up to EF + δμ, while states with group velocity to the left are occupied up to
Ep and empty above that energy (cf Fig 42b) This requires that an electron
near the Fermi energy that is mjected into the waveguide by the reservoir at
Ep + δμ propagates into the other reservoir without being reflected (The

271I B Levmson, Zh Eksp Teor Fiz 95, 2175 (1989) [Soy Phys JETP68, 1257(1989)]
272M C Payne, J Phys Condent Matter l, 4931 (1989), 4939 (1989)
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EF +δμ

FIG. 42 (a) Narrow channel connecting two wide electron gas regions, having a chemical
Potential difference δμ. (b) Schematic dispersion relation in the narrow channel. Left-moving
states (k > 0) are filled up to chemical potential £F, right-moving states up to Ef + δμ (solid
dots). Higher-lying states are unoccupied (open dots).

physical requirements for this to happen will be discussed in Section 13.) The
amount of diffusion current per energy interval carried by the right-moving
states (with k < 0) in a mode n is the product of density of states p~ and group
velocity v„. Using Eqs. (4.4) and (12.3), we find the total current J„ carried by
that mode to be

Ep + ίμ

0S0V 2π
dk

1 dEa(k) gsgv

hdk
δμ, (12.9)

independent of mode index and Fermi energy. The current in the channel is
shared equally among the N modes at the Fermi level because of the
cancellation of group velocity and density states. We will return to this
equipartition rule in Section 13, because it is at the origin of the quantiza-
tion6·7 of the conductance of a point contact.

Scattering within the narrow channel may reflect part of the injected
current back into the left reservoir. If a fraction T„ of J„ is transmitted to the
reservoir at the right, then the total diffusion current in the channel becomes
J = (2/Κ)δμΣ"= i T„. (Unless stated otherwise, the formulas in the remainder
of this review refer to the case gs = 2, gv = l of twofold spin degeneracy and a
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smgle valley, appropnate for most of the expenments) Usmg δμ = 6n/p(EF),
J = Don, and the Einstein relation (128), one obtams the result

2e2 N

G = -Γ Σ Ta, (12 10a)
n n-i

which can also be wntten m the form

2p2 N 1p2

G=~r- Σ lU2 =-,-Tritt, (1210b)
" n m = l "

where T„ = £„ = 1 |im„|2 is expressed m terms of the matnx t of transmission
probability amphtudes from mode n to mode m This relation between
conductance and transmission probabihties at the Fermi energy is referred to
äs the Landauer formula because of Landauer's pioneermg 1957 paper4

Denvations of Eq (12 10) based on the Kubo formula of linear response
theory have been given by several authors, both for zero 143 273 274 and
nonzero275 276 magnetic fields The Identification of G äs a contact con-
ductance is due to Imry1 In earlier work Eq (12 10) was considered
suspect277 279 because it gives a fimte conductance for an ideal (balhstic)
conductor, and alternative expressions were proposed188 28° 282 that were
considered to be more reahstic (In one dimension these alternative formulas
reduce to the original Landauer formula4 G = (e2/h)T(l — T)"1, which gives
infinite conductance for unit transmission smce the contact conductance e2/h
is ignored 1) For histoncal accounts of this controversy, from two different
points of view, we refer the interested reader to papers by Landauer283 and
by Stone and Szafer 274 We have bnefly menüoned this now-settled con-
troversy, because it sheds some light onto why the quantization of the contact
conductance had not been predicted theoretically pnor to its expenmental
discovery m 1987

Equation (1210) refers to a two-termmal resistance measurement, in which
the same two contacts (modeled by reservoirs in Fig 42a) are used to dnve a
current through the System and to measure the voltage drop More generally,
one can consider a multireservoir conductor äs in Fig 43 to model, for

273E N Economou and C M Soukouhs, Phys Rev Lett 46, 618 (1981)
"*A D Stone and A Szafer, IBM J Res Dev 32, 384 (1988)
275J Kucera and P Streda J Phys C 21, 4357 (1988)
276H U Baranger and A D Stone, Phys Rev B 40, 8169 (1989)
277D J Thouless, Phys Rev Lett 47, 972 (1981)
278R Landauer, Phys Lett A 85, 91 (1981)
279E N Engquist and P W Anderson, Phys Rev B 24, 1151 (1981)
280p w Anderson, D J Thouless, E Abrahams, and D S Fisher, Phys Rev B 22, 3519 (1980)
281D C Langreth and E Abrahams, Phys Rev B 24, 2978 (1981)
282M Ya Azbel, J Phys C 14, L225 (1981)
283R Landauer, J Phys Condens Matter l, 8099 (1989), also m Ref 15
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με μ 5

FIG. 43. Generalization of the geometry of Fig. 42a to a multireservoir conductor.

example, four-terminal resistance measurements in which the current source
and drain are distinct from the voltage probes. The generalization of the
Landauer formula (12.10) to multiterminal resistances is due to Büttiker.5 Let
Tx^ß be the total transmission probability from reservoir α to ß:

T^ß= Σ 2 IV, J2· ü2·11)
n = l m = l

Here Na is the number of propagating modes in the channel (or "lead")
connected to reservoir α (which in general may be different from the number
N p in lead ß), and tßa,_ m„ is the transmission probability amplitude from mode
n in lead α to mode m in lead ß. The leads are modeled by ideal electron
waveguides, in the sense discussed before, so that the reservoir α at chemical
Potential μα above EF injects into lead α a (charge) current (2e/h)N 'ΛμΛ. Α
fraction Ta_ß/Na of that current is transmitted to reservoir ß, and a fraction
7^_α/Νβ = RJNa is reflected back into reservoir a, before reaching one of the
other reservoirs. The net current Ia in lead α is thus given by5

£- /„ = (N. - R «K - Σ Τβ^μβ. (12.12)

The chemical potentials of the reservoirs are related to the currents in the
leads via a matrix of transmission and reflection coefficients. The sums of
columns or rows of this matrix vanish:

« -R«- Σ 7^ = 0, (12.13)

T„^. = Q. (12.14)

Equation (12.13) follows from current conservation, and Eq. (12.14) follows
from the requirement that an increase of all the chemical potentials by the
same amount should have no effect on the net currents in the leads.

Equation (12.12) can be applied to a measurement of the four-terminal
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resistance Raß yg = V/I, in which a current / flows from contact α to β and a
voltage difference V is measured between contacts y and δ Settmg
Ix = I = —Iß, and Ia = 0 for a.' Φ α, β, one can solve the set of linear
equations (12 12) to determme the chemical potential difference μΊ — μδ

(Only the differences m chemical potentials can be obtamed from the n
equations (1212), which are not independent m view of Eq (1214) By fixing
one chemical potential at zero, one reduces the number of equations to n — l
independent ones) The four-termmal resistance Raß γδ = (μγ — μ^/el is then
obtamed äs a rational function of the transmission and reflection proba-
bihties We will refer to this procedure äs the Landauer-Buttikerformahsm It
provides a unified descnption of the whole vanety of electncal transport
expenments discussed m this review

The transmission probabihties have the symmetry

t„. nm(B) = txß m„(-B) => T^ß(B) = Tß^(-B) (12 15)

Equation (12 15) follows by combining the umtanty of the scattenng matnx
tf = t 1, required by current conservation, with the symmetry
t*( — B) = t~1(B), required by time-reversal invanance (* and f denote
complex and Hermitian conjugation, respectively) As shown by But-
tiker,5 284 the symmetry (12 15) of the coefficients in Eq (12 12) implies a
reciprocity relation for the four-termmal resistance

Rfßll(B) = R7t^(-B} (1216)

The resistance is unchanged if current and voltage leads are interchanged
with simultaneous reversal of the magnetic field direction A special case of
Eq (12 16) is that the two-termmal resistance R^ a/J is even m B In the
diffusive transport regime, the reciprocity relation for the resistance follows
from the Onsager-Casimir relation285 p(B) = ρτ( —ß) for the resistivity
tensor (T denotes the transpose) Equation (12 16) holds also in cases that the
concept of a local resistivity breaks down One expenmental demon-
stration80 of the vahdity of the reciprocity relation in the quantum ballistic
transport regime will be discussed in Section 14 Other demonstrations have
been given in Refs 286-289 We emphasize that stnct reciprocity holds only

284M Buttiker, IBM J Res Dev 32, 317 (1988)
285H B G Casimir, Rev Mod Phys 17, 343 (1945), Philips Res Rep l, 185 (1946), L Onsager,

Phys Rev 38, 2265 (1931, see also S R de Groot and P Mazur, ' Non-Eqmhbrium
Thermodynamics " Dover, New York, 1984

286A D Benoit, S Washburn, C P Umbach, R B Laibowitz, and R A Webb, Phys Rev Lett
57, 1765 (1986)

287H H Sample, W J Bruno, S B Sample, and E K Sichel, J Appl Phys 61, 1079 (1987)
288L L Soethout, H van Kempen, J T P W van Maarseveen, P A Schroeder, and P

Wyder, J Phys F 17, L129 (1987)
289G Timp, H U Baranger, P deVegvar, J E Cunnmgham, R E Howard, R Behnnger, and P

M Mankiewich, Phys Rev Lett 60, 2081 (1988)
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m the linear response hmit of mfimtesimally small currents and voltages
Deviations from Eq (12 16) can occur expenmentally290 due to nonlmeanties
from quantum mterference,146 291 which in the case of a long phase
coherence time τφ persist down to very small voltages V ̂  ϊι/βτφ Magnetic
impunties can be another source of deviations from reciprocity if the apphed
magnetic field is not sufficiently strong to reverse the magneüc moments on
field reversal The large + B asymmetry of the two-termmal resistance of a
pomt contact reported m Ref 292 has remamed unexplamed (see Section 21)

The scattenng matnx t in Eq (12 15) descnbes elastic scattenng only
Inelastic scattenng is assumed to take place exclusively m the reservoirs That
is a reasonable approximation at temperatures that are sufficiently low that
the size of the conductor is smaller than the melastic scattenng length (or the
phase coherence length if quantum mterference effects play a role) Reservoirs
thus play a dual role m the Landauer-Buttiker formahsm On the one hand,
a reservoir is a model for a current or voltage contact, on the other hand, a
reservoir bnngs melastic scattermg mto the System The reciprocity relation
(12 16) is unaffected by adding reservoirs to the system and is not restncted to
elastic scattermg 284 More realistic methods to include melastic scattermg in
a distributed way throughout the system have been proposed, but are not yet
implemented m an actual calculation 293 294

13 QUANTUM POINT CONTACTS

Many of the pnncipal phenomena in ballistic transport are exhibited in
the cleanest and most extreme way by quantum pomt contacts These are
short and narrow constnctions in a 2DEG, with a width of the Order of the
Fermi wavelength 6 7 59 The conductance of quantum pomt contacts is
quantized in units of 2e2/h This quantization is remimscent of the quantiza-
tion of the Hall conductance, but is measured m the absence of a magnetic
field The zero-field conductance quantization and the smooth transition to
the quantum Hall effect on applymg a magnetic field are essentially
consequences of the equipartition of current among an integer number of
propagatmg modes m the constnction, each mode carrymg a current of2e2/h
times the apphed voltage V Deviations from precise quantization result from
nonunit transmission probabihty of propagatmg modes and from nonzero
transmission probabihty of evanescent (nonpropagatmg) modes Experiment

290P G N de Vegvar, G Timp, P M Mankiewich, J E Cunnmgham, R Behrmger, and R E
Howard, Phys Rev B 38 4326 (1988)

291A I LarkmandD E Khmel'mtskii, Zh Eksp Teor Fiz 91,1815(1986) [So» Phys JETP64,
1075 (1986)]

292P H M van Loosdrecht, C W J Beenakker, H van Houten, J G Williamson, B J van
Wees, J E Mooij, C T Foxon, and J J Harris, Phys Rev B 38, 10162 (1988)

293S Datta, Phys Rev B 40, 5830 (1989)
294S Feng Phys Lett A 143, 400 (1990)
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and theory in a zero magnetic field are reviewed in Section 13.a. The effect of a
magnetic field is the subject of Section 13.b, which deals with depopulation of
subbands and suppression of backscattering by a magnetic field, two
phenomena that form the basis for an understanding of magnetotransport in
semiconductor nanostructures.

a. Conductance Quantization

(1) Experiments. The study of electron transport through point contacts in
metals has a long history, which goes back to Maxwell's investigations295 of
the resistance of an orifice in the diifusive transport regime. Ballistic transport
was first studied by Sharvin,296 who proposed and subsequently realized297

the injection and detection of a beam of electrons in a metal by means of point
contacts much smaller than the mean free path. With the possible exception
of the scanning tunneling microscope, which can be seen äs a point contact on
an atomic scale,298"303 these studies in metals are essentially restricted to the
classical ballistic transport regime because of the extremely small Fermi
wavelength (λρ χ 0.5 nm). Point contacts in a 2DEG cannot be fabricated by
simply pressing two wedge- or needle-shaped pieces of material together (äs
in bulk semiconductors304 or metals305), since the electron gas is confined at
the GaAs-AlGaAs interface in the interior of the heterostructure. Instead,
they are defined electrostatically24·58 by means of a split gate on top of the
heterostructure (a schematical cross-sectional view was given in Fig. 4b, while
the micrograph Fig. 5b shows a top view of the split gate of a double-point
contact device; see also the inset in Fig. 44). In this way one can define short
and narrow constrictions in the 2DEG, of variable width 0 ;S W ;S 250 nm
comparable to the Fermi wavelength AF « 40 nm and much shorter than the
mean free path / χ ΙΟμιη.

Van Wees et al.6 and Wharam et al.1 independently discovered a sequence
of steps in the conductance of such a point contact äs its width was varied by
means of the voltage on the split gate (see Fig. 44). The Steps are near integer
multiples of 2e2/h κ (13 ΑΏ)"1, after correction for a gate-voltage-
independent series resistance from the wide 2DEG regions. An elementary

295J C Maxwell, "A Treatise on Electncity and Magnetism " Clarendon, Oxford, 1904
2 9 6Yu V Sharvin, Zh Eksp Teor Fiz 48, 984 (1965) [Sov Phys JETP 21, 655 (1965)]
2 9 7Yu V Sharvin and N I Bogatma, Zh Eksp Teor Phys 56, 772 (1969) [Stw Phys JETP 29,

419 (1969)]
298J K Gimzewski and R Moller, Phys Rev B 36, 1284 (1987)
299N D Lang, Phys Reu B 36, 8173 (1987)
300J Ferrer, A Martm-Rodero, and F Flores, Phys Rev B 38, 10113 (1988)
301N D Lang, Comm Cond Matt Phys 14, 253 (1989)
302N D Lang, A Yacoby, and Υ Imry, Phys Rev Lett 63, 1499 (1989)
303N Garcia and H Rohrer, J Phys Condens Matter l, 3737 (1989)
304R Trzcmski, E Gmelm, and H J Queisser, Phys Rev B 35, 6373 (1987)
305A G M Jansen, A P van Gelder, and P Wyder, J Phys C 13, 6073 (1980)
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FIG. 44. Point contact conductance äs a function of gate voltage at 0.6 K, demonstrating the
conductance quantization in units of 2e2/h. The data are obtained from the two-terminal
resistance after subtraction of a background resistance. The constriction width increases with
increasing voltage on the gate (see inset). Taken from B. J. van Wees et al, Phys. Rev. Lett. 60, 848
(1988).

explanation of this effect relies on the fact that each l D subband in the
constriction contributes 2e2/h to the conductance because of the cancellation
of the group velocity and the l D density of states discussed in Section 12.
Since the number N of occupied subbands is necessarily an integer, it follows
from this simple argument that the conductance G is quantized,

G = (2e2/h)N, (13.1)

äs observed experimentally. A more complete explanation requires an explicit
treatment of the mode coupling at the entrance and exit of the constriction, äs
discussed later.

The zero-field conductance quantization of a quantum point contact is not
äs accurate äs the Hall conductance quantization in strong magnetic fields.
The deviations from exact quantization are typically6·7·306 1%, while in the
quantum Hall effect one obtains routinely97 an accuracy of l part in 107. It is
unlikely that a similar accuracy will be achieved in the case of the zero-field
quantization, one reason being the additive contribution to the point contact
resistance of a background resistance whose magnitude cannot be deter-
mined precisely. The largest part of this background resistance originates in
the ohmic contacts307 and can thus be eliminated in a four-terminal
measurement of the contact resistance. The position of the additional voltage
306G. Timp, R. Behringer, S. Sampere, J. E. Cunningham, and R. E. Howard, in Ref. 15; see also

G. Timp in Ref. 9.
307H. van Houten, C. W. J. Beenakker, and B. J. van Wees, in Ref. 9.
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probes on the wide 2DEG regions has to be more than an melastic scattermg
length away from the pomt contact so that a local equihbnum is established
A residual background resistance307 of the order of the resistance p of a
square is therefore unavoidable In the expenments of Refs 6 and 7 one has
p κ 20 Ω, but lower values are possible for higher-mobihty matenal It would
be of mterest to mvestigate expenmentally whether resistance plateaux
quantized to such an accuracy are achievable It should be noted, however,
that the degree of flatness of the plateaux and the sharpness of the steps m
the present expenments vary among devices of identical design, mdicatmg
that the detailed shape of the electrostatic potential definmg the constnction
is important There are many uncontrolled factors affectmg this shape, such
äs small changes m the gate geometry, vanations m the pmnmg of the Fermi
level at the free GaAs surface or at the mterface with the gate metal, dopmg
inhomogeneitles m the heterostructure matenal, and trappmg of Charge m
deep levels m AlGaAs

On mcreasing the temperature, one finds expenmentally that the plateaux
acquire a finite slope until they are no longer resolved 308 This is a
consequence of the thermal smeanng of the Fermi-Dirac distnbution (4 9) If
at T = 0 the conductance G(EF, T) has a Step function dependence on the
Fermi energy EF, at finite temperatures it has the form309

G(EP, T) = G(E, 0) j . dE = — χ /(£„ - £F) (13 2)
Jo dhp n „ = i

Here £„ denotes the energy of the bottom of the nth subband [cf Eq (4 3)]
The width of the thermal smeanng function df/dEF is about 4kBT, so the
conductance steps should disappear for T > A£/4/cB ~ 4 K (here ΔΕ is the
subband Splitting at the Fermi level) This is confirmed both by expen-
ment308 and by numerical calculations (see below)

Interestingly, it was found expenmentally6 7 that m general a finite
temperature yielded the most pronounced and flat plateaux äs a function of
gate voltage m the zero-field conductance If the temperature is mcreased
beyond this Optimum (which is about 0 5 K), the plateaux disappear because
of the thermal averagmg discussed earher Below this temperature, an
oscillatory structure may be superimposed on the conductance plateaux This
phenomenon depends on the precise shape of the constnction, äs discussed
later A small but finite voltage drop across the constuction has an effect that
is qualitatively sirmlar to that of a finite temperature 309 This is indeed borne
out by experiment 308 (Experiments on conduction through quantum pomt
308B J van Wees, L P Kouwenhoven, E M M Willems, C J P M Harmans, J E Mooij, H

van Houten, C W J Beenakker, J G Wilhamson and C T Foxon, submitted to Phys
Rev ß

309P F Bagwell and T P Orlando, Phys Rev B 40, 1456 (1989)
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(a)

J s = E F + e V .W

(b)
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FIG 45 (a) Classical balhstic transport through a pomt contact mduced by a concentration
difference δη, or electrochemical potential difference eV, between source (s) and dram (d). (b) The
net current through a quantum pomt contact is carned by the shaded region in fc-space. In a
narrow channel the allowed states he on the horizontal Imes, which correspond to quantized
values for ky = ± ηπ/W, and contrauous values for k„ The formaüon of these 1D subbands gives
nse to a quantized conductance. Taken from H van Houten et al, m "Physics and Technology of
Submicron Structures" (H Heinrich, G Bauer, and F Kuchar, eds) Springer, Berlin, 1988, m
"Nanostructure Physics and Fabrication" (M Reed and W P. Kirk, eds) Academic, New York,
1989

contacts at larger applied voltages in the nonlinear transport regime have
been reviewed in Ref. 307).

Theoretically, one would expect the conductance quantization to be
preserved in longer channels than those used in the original experiments6'7

(in which typically L ~ W ~ lOOnm). Experiments on channels longer than
about l μηι did not show the quantization,306'307'310 however, although their
length was well below the transport mean free path in the bulk (about ΙΟμηι).
The lack of clear plateaux in long constrictions is presumably due to
enhanced backscattering inside the constriction, either because of impurity
scattering (which may be enhanced306'310 due to the reduced screening in a
quasi-one-dimensional electron gas72) or because of boundary scattering at
channel wall irregularities. As mentioned in Section 5, Thornton et al.101

have found evidence for a small (5%) fraction of diffuse, rather than specular,
reflections at boundaries defined electrostatically by a gate. In a 200-nm-wide
constriction this leads to an effective mean free path of about
200nm/0.05 » 4μτη, comparable to the constriction length of devices that do
not exhibit the conductance quantization.113'307

(2)Theory. It is instructive to first consider classical 2D point contacts in
some detail.31·311 The ballistic electron flow through a point contact is
illustrated in Fig. 45a in real space, and in Fig. 45b in fc-space, for a small

310G Timp, m Ref 10
3 1Ή van Houten and C W J Beenakker, m Ref 15
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excess electron density δη at one side of the point contact. At low temper-
atures this excess charge moves with the Fermi velocity UF. The flux normally
incident on the point contact is önvF(cos </>ö(cos ψ)>, where ö(x) is the unit
step function and the symbol < > denotes an isotropic angular average (the
angle φ is defined in Fig. 45a). In the ballistic limit / » W the incident flux is
fully transmitted, so the total diffusion current J through the point contact is
given by

f7 1/2 dd> l
J = WSnvF\ οο5φ-!- = -]ννΡδη. (13.3)

J -π/2 2π π

The diffusance D = J/δη = (l/n)WvF; therefore, the conductance G =
e2p(Ef)D becomes (using the 2D density of states (4.2) with the appropriate
degeneracy factors gs = 2, gv = 1)

G = ̂ ,̂ in2D. (13.4)
h π

Eq. (13.4) is the 2D analogue6 of Sharvin's well-known expression296 for the
point contact conductance in three dimensions,

G^f, in3D, (13.5)
h 4π

where now S1 is the area of the point contact. The number of propagating
modes for a square-well lateral confining potential is N = Int[/cF W/π] in 2D,
so Eq. (13.4) is indeed the classical limit of the quantized conductance (13.1).

Quantum mechanically, the current through the point contact is equiparti-
tioned among the 1D subbands, or transverse modes, in the constriction. The
equipartitioning of current, which is the basic mechanism for the conductance
quantization, is illustrated in Fig. 45b for a square-well lateral confining
Potential of width W. The l D subbands then correspond to the pairs of
horizontal lines at ky = ±nn/W, with n = l, 2, . . . , N and N = Int[/cF W/π].
The group velocity v„ = hkx/m is proportional to cos φ and thus decreases
with increasing n. However, the decrease in v„ is compensated by an increase
in the l D density of states. Since p„ is proportional to the length of the
horizontal lines within the dashed area in Fig. 45b, p„ is proportional to
l/cos φ so that the product v„pn does not depend on the subband index. We
emphasize that, although the classical formula (13.4) holds only for a square-
well lateral confining potential, the quantization (13.1) is a general result for
any shape of the confining potential. The reason is simply that the
fundamental cancellation of the group velocity v„ = dEn(k)/hdk and the l D
density of states p„+ = (ndE^fy/dk)'1 holds regardless of the form of the
dispersion relation E „(k). For the same reason, Eq. (13.1) is equally applicable
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m the presence of a magnetic field, when magnetic edge channels at the Fermi
level take over the role of 1D subbands Equation (13 1) thus implies a
contmuous transition from the zero-field quantization to the quantum Hall
effect, äs we will discuss m Section 13 b

To analyze deviations from Eq (13 1) it is necessary to solve the
Schrodinger equation for the wave functions m the narrow pomt contact and
the adjacent wide regions and to match the wave functions and their
derivatives at the entrance and exit of the constnction The resultmg
transmission coefficients determme the conductance via the Landauer for-
mula (12 10) This mode couplmg problem has been solved numencally for
pomt contacts of a vanety of shapes312"321 and analytically in special
geometnes 322~324 When considermg the mode couplmg at the entrance and
exit of the constnction, one must distmguish gradual (adiabatic) from abrupt
transitions from wide to narrow regions

The case of an adiabatic constnction has been studied by Glazman et
al 325 ̂ γ Yacoby and Imry326 and by Payne 272 If the constnction width
W(x) changes sufficiently gradually, the transport through the constnction is
adiabatic (i e, without intersubband scattenng) The transmission coefficients
then vanish, \tnm

 2 = 0, unless n = m ̂  Nmm, with Nmm the smallest number of
occupied subbands in the constnction The conductance quantization (13 1)
now follows immediately from the Landauer formula (12 10) The critenon
for adiabatic transport is326 dW/dx < l/N(x), with N(x) χ kFW(x)/n the local
number of subbands As the constnction widens, N(x) mcreases and adiabat-
icity is preserved only if W(x) mcreases more and more slowly In practice,
adiabaticity breaks down at a width Wmax, which is at most a factor of 2 larger
than the minimum width Wmm (cf the colhmated beam experiment of Ref

312L Escapa and N Garcia, J Phys Condens Matter l, 2125 (1989)
313E G Haanappel and D van der Marel, Phys Rev B 39, 5484(1989), D van der Marel and E

G Haanappel, Phys Rev B 39, 7811 (1989)
314G Kirczenow, Solid State Comm 68, 715 (1988), J Phys Condens Matter l, 305 (1989)
3 1 5A Szafer and A D Stone, Phys Rev Leu 62, 300 (1989)
316E Tekman and S Ciraci, Phys Rev B 39, 8772 (1989), Phys Rev B 40, 8559 (1989)
317Song He and S Das Sarma, Phys Rev B 40, 3379 (1989)
318D van der Marel, m Ref 15
319N Garcia and L Fscapa, Appl Phys Lett 54, 1418 (1989)
320E Castano and G Kirczenow, Solid State Comm 70, 801 (1989)
3 2 1Y Avishai and Υ Β Band, Phys Rev B 40, 12535 (1989)
3 2 2A Kawabata, J Phys Soc Japan 58, 372 (1989)
323I B Levmson, Pis'ma Zh Eksp Teor Fiz 48, 273 (1988) \_JETP Lett 48, 301 (1988)]
324A Matulis and D Segzda, J Phys Condens Matter l, 2289 (1989)
325L I Glazman, G B Lesovick, D E Khmel'nitskn, R I Shekhter, Pis'ma Zh Teor Fiz 48,218

(1988) IJETP Lett 48, 238 (1988)]
326A Yacoby and Υ Imry, Phys Rev B 41 5341 (1990)
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327, discussed m Section 15) This does not affect the conductance of the
constnction, however, if the breakdown of adiabaticity results m a mixmg of
the subbands without causing reflection back through the constnction If
such is the case, the total transmission probabihty through the constnction
remains the same äs m the hypothetical case of fully adiabatic transport As
pointed out by Yacoby and Imry,326 a relatively small adiabatic mcrease m
width from Wmm to Wmm is sufficient to ensure a drastic suppression of
reflections at Wmn The reason is that the subbands with the largest reflection
probabihty are close to cutoff, that is, they have subband mdex close to Nmdx,
the number of subbands occupied at Wmn Because the transport is adiabatic
from Wmm to Wmjx, only the Nmm subbands with the smallest n arnve at Wmix,
and these subbands have a small reflection probabihty In the language of
waveguide transmission, one has impedance-matched the constnction to the
wide 2DEG regions 328 The filtenng of subbands by a gradually widening
constnction has an mterestmg effect on the angular distnbution of the
electrons mjected mto the wide 2DEG This hörn colhmation effect329 is
discussed in Section 15

An adiabatic constnction improves the accuracy of the conductance
quantization, but is not required to observe the effect Calculations312 324

show that well-defined conductance plateaux persist for abrupt constrictions,
especially if they are neither very short nor very long The Optimum length for
the observation of the plateaux is given by313 Lopt κ 04(WAF)1 / 2 In shorter
constrictions the plateaux acquire a finite slope, although they do not
disappear completely even at zero length For L > Lopt the calculations
exhibit regulär oscillations that depress the conductance periodically below
its quantized value The oscillations are damped and have usually vanished
before the next plateau is reached As a representative Illustration, we
reproduce m Fig 46 a set of numerical results for the conductance äs a
function of width (at fixed Fermi wave vector), obtamed by Szafer and
Stone 315 Note that a finite temperature improves the flatness of the plateaux,
äs observed expenmentally The existence of an optimum length can be
understood äs follows

Because of the abrupt widening of the constnction, there is a significant
probabihty for reflection at the exit of the constnction, in contrast to the
adiabatic case considered earher The conductance äs a function of width, or
Fermi energy, is therefore not a simple step function On the nth conductance
plateau backscattenng occurs predommantly for the nth subband, smce it
is closest to cutoff Resonant transmission of this subband occurs if

327L W Molenkamp, A A M Starmg, C W J Beenakker, R Eppenga, C E Timmermg, J G
Wilhamson, C J P M Harmans, and C T Foxon, Phys Rev B 41, 1274(1990)

328R Landauer, Z Phys B 68, 217 (1987)
329C W J Beenakker and H van Houten, Phys Rev B 39, 10445 (1989)
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FIG 46 Transmission resonances exhibited by theoretical results for the conductance of a
quantum pomt contact of abrupt (rectangular) shape A smeanng of the resonances occurs at
nonzero temperatures (T0 = 0 02 EP/kB ss 2 8 K) The dashed curve is an exact numencal result,
the füll curves are approximate Taken from A Szafer and A D Stone, Phys Rev Lett 62, 300
(1989)

the constnction length L is approximately an integer multiple of half
the longitudmal wavelength λη = h[2m(Ef — E„)]~1/2, leadmg to oscillations
on the conductance plateaux These transmission resonances are
damped, because the reflection probability decreases with decreasmg λη The
shortest value of λκ on the Nth conductance plateau is
h[_2m(EN +1 — EN)~] 1/2 χ (ΐνλρ)112 (for a square-well lateral confmmg potent-
lal) The transmission resonances are thus suppressed if L SS (VFAF)1/2

Transmission through evanescent modes (i e, subbands above £F) is pre-
dommant for the (N + l)th subband, smce it has the largest decay length
Λ,ν+ 1 = h[2m(EN+1 — £F)]

 1/2 The observation of that plateau requires
that the constnction length exceeds this decay length at the population
threshold of the Nth mode, or L > h[_2m(EN + 1 - ENJ] 1/2 « (W1F)

1/2 The
opümum length313 Lopt « 04(W1F)1/2 thus separates a short constnction
regime, in which transmission via evanescent modes cannot be ignored, from
a long constnction regime, in which transmission resonances obscure the
plateaux

Oscillatory structure was resolved in low-temperature expenments on the
conductance quantization of one quantum pomt contact by van Wees et
al ,308 but was not clearly seen in other devices A difficulty in the
Interpretation of these and other expenments is that oscillations can also be
caused by quantum mterference processes mvolving impunty scattenng near
the constnction Another expenmental observation of oscillatory structure
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FIG 47 Resistance äs a function of gate voltage for an elongated quantum pomt contact
(L = 0 8 μηι) aüemperatures of 0 2,0 4, and 0 8 K, showmg transmission resonances Subsequent
curves from the bottora are offset by l kQ Taken from R J Brown et al, Solid State Electron 32,
1179(1989)

was reported by Hirayama et al 33° for short (100-nm) quantum pomt
contacts of fixed width (defined by means of focused ιοη beam hthography)
To observe the plateaux, they slowly vaned the electron density by weakly
illummatmg the sample The oscillations were qmte reproducible, also after
thermal cyclmg of the sample, but agam they were found m some of the
devices only (this was attnbuted to vanations in the abruptness of the
constnctions330 331) Brown et al332 have studied the conductance of spht-
gate constnctions of lengths L a; 0 3, 08, and l μηι, and they observed
pronounced oscillations mstead of the Hat conductance plateaux found for
shorter quantum pomt contacts The observed oscillatory structure (repro-
duced in Fig 47) is quite regulär, and it correlates with the sequence of

330Y Hirayama, T Saku, and Υ Honkoshi, Phys Rev B 39, 5535 (1989)
3 3 1Y Hirayama, T Saku, and Υ Honkoshi, Jap J Appl Phys 28, L701 (1989)
332R J Brown, M J Kelly, R Newbury, M Pepper, B Miller, H Ahmed, D G Hasko, D C

Peacock,D A Ritchie,J E F Frost, and G A C Jones, Solid State Electron 32,1179(1989)
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pldteaux that is recovered at higher temperatures (around 0 8 K) The effect
was seen in all of the devices studied m Ref 332 Measurements by Timp et
al30<ä on rather similar 0 9-/mi-long constnctions did not show penodic
oscillations, however Brown et al conclude that their oscillations are due to
transmission resonances associated with reflections at entrance and exit of
the constnction Detailed companson with theory is difficult because the
transmission resonances depend sensitively on the shape of the lateral
confining potential and on the presence of a potential barner m the
constnction (see Section 13b) A calculation that comes close to the
observation of Brown et al has been pubhshed by Martm-Moreno and
Smith 333

b Depopulation of Subbands and Suppresswn of Backscattenng by a
Maqnetic Field

The effect of a magnetic field (perpendicular to the 2DEG) on the
quantized conductance of a pomt contact is shown in Fig 48, äs measured by
van Wees et a/3 3 4 First of all, Fig 48 demonstrates that the conductance
quantization is conserved in the presence of a magnetic field and shows a
smooth transition from zero-field quantization to quantum Hall effect The
most noticeable effect of the magnetic field is to reduce the number of
plateaux in a given gate voltage interval This provides a demonstration of
depopulation of magnetoelectnc subbands, which is more direct than that
provided by the expenments discussed in Section 10 In addition, one
observes that the flatness of the plateaux improves m the presence of the field
This is due to the reduction of the reflection probabihty at the pomt contact,
which is revealed most clearly in a somewhat different (four-termmal)
measurement configuration These two effects of a magnetic field will be
discussed separately We will return to the magnetic suppression of back-
scattermg m Section 18 m connection with the edge channel theory112 of the
quantum Hall effect

(1) Depopulation of Subbands. Because the equipartitionmg of current
among the 1D subbands holds regardless of the nature of the subbands
mvolved, one can conclude that in the presence of a magnetic field B the
conductance remams quantized accordmg to G = (2e2/h)N (ignormg spin
Splitting of the subbands, for simphcity) Exphcit calculations335 confirm this
expectation The number of occupied subbands N äs a function of B has been

333L Martm-Moreno and C G Smith, J Phys Condens Matter l, 5421 (1989)
334B J van Wees, L P Kouwenhoven, H van Houten, C W J Beenakker, J E Mooij, C T

Foxon, and J J Harris, Phys Rev B 38, 3625 (1988)
335M Buttiker Phys Rev B 41 7906 (1990), L I Glazman and A V Khaetskn, J Phys

Condens Matter l, 5005 (1989) Υ Avishai and Υ B Band, P^s Rev B 40, 3429 (1989), K B
Efetov, J Phys Condens Matter l, 5535 (1989)
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FIG. 48. Point contact conductance (corrected for a background resistance) äs a function of
gate voltage for several magnetic field values, illustrating the transition from zero-field
quantization to quantum Hall effect. The curves have been offset for clarity. The inset shows the
device geometry. Taken from B. J. van Wees et al, Phys. Rev. B. 38, 3625 (1988).

studied in Sections 10 and 12 and is given by Eqs. (10.7) and (10.8) for a
parabolic and a square-well potential, respectively. In the high-magnetic-field
regime W ^ 2/cycl, the number N χ EF/ha>c is just the number of occupied
Landau levels. The conductance quantization is then a manifestation of the
quantum Hall effect.8 (The fact that G is not a Hall conductance but a two-
terminal conductance is not an essential distinction for this effect; see Section
18.) At lower magnetic fields, the conductance quantization provides a direct
and extremely straightforward method to measure via N = G(2e2/h) ~1 the
depopulation of magnetoelectric subbands in the constriction.

Figure 49 shows N versus B~* for various gate voltages, äs it follows from
the experiment of Fig. 48. Also shown are the theoretical curves for a square-
well confining potential, with the potential barrier in the constriction taken
into account by replacing £F by EF — Ec in Eq. (10.8). The ß-dependence of
EP has been ignored in the calculation. The barrier height £c is obtained from
the high-field conductance plateaux [where N χ (EF — Ec)/ha>c~], and the
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l /B ( l / T )
FIG 49 Number of occupied subbands äs a function of reciprocal magnetic field for several

values of the gate voltage Data pomts have been obtamed directly from the quantized
conductance (Fig 48), solid curves are calculated for a square-well confinmg potential of width W
and well bottom Ec äs tabulated m the mset Taken from B J van Wees et al, Phys Rev B 38,
3625 (1988)

constnction width W then follows from the zero-field conductance (where
N χ [2m(£F — EJ/h2^1/2W/n) The good agreement found over the entire
field ränge confirms the expectation that the quantized conductance is
exclusively determmed by the number of occupied subbands, irrespective of
their electnc or magnetic ongm The analysis m Fig 49 is for a square-well
confinmg potential334 For the narrowest constnctions a parabohc potential
should be more appropnate,61 which has been used to analyze the data of
Fig 48 in Refs 336 and 308 Wharam et al337 have analyzed their
depopulation data usmg the intermediate model of a parabohc potential
with a flattened bottom (cf also Ref 336) Because of the uncertamties m the

336J F Weisz and K-F Berggren, Phys Rev B 40, 1325 (1989)
337D A Wharam, U Ekenberg, M Pepper,D G Hasko.H Ahmed, J E F Frost, D A Ritchie,

D C Peacock, and G A C Jones, Phys Rev B 39, 6283 (1989)



122 C. W. J. BEENAKKER AND H. VAN HOUTEN

actual shape of the potential, the parameter values tabulated in Fig. 49 should
be considered äs rough estimates only.

In strong magnetic fields the spin degeneracy of the energy levels is
removed, and additional plateaux appear7'334 at odd multiples of e2/h.
Wharam et al.1 have demonstrated this effect in a particularly clear fashion,
using a magnetic field parallel (rather than perpendicular) to the 2DEG.
Rather strong magnetic fields turned out to be required to fully lift the spin
degeneracy in this experiment (about 10 T).

(2) Suppression of Backscattering. Only a small fraction of the electrons
injected by the current source into the 2DEG is transmitted through the
point contact. The remaining electrons are scattered back into the source
contact. This is the origin of the nonzero resistance of a ballistic point
contact. In this subsection we shall discuss how a relatively weak magnetic
field leads to a suppression of the geometrical backscattering caused by the
finite width of the point contact, while the amount of backscattering caused
by the potential barrier in the point contact remains essentially unaffected.

The reduction of backscattering by a magnetic field is observed äs a
negative magnetoresistance [i.e., R(B) — jR(0) < 0] in a four-terminal measure-
ment of the longitudinal point contact resistance RL. The voltage probes in
this experiment1 13 are positioned on wide 2DEG regions, well away from the
constriction (see the inset in Fig. 50). This allows the establishment of local
equilibrium near the voltage probes, at least in weak magnetic fields (cf.
Sections 18 and 19), so that the measured four-terminal resistance does not
depend on the properties of the probes. The experimental results for RL in this
geometry are plotted in Fig. 50. The negative magnetoresistance is
temperature-independent (between 50 mK and 4 K) and is observed in weak
magnetic fields once the narrow constriction is defined (for Vg $ —0.3 V). At
stronger magnetic fields (B > 0.4 T), a crossover is observed to a positive
magnetoresistance. The zero-field resistance, the magnitude of the negative
magnetoresistance, the slope of the positive magnetoresistance, äs well äs the
crossover field, all increase with increasing negative gate voltage.

The magnetic field dependence of the four-terminal resistance shown in
Fig. 50 is qualitatively different from that of the two-terminal resistance
R2l = G~l considered in the previous subsection. In fact, R2i is approximate-
ly ß-independent in weak magnetic fields (below the crossover fields of Fig.
50). The reason is that R2t is given by [cf. Eq. (13.1)]

* 2 t = ~ (13-6)

with 7Vmin the number of occupied subbands in the constriction (at the point
where it has its minimum width and electron gas density). In weak magnetic
fields such that 2/cyc, > W, the number of occupied subbands remains
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FIG 50 Four-termmal longitudmal magnetoresistance RL of a constnction for a senes of gate
voltages The negative magnetoresistance is temperature mdependent between 50 mK and 4 K
Solid hnes are accordmg to Eqs (137) and (108), with the constnction width äs adjustable
Parameter The mset shows schematically the device geometry, with the two voltage probes used
to measure RL Taken from H van Houten et al, Phys Rev B 37, 8534 (1988)

approximately constant [cf Fig 31 or Eq (108)], so R2t is only weakly
dependent on B m this field regime For stronger fields Eq (136) descnbes a
positive magnetoresistance, because Nmm decreases due to the magnetic
depopulation of subbands discussed earlier (A similar positive magnetoresis-
tance is found m a Hall bar with a cross gate, see Ref 338) Why then does one
find a negative magnetoresistance in the four-termmal measurements of Fig
509 Quahtatively, the answer is shown m Fig 51, for a constnction without a
Potential barner In a magnetic field the left- and nght-moving electrons are
spatially separated by the Lorentz force at opposite sides of the constnction
Quantum mechamcally the skipping orbits m Fig 51 correspond to magnetic
edge states (cf Fig 41) Backscattenng thus reqmres scattermg across the
width of the constnction, which becomes mcreasingly improbable äs /cycl

becomes smaller and smaller compared with the width (compare Figs 51 a, b)
For this reason a magnetic field suppresses the geometncal constnction
resistance m the balhstic regime, but not the resistance associated with the
constnction in energy space, which is due to the potential barner

These effects were analyzed theoretically m Ref 113, with the simple result

R, =
h

2e2 \N,
l l

N.wide
(137)

8H Hirai, S Komiyama, S Sasa and T Fujn, Solid State Comm 72, 1033 (1989)
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b)

FIG 51 Illustration of the reduction of backscattermg by a magnetic field, which is
responsible for the negative magnetoresistance of Fig 50 Shown are trajectones approachmg a
constnction without a potential barner m a weak (a) and strong (b) magnetic field Taken from
H van Houten et al m 'Nanostructured Systems (M A Reed ed) Academic New York

Here Nwldc is the number of occupied Landau levels m the wide 2DEG
regions The simplest (but mcomplete) argument leadmg to Eq (13 7) is that
the additivity of voltages on reservoirs (ohmic contacts) imphes that the two-
termmal resistance R2t = (h/2e2)Nm^n should equal the sum of the Hall
resistance RH = (h/2e2)N ~,de and the longitudmal resistance RL This argu-
ment is mcomplete because it assumes that the Hall resistance in the wide
regions is not affected by the presence of the constnction This is correct m
general only if melastic scattenng has equilibrated the edge states transmitted
through the constnction before they reach a voltage probe Deviations from
Eq (137) can occur in the absence of local equihbrium near the voltage
probes, dependmg on the properties of the probes themselves We discuss this
m Section 19, followmg a denvation of Eq (137) from the Landauer-
Buttiker formahsm 112

At small magnetic fields yVmin is approximately constant, while
^wide ~ Et,/ha)c decreases hnearly with B Equation (13 7) thus predicts a
negative magnetoresistance If the electron density m the wide and narrow
regions is equal (i e, the barner height £c = 0), then the resistance RL vamshes
for fields B > Bct,t = 2hkF/eW This follows from Eq (13 7), because m this
case Nmm and JVwlde are identical If the electron density m the constnction is
less than its value in the wide region, then Eq (137) predicts a crossover at
ßcrit to a strong-field regime of positive magnetoresistance descnbed by

h ( h(0r hco,

ΪΡ
L ~ 2e2 \Ep-E, Ef ' cr"
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The expenmental results are well descnbed by the solid curves followmg
from Eq (137) (with Nmm given by the square-well result (10 8), and with an
added constant background resistance) The constnction m the present
expenment is relatively long (L « 3 4μητ), and wide (W ranging from 0 2 to
l Ο μηι) so that it does not exhibit quantized two-termmal conductance
plateaux in the absence of a magnetic field For this reason the discreteness of
yVm m was ignored m the theoretical curves m Fig 50 We emphasize, however,
that Eq (137) is equally apphcable to the quantized case, äs observed by
several groups307 339~342 (See Section 19)

The negative magnetoresistance (137) due to the suppression of the
contact resistance is an additive contnbution to the magnetoresistance of a
long and narrow channel in the quasi-ballistic regime (if the voltage piobes
are positioned on two wide 2DEG regions, connected by the channel) For a
channel of length L and a mean free path / the zero-field contact resistance is a
fraction ~ l/L of the Drude resistance and may thus be ignored for L » / The
strong-field positive magnetoresistance (138) resultmg from a different
electron density in the channel may still be important, however The effect of
the contact resistance may be suppressed to a large extent by usmg narrow
voltage probes attached to the channel itself rather than to wide 2DEG
regions As we will see m Section 16, such a solution no longer works in the
balhstic transport regime, because of the additional scattenng mduced289 by
the voltage probes

14 COHERENT ELECTRON FOCUSING

A magnetic field may be used to focus the electrons mjected by a point
contact onto a second point contact Electron focusing in metals was
ongmally conceived by Sharvin296 äs a method to mvestigate the shape of the
Fermi surface It has become a powerful tool m the study of surface
scattenng,343 and the electron-phonon interaction,344 äs reviewed in Refs
305, 345, and 346 The expenment is the analogue in the solid state of
magnetic focusing of electrons in vacuum Reqmred is a large mean free path
for the carriers at the Fermi surface, to ensure balhstic motion äs m vacuum
The mean free path should be much larger than the Separation L of the two
339S Washburn, A B Fowler, H Schmid, and D Kern, Phys Rev Leu 61, 2801 (1988)
340R J Haug,A H MacDonald, P Streda,andK von Khtzmg, Phys Rev Lett 61,2797(1988)
341R J Haug, J Kucera, P Streda, and K von Klitzing, Phys Rev B 39, 10892 (1989)
342B R Snell, P H Beton, P C Main, A Neves, J R Owers-Bradley, L Eaves, M Hemm, O H

Hughes, S P Beaumont, and C D W Wilkmson, J Phys Condens Matter l, 7499 (1989)
343V S Tsoi, Pis'ma Zh Eksp Teor Fiz 19, 114 (1974) [JETP Lett 19, 70 (1974)], Zh Eksp

Teor Fiz 68, 1849 (1975) [Sow Phys JETP 41, 927 (1975)]
344P C van Son, H van Kempen, and P Wyder, Phys Rev Lett 58, 1567 (1987)
345I K Yanson, Zh Eksp Teor Fiz 66, 1035 (1974) [Sov Phys JETP 39, 506 (1974)]
346A M Dmf, A G M Jansen, and P Wyder, J Phys Condens Matter l, 3157 (1989)
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pomt contacts Moreover, L should be much larger than the pomt contact
width W, to achieve optimal resolution In metals, electron focusmg is
essentially a classical phenomenon because the Fermi wavelength
x r ~ 0 5 n m is much smaller than both W ~ l μηι and L~ 100 μιη The
ratios λ-p/L and 1F/W are much larger in a 2DEG than m a metal, typically by
factors of l O4 and l O2, respectively Coherent electron focusmg59 80 347 is
possible in a 2DEG because of this relatively large value of the Fermi
wavelength, and turns out to be stnkmgly different from classical electron
focusmg in metals

Electron focusmg can be seen äs a transrmssion expenment m electron
optics (cf Ref 3 for a discussion from this pomt of view) An alternative pomt
of view (emphasized m Refs 80 and 348) is that coherent electron focusmg is a
prototype of a nonlocal resistance measurement m the quantum ballistic
transport regime, such äs studied extensively in narrow-channel geome-
tnes 31° Longitudmal resistances that are negative (not ±B Symmetrie) and
dependent on the properties of the current and voltage contacts äs well äs on
their Separation, penodic and apenodic magnetoresistance oscillations,
absence of local equilibnum are all charactenstic features of this transport
regime that appear in a most extreme and bare form m the electron focusmg
geometry One reason for the simplification offered by this geometry is that
the current and voltage contacts, being pomt contacts, are not nearly äs
mvasive äs the wide leads m a Hall bar geometry Another reason is that the
electrons mteract with only one boundary (mstead of two in a narrow
channel)

The outline of this section is äs follows In Section 14 a the expenmental
results on coherent electron focusmg59 80 are presented A theoretical
descnption80 347 is given in Section 14 b, m terms of mode interference m the
waveguide formed by the magnetic field at the 2DEG boundary Apart from
the mtrmsic mterest of electron focusmg in a 2DEG, the expenment can also
be seen äs a method to study electron scattenng, äs m metals Two such
apphcations108 349 are discussed m Section 14 c We restnct ourselves m this
section to focusmg by a magnetic field Electrostatic focusmg350 is discussed
m Section 15 b

a Experiments

The geometry of the expenment59 in a 2DEG is the transverse focusmg

347C W J Beenakker, H van Houten, and B J van Wees, Europhys Lett 7, 359 (1988)
348C W J Beenakker, H van Houten, and B J van Wees, Festkorperprobleme 29, 299 (1989)
349J Spector, H L Stornier, K W Baldwm, L N Pfeiffer and K W West, Surf Sei 228, 283

(1990)
350U Sivan, M Heiblum, and C P Umbach, and H Shtnkman, Phys Rev B 41, 7937 (1990), J

Spector, H L Stornier, K W Baldwm, L N Pfeiffer and K W West, Appl Phys Lett 56,
1290 (1990)
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FIG 52. Illustration of classical electron focusmg by a magnetic field. Top· Skippmg orbits
along the 2DEG boundary The trajectones are drawn up to the third specular reflection.
Bottom Plot of the caustics, which are the collection of focal points of the trajectones. Taken
from H van Houten et al, Phys Rev B 39, 8556 (1989)

geometry of Tsoi343 and consists of two point contacts on the same boundary
in a perpendicular magnetic field. (In metals one can also use the geometry of
Sharvin296 with opposite point contacts in a longitudinal field. This is not
possible in two dimensions.) Two point contacts and the intermediate 2DEG
boundary are created electrostatically by means of the two split gates shown
m Fig. 5b. Figure 52 illustrates electron focusing in two dimensions äs it
follows from the classical mechanics of electrons at the Fermi level. The
injector (i) injects a divergent beam of electrons ballistically into the 2DEG.
Electrons are detected if they reach the adjacent collector (c), after one or
more specular reflections at the boundary connecting i and c. (These are the
skipping orbits discussed m Section 12.a.) The focusing action of the magnetic
field is evident in Fig. 52 (top) from the black lines of high density of
trajectories. These lines are known in optics äs caustics and they are plotted
separately in Fig. 52 (bottom). The caustics intersect the 2DEG boundary at
multiples of the cyclotron diameter from the injector. As the magnetic field is
increased, a series of these focal points shifts past the collector. The electron
flux incident on the collector thus reaches a maximum whenever its
Separation L from the injector is an integer multiple of 2/cycl = 2hkF/eB. This
occurs when B = pBfocus, p = 1,2,.. . , with

ßrocus = 2hkF/eL. (14.1)

For a given injected current /, the voltage Fc on the collector is proportional
to the incident flux. The classical picture thus predicts a series of equidistant
peaks in the collector voltage äs a function of magnetic field.
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FIG. 53. Bottom: Experimental electron focusing spectrum (T= 50 mK, L= 3.0/im) in the
generalized Hall resistance configuration depicted in the inset. The two traces a and b are
measured with interchanged current and voltage leads, and demonstrate the injector-collector
reciprocity äs well äs the reproducibility of the fine structure. Top: Calculated classical focusing
spectrum corresponding to the experimental trace a (50-nm-wide point contacts were assumed).
The dashed line is the extrapolation of the classical Hall resistance seen in reverse fields. Taken
from H. van Houten et ai, Phys. Rev. B 39, 8556 (1989).

In Fig. 53 (top) we show such a classical focusing spectrum, calculated for
Parameters corresponding to the experiment discussed later (L = 3.0μηι,
/cF = 1.5 χ 108m~1). The spectrum consists of equidistant focusing peaks of
approximately equal magnitude superimposed on the Hall resistance (dashed
line). The pth peak is due to electrons injected perpendicularly to the
boundary that have made p — l specular reflections between injector and
collector. Such a classical focusing spectrum is commonly observed in
metals,351·352 albeit with a decreasing height of subsequent peaks because of
partially diffuse scattering at the metal surface. Note that the peaks occur in
one field direction only. In reverse fields the focal points are at the wrong side
of the injector for detection, and the normal Hall resistance is obtained. The
experimental result for a 2DEG is shown in the bottom half of Fig. 53 (trace a;
trace b is discussed later). A series of five focusing peaks is evident at the
expected positions. The observation of multiple focusing peaks immediately

351 P. A. M. Benistant, Ph.D. thesis, University of Nijmegen, The Netherlands, 1984; P. A. M.
Benistant, A. P. van Gelder, H. van Kempen, and P. Wyder, Phys. Rev. B 32, 3351 (1985).

352P. A. M. Benistant, G. F. A. van de Walle, H. van Kempen, and P. Wyder, Phys. Rev. B 33,690
(1986).
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implies that the electrostatically defined 2DEG boundary scatters predomi-
nantly specularly. (This finding59 is supported by the magnetoresistance
experiments of Thornton et a/.107 in a narrow split-gate channel; cf. Section
5.) Figure 53 is obtained in a measuring configuration (inset) in which an
imaginary line connecting the voltage probes crosses that between the current
source and drain. This is the configuration for a generalized Hall resistance
measurement. If the crossing is avoided, one measures a longitudinal
resistance, which shows the focusing peaks without a superimposed Hall
slope. This longitudinal resistance periodically becomes negative. This is a
classical result80 of magnetic defocusing, which causes the probability density
near the point contact voltage probe to be reduced with respect to the
spatially averaged probability density that determines the voltage on the
wide voltage probe (cf. the regions of reduced density between lines of focus in
Fig. 52).

On the experimental focusing peaks a fine structure is resolved at low
temperatures (below l K). The fine structure is well reproducible but
sample-dependent. A nice demonstration of the reproducibility of the fine
structure is obtained upon interchanging current and voltage leads, so that
the injector becomes the collector, and vice versa. The resulting focusing
spectrum shown in Fig. 53 (trace b) is almost the precise mirror image of the
original one (trace a), although this particular device had a strong asymmetry
in the widths of injector and collector. The symmetry in the focusing spectra
is an example of the general reciprocity relation (12.16). If one applies the
Büttiker equations (12.12) to the electron focusing geometry (äs is done in
Section 19), one finds that the ratio of collector voltage Fc to injector current
/i is given by

where T|^c is the transmission probability from injector to collector, and G-,
and Gc are the conductances of the injector and collector point contact. Since
T^C(B) = r^i(-ß) and G(B) = G(-B), this expression for the focusing
spectrum is manifestly Symmetrie under interchange of injector and collector
with reversal of the magnetic field.

The fine structure on the focusing peaks in Fig. 53 is the first indication
that electron focusing in a 2DEG is qualitatively different from the corre-
sponding experiment in metals. At higher magnetic fields the resemblance to
the classical focusing spectrum is lost; see Fig. 54. A Fourier transform of the
spectrum for B ^ 0.8 T (inset in Fig. 54) shows that the large-amplitude high-
field oscillations have a dominant periodicity of 0.1 T, which is approximately
the same äs the periodicity ßfocus of the much smaller focusing peaks at low
magnetic fields (ßfocus in Fig. 54 differs from Fig. 53 because of a smaller
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FIG 54 Expenmental electron focusmg spectrum over a larger field ränge and for very
narrow point contacts (estimated width 20-40nm, T= 50mK, L= l 5μηι) The mset gives the
Founer transform for B ̂  0 8 T The high-field oscillations have the same dominant penodicity
äs the low-field focusmg peaks, but with a much larger amphtude Taken from H van Houten et
al, Phys Rev B 39, 8556 (1989)

L = l 5 μηι) This dominant penodicity can be explamed m terms of quantum
mterference between the different skippmg orbits from mjector to collector or
in terms of mterference of coherently excited edge channels, äs we discuss in
the followmg subsection The expenmental imphcation is that the mjector
acts äs a coherent point source with the coherence mamtained over a distance
of several microns to the collector

b Theory

To explam the charactenstic features of the coherent electron focusmg
expenments we have descnbed, we must go beyond the classical de-
scnption As discussed in Section 12, quantum balhstic transport along
the 2DEG boundary in a magnetic field takes place via magnetic edge states,
which form the propagating modes at the Fermi level Since the mjector has a
width below AF, it excites these modes coherently For kFL » l the mter-
ference of modes at the collector is dommated by their rapidly varymg phase
factors exp(ik„L) The wave number k„ corresponds classically to the
Separation of the center of the cyclotron orbit from the 2DEG boundary [Eq
(125)] In the Landau gauge A = (0, Bx, 0) (with the axis chosen äs in Fig 52)
one has k„ = fcFsina„, where α is the angle with the x-axis under which the
cyclotron orbit is reflected from the boundary The quantized values oc„ follow
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FIG 55 Phase k„L of the edge channels a t the collector calculated from Eq (14 3) Note the

domam of approximately linear ίΐ-dependence of the phase, responsible for the oscillations with
Taken from H van Houten et al, Phys Rev B 39, 8556 (1989)

m Uns semiclassical descnption from the Bohr-Sommerfeld quantization
rule (126) that the flux enclosed by the cyclotron orbit and the boundary
equals (n - ^)h/e [the phase shift γ m Eq (12 6) equals π/2 for an edge state at
an infinite barner potential] Simple geometry shows that this requires that

π 1 0--«„--«.12«.=-
2π

'cycl

« = 1 , 2 , ,N (143)

As plotted m Fig 55, the dependence on n of the phase k„L is close to
linear m a broad mterval This also follows from expansion of Eq (143)
around a„ = 0, which gives

fc„L = constant — 2πη
B

χ order
N

(144)

If B/Bfocm is an integer, a fraction of order (l/kFL)1/3 of the N edge states
interfere constructively at the collector Because of the 1/3 power, this is a
substantial fraction even for the large krL ~ 102 of the expenment The
resulting mode interference oscillations with ßfocus-penodicity can become
much larger than the classical focusing peaks This has been shown in Refs
347 and 80, where the transmission probabihty T;^C was calculated in the
WKB approximation with neglect of the finite width of the injector and
detector From Eq (142) the focusing spectrum is then obtamed m the form

2 N „-i
(145)
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FIG. 56. Focusmg spectrum calculated from Eq. (14.5), for parameters corresponding to the
experimental Fig. 54. The inset shows the Fourier transform for B > 0.8 T. Infimtesimally small
point contact widths are assumed m the calculation. Taken from C. W. J. Beenakker et al,
Festkörperprobleme 29, 299 (1989).

which is plotted in Fig. 56 for parameter values corresponding to the
experimental Fig. 54. The inset shows the Fourier transform for B ^ 0.8 T.

There is no detailed one-to-one correspondence between the experimental
and theoretical spectra. No such correspondence was to be expected in view
of the sensitivity of the experimental spectrum to small variations in the
voltage on the gate defining the point contacts and the 2DEG boundary.
Those features of the experimental spectrum that are insensitive to the precise
measurement conditions are, however, well reproduced by the calculation:
We recognize in Fig. 56 the low-field focusing peaks and the large-amplitude
high-field oscillations with the same ßfocus!-periodicity. The high-field oscilla-
tions ränge from about 0 to 10kQ in both theory and experiment. The
maximum amplitude is not far below the theoretical upper bound of
h/2e2 χ 13 kü, which follows from Eq. (14.5) if we assume that all the modes
interfere constructively. This indicates that a maximal phase coherence is
realized in the experiment and implies that the experimental injector and
collector point contacts resemble the idealized point source/detector in the
calculation.

c. Scattering and Electron Focusing

Scattering events other than specular boundary scattering can be largely
ignored for the relatively small point contact separations L ζ 3 μιη in the
experiments discussed earlier59'80 (any other inelastic or elastic scattering



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 133

400
B(gauss)

800

FIG 57 Expenmental electron focusmg spectra (m the generahzed longitudmal resistance
configuration) at 0 3 K for five different mjector-collector separations in a very high mobihty
matenal The vertical scale vanes among the curves Taken from J Spector et al Surf Sei 228,
283 (1990)

events would have been detected äs a reduction of the oscillations with ßfocus-
penodicity below the theoretical estimate) Spector et al349 have repeated the
expenments for larger L to study scattermg processes m an ultrahigh
mobihty353354 2DEG (μ, = 5 5 χ 106cm2/Vs) They used relatively wide
pomt contacts (about l μπι) so that electron focusmg was m the classical
regime In Fig 57 we reproduce their expenmental results for pomt contact
separations up to 64 μπι The peaks m the focusmg spectrum for a given L
have a roughly constant amphtude, mdicatmg that scattermg at the bound-
ary is mostly specular rather than diffusive—in agreement with the expen-
ments of Ref 59 Spector et al349 find that the amphtude of the focusmg
peaks decreases exponentially with mcreasmg L, due to scattermg m the
electron gas (see Fig 58) The decay exp( —L/L0) with L0 χ W μπι imphes an
effective mean free path (measured along the arc of the skippmg orbits) of
L0n/2 κ 15 μπι This is smaller than the transport mean free path denved
from the conductivity by about a factor of 2, which may pomt to a greater
sensitivity of electron focusmg to forward scattermg

Electron focusmg by a magnetic field may also play a role m geometnes
other than the double-pomt contact geometry of Fig 52 One example is
mentioned in the context of junction scattermg m a cross geometry m Section
16 Another example is the expenment by Nakamura et allos on the
magnetoresistance of equally spaced narrow channels m parallel (see Fig 59)
353L Pfeiffer, K W West, H L Stornier, and K W Baldwm, Appl Phys Leu 55, 1888(1989)
354C T Foxori; j j Harns D Hilton, J Hewett, and C Roberts, Setmcond Sei Technol 4, 582

(1989), C T Foxon and J J Harns, Philips J Res 41, 313 (1986)
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FIG 58 Exponential decay of the oscillation amplitude of the collector voltage (normahzed
by the injector voltage) äs a function of mjector-collector Separation d (denoted by L m the text)
Taken from J Spector et al, Surf Sei 228, 283 (1990)

Resistance peaks occur m this expenment when electrons that are trans-
mitted through one of the channels are focused back through another
channel The resistance peaks occur at B = (n/m)ßfocus, where 5focus is given
by Eq (14 1) with L the spacing of adjacent channels The Identification of the
vanous peaks in Fig 59 is given m the mset Nakamura et al.108 conclude
from the rapidly dimmishmg height of consecutive focusmg peaks (which
require an mcreasmg number of specular reflections) that there is a large
probabihty of diffuse boundary scattermg The reason for the difference with
the expenments discussed previously is that the boundary in the expenment
of Fig 59 is defined by focused ιοη beam lithography, rather than electrostat-
ically by means of a gate As discussed in Section 5, the former technique may
mtroduce a considerable boundary roughness

Electron focusmg has been used by Williamson et al35S to study scattermg
processes for "hot" electrons, with an energy m excess of the Fermi energy,
and for "cool" holes, or empty states m the conduction band below the Fermi
level (see Ref 307 for a review) An interestmg aspect of hot-electron focusmg
is that it allows a measurement of the local electrostatic potential drop across
a current-carrymg quantum pomt contact,355 something that is not possible
usmg conventional resistance measurements, where the sum of electrostatic

355J G Williamson, H van Houten, C W J Beenakker, M E I Broekaart, L I A Spendeier, B
J van Wees, and C T Foxon, Phys Rev B 41, 1207 (1990), Surf Sei 229, 303 (1990)
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osciliations due to electron focusing, according to the mechanisms illustrated in the inset. The
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and chemical potentials is measured. The importance of such alternative
techniques to study electrical conduction has been stressed by Landauer.356

15. COLLIMATION

The subject of this section is the collimation of electrons injected by a
point contact329 and its effect on transport measurements in geometries

356R. Landauer, in "Analogies in Optics and Microelectronics" (W. van Haeringen and D.
Lenstra, eds.). Kluwer Academic, Dordrecht, 1990.
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mvolving two opposite pomt contacts 327 357 Collimation (i e, the narrowmg
of the angular mjection distnbutions) follows from the constramts on the
electron momentum imposed by the potential barner in the pomt contact
(barner colhmatwri), and by the gradual widenmg of the pomt contact at its
entrance and exit (hörn colhmatiori) We summanze the theory m Section 15 a
The effect was ongmally proposed329 to explam the remarkable observation
of Wharam et al357 that the senes resistance of two opposite pomt contacts is
considerably less than the sum of the two mdividual resistances (Section 15 c)
A direct expenmental proof of collimation was provided by Molenkamp et
al ,327 who measured the deflection of the mjected beam of electrons in a
magnetic field (Section 15 b) A related expenment by Sivan et al ,350 aimed at
the demonstration of the focusmg action of an electrostatic lens, is also
discussed m this subsection The collimation effect has an importance m
ballistic transport that goes beyond the pomt contact geometry It will be
shown in Section 16 that the phenomenon is at the ongm of a vanety of
magnetoresistance anomahes m narrow multiprobe conductors 358~360

a Theory

Smce collimation follows from classical mechanics, a semiclassical theory
is sufficient to descnbe the essential phenomena, äs we now discuss (following
Refs 329 and 311) Semiclassically, collimation results from the adiabatic
mvanance of the product of channel width W and absolute value of the
transverse momentum hky (this product is proportional to the action for
motion transverse to the channel)361 Therefore, if the electrostatic potential
in the pomt contact region is sufficiently smooth, the quantity S = \ky\W is
approximately constant from pomt contact entrance to exit Note that S/n
corresponds to the quantum mechamcal l D subband mdex n The quantum
mechanical cntenon for adiabatic transport was denved by Yacoby and
Imry326 (see Section 13) As was discussed there, adiabatic transport breaks
down at the exit of the pomt contact, where it widens abruptly into a 2DEG
of essentially infinite width Collimation reduces the m/ection/acceptance cone
of the pomt contact from its original value of π to a value of 2amix This effect
is illustrated m Fig 60 Electrons mcident at an angle |oc > amax from normal
mcidence are reflected (The geometry of Fig 60b is known m optics äs a
comcal reflector 362) Vice versa, all electrons leave the constnction at an angle

357D A Wharam, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A
Ritchie, and G A C Jones, J Phys C 21, L887 (1988)

358H U Baranger and A D Stone, Phys Rev Leu 63, 414 (1989), also m Ref 16
359C W J Beenakker and H van Houten, Phys Rev Leu 63, 1857 (1989)
360C W J Beenakker and H van Houten, m Ref 17
36 'L D Landau and E M Lifshitz, "Mechanics" Pergamon, Oxford, 1976
362N S Kapany, m "Concepts of Classical Optics" (J Strong, ed) Freeman, San Francisco,

1958
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w„

FIG 60 Illustration of the colhmation effect for an abrupt constnction (a) contammg a
Potential barner of height £c and for a horn-shaped constnction (b) that is flared from a width
Wmm to Wmax The dash-dotted trajectones approachmg at an angle α outside the mjection-
acceptance cone are reflected Taken from H van Houten and C W J Beenakker, in

Nanostructure Physics and Fabncation' (M Reed and W P Kirk, eds ) Academic, New York,
1989

M < a m i x ( i e > the mjected electrons form a colhmated beam of angular
openmg 2amix)

To obtdin an analytic expression for the colhmation effect, we descnbe the
shape of the potential m the pomt contact region by three parameters Wmm,
Wm^, and £c (see Fig 60) We consider the case that the pomt contact has its
minimal width Wmm at the pomt where the barner has its maximal height £c

above the bottom of the conduction band m the broad regions At that pomt
the largest possible value of S is

S, = (2m//J2)1/2(£F - Ec)
1/2Wm,n

We assume that adiabatic transport (i e , S = constant) holds up to a pomt of
zero barner height and maximal width Wmd^ The abrupt Separation of
adiabatic and nonadiabatic regions is a simphfication that can be, and has
been, tested by numencal calculations (see below) At the pomt contact exit,
the largest possible value of S is

The invanance of S implies that Sj = S2, hence,

/1 \ / F V/ 2 W
«m. = arcsm l , /-MM ^ 05 D

\J / X^F t-'c/ ''mm

The colhmation factor f ^ l is the product of a term descnbmg the
colhmatmg effect of a barner of height £c (barner colhmation) and a term
descnbmg colhmation due to a gradual widenmg of the pomt contact width
from Wmm to Wmix (hörn colhmation) In the adiabatic approximation, the
angular mjection distnbution P(a) is proportional to cos« with an abrupt
truncation at + amax The cosme angular dependence follows from the cosme
distnbution of the mcident flux in combination with time-reversal symmetry
and is thus not affected by the reduction of the mjection-acceptance cone
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We therefore conclude that m the adiabatic approximation P(oc) (normahzed
to unity) is given by

^(a) = i/ cos«, if α < arcsm(l//),

= 0, otherwise (152)

We defer to Section 15 b a companson of the analytical result (152) with a
numencal calculation

Barner collimation does not require adiabaticity For an abrupt barner,
colhmation simply results from transverse momentum conservation, äs m
Fig 60a, leadmg directly to Eq (152) (The total external reflection at an
abrupt barner for trajectones outside the colhmation cone is similar to the
optical effect of total mternal reflection at a boundary separatmg a region of
high refractive mdex from a region of small refractive mdex, see the end of
Section 15 b) A related colhmation effect resultmg from transverse mom-
entum conservation occurs if electrons tunnel through a potential barner
Since the tunnelmg probabihty through a high potential barner is only
weakly dependent on energy, it follows that the strengest colhmation is to be
expected if the barner height equals the Fermi energy On lowermg the
barner below EF ballistic transport over the barner dommates, and the
colhmation cone widens accordmg to Eq (152) A quantum mechanical
calculation of barner colhmation may be found in Ref 363

The injection distribution (152) can be used to obtam (m the semiclassical
hmit) the direct transmission probabihty 7 ,̂ between two opposite identical
pomt contacts separated by a large distance L To this end, first note that
Td/N is the fraction of the mjected current that reaches the opposite pomt
contact (smce the transmission probabihty through the first pomt contact is
N, for N occupied subbands in the pomt contact) Electrons mjected withm a
cone of openmg angle WmM/L centered at α = 0 reach the opposite pomt
contact and are transmitted If this openmg angle is much smaller than the
total openmg angle 2amix of the beam, then the distribution function P(a) can
be approximated by P(0) withm this cone This approximation requires
WmdX/L « l/f, which is satisfied expenmentally m devices with a sufficiently
large pomt contact Separation We thus obtam Td/N = P(Q)Wmm/L , which,
usmg Eq (15 2), can be written äs329

(153)

This simple analytical formula can be used to descnbe the experiments on
transport through identical opposite pomt contacts m terms of one empmcal
Parameter /, äs discussed in the following subsections

363H deRaedt, N Garcia, and J J Saenz, Phys Rev Lett 63, 2260(1989), N Garcia, J J Saenz,
and H de Raedt, J Phys Condens Matter l, 9931 (1989)
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FIG 61 Detection of a coihmated electron beam over a distance of 4 μιη. In this four-termmal
measurement, two ohmic contacts to the 2DEG region between the pomt contacts are used: One
of these acts äs a dram for the current /, through the mjector, and the other is used äs a zero-
reference for the voltage Kc on the collector. The drawn curve is the expenmental data at
T = l 8 K The black dots are the result of a semiclassical Simulation, usmg a hard-wall potential
with contours äs shown m the mset The dashed curve results from a Simulation without
colhmation (correspondmg to rectangular corners in the potential contour). Taken from L. W
Molenkamp et al, Phys Rev. B 41, 1274 (1990)

b. Magnetic Deflection of a Collimated Electron Beam

A method311'329 lo sensitively detect the collimated electron beam
injected by a point contact is to sweep the beam past a second opposite point
contact by means of a magnetic field. The geometry is shown in Fig. 61 (inset).
The current /, through the injecting point contact is drained to ground at one
or two (the difference is not essential) ends of the 2DEG channel separating
the point contacts. The opposite point contact, the collector, serves äs a
voltage probe (with the voltage Fc being measured relative to ground). In the
case that both ends of the 2DEG channel are grounded, the collector voltage
divided by the injected current is given by

GN'
Td « N, (15.4)

with G = (2e2/h)N the two-terminal conductance of the individual point
contact (both point contacts are assumed to be identical) and Td the direct
transmission probability between the two point contacts calculated in
Section 15.4. Equation (15.4) can be obtained from the Landauer-Büttiker
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formalism (äs done in Ref. 311) or simply by noting that the current I{Td/N
incident on the collector has to be counterbalanced by an equal outgoing
current GVC. In the absence of a magnetic field, we obtain [using Equation
(15.3) for the direct transmission probability]

'I·, 2e 2k F L

where feF is the Fermi wave vector in the region between the point contacts. In
an experimental Situation L and kf are known, so the collimation factor / can
be directly determined from the collector voltage by means of Eq. (15.5).

The result (15.5) holds in the absence of a magnetic field. A small magnetic
field B will deflect the collimated electron beam past the collector. Simple
geometry leads to the criterion L/2lcycl = amax for the cyclotron radius at
which Td is reduced to zero by the Lorentz force (assuming that L » Wmax).
One would thus expect to see in Vc/Ii a peak around zero field, of height given
by Eq. (15.5) and of width

Aß = (4MF/eL)arcsin(l//), (15.6)

according to Eq. (15.1).
In Fig. 61 this collimation peak is shown (solid curve), äs measured by

Molenkamp et a/.327 at T = 1.2 K in a device with a L = 4.0-μιη Separation
between injector and collector. In this measurement only one end of the
region between the point contacts was grounded — a measurement con-
figuration referred to in narrow Hall bar geometries äs a bend resistance
measurement289'364 (cf. Section 16). One can show, using the Landauer-
Büttiker formalism,5 that the height of the collimation peak is still given by
Eq. (15.5) if one replaces327/2 by /2 — ̂ . The expression (15.6) for the width
is not modified. The experimental result in Fig. 61 shows a peak height of
«l 50 Ω (measured relative to the background resistance at large magnetic
fields). Using L = 4.0 μηι and the value kF = 1.1 χ l O8 m"1 obtained from
Hall resistance measurements in the channel between the point contacts, one
deduces a collimation factor/« 1.85. The corresponding opening angle of the
injection/acceptance cone is 2amax « 65°. The calculated value of / would
imply a width AB χ 0.04 T, which is not far from the measured füll width at
half maximum of «0.03 T.

The experimental data in Fig. 61 are compared with the result327 from a
numerical Simulation of classical trajectories of the electrons at the Fermi
level (following the method of Ref. 329). This semiclassical calculation was
performed in order to relax the assumption of adiabatic transport in the point

364Y. Takagaki, K. Gamo, S. Namba, S. Ishida, S. Takaoka, K. Murase, K. Ishibashi, and Y.
Aoyagi, Solid State Comm. 68, 1051 (1988); 71, 809 (1989).
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FIG. 62. Calculated angular injection distri-
butions in zero magnetic field. The solid hist-
ogram is the result of a Simulation of the
classical trajectories at the Fermi energy in the
geometry shown in the inset of Fig. 61. The
dotted curve follows from the adiabatic
approximation (15.2), with the experimental
collimation factor /= 1.85. The dashed curve
is the cosine distribution in the absence of any
collimation. Taken from L. W. Molenkamp et
al, Phys. Rev. B. 41, 1274 (1990).

contact region, and of small Td/N, on which Eqs. (15.3) and (15.5) are based.
The dashed curve is for point contacts defined by hardwall contours with
straight corners (no collimation); the dots are for the smooth hardwall
contours shown in the inset, which lead to collimation via the hörn effect (cf.
Fig. 60b; the barrier collimation of Fig. 60a is presumably unimportant at the
small gate voltage used in the experiment and is not taken into account in the
numerical Simulation). The angular injection distributions P(a) that follow
from these numerical simulations are compared in Fig. 62 (solid histogram)
with the result (15.2) from the adiabatic approximation for/= 1.85 (dotted
curve). The uncollimated distribution P(x) = (cos a)/2 is also shown for
comparison (dashed curve). Taken together, Figs. 61 and 62 unequivocally
demonstrate the importance of collimation for the transport properties, äs
well äs the adequateness of the adiabatic approximation äs an estimator of
the collimation cone.

Once the point contact width becomes less than a wavelength, diffraction
inhibits collimation of the electron beam. In the limit kFW « l, the injection
distribution becomes proportional to cos2 α for all a, independent of the
shape of the potential in the point contact region.80·313 The coherent electron
focusing experiments59·80 discussed in Sections 14.a and 14.b were performed
in this limit.

We conclude this subsection by briefly discussing an alternative way to
increase the transmission probability between two opposite point contacts,
which is focusing of the injected electron beam onto the collector. Magnetic
focusing, discussed in Section 14 for adjacent point contacts, cannot be used
for opposite point contacts in two dimensions (unlike in three dimensions,
where a magnetic field along the line connecting the point contacts will focus
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FIG 63 Electrostatic focusmg onto a collector (c2) of an mjected
electron beam (at i) by means of a concave lens correspondmg to a
region of reduced electron density Focusmg m such an arrange-
ment was detected expenmentally 35°

the beam296) A succesful demonstration of electrostatic focusmg was recently
reported by Sivan et al and by Spector et al 35° The focusmg is achieved by
means of a potential barner of a concave shape, created äs a region of reduced
density in the 2DEG by means of a gate between the injector and the collector
(see Fig 63) A focusmg lens for electrons is concave because electrons
approachmg a potential barner are deflected in a direction perpendicular to
the normal This is an amusmg difference with light, which is deflected toward
the normal on entermg a more dense medium, so an optical focusmg lens is
convex The different dispersion laws are the ongm of this different behavior
of light and electrons 35°

c Senes Resistance

The first expenmental study of balhstic transport through two opposite
pomt contacts was carned out by Wharam et al ,357 who discovered that the
senes resistance is considerably less than the sum of the two individual
resistances Sugsequent expenments confirmed this result365 366 The
theoretical explanation329 of this observation is that collimation of the
electrons mjected by a pomt contact enhances the direct transmission
probabihty through the opposite pomt contact, thereby sigmficantly reduc-
ing the senes resistance below its ohmic value We will discuss the transport
and magnetotransport in this geometry We will not consider the alternative
geometry of two adjacent pomt contacts m parallel (studied m Refs 367-
369) In that geometry the collimation effect cannot enhance the couphng of
the two pomt contacts, so only small deviations from Ohm's law are to be
expected

365Y Hirayama and T Saku, Solid State Comm 73, 113 (1990), Phys Rev B 41, 2927 (1990)
366P H Beton, B R Snell, P C Main, A Neves, J R Owers-Bradley, L Eaves, M Hemm, O H

Hughes, S P Beaumont, and C D W Wilkmson, J Phys Condens Matter l, 7505 (1989)
367E Castano and G Kirczenow, Phys Rev B 41, 5055 (1990) Υ Avishai, M Kaveh, S Shatz,

and Υ B Band, J Phys Condens Matter l, 6907 (1989)
368C G Smith, M Pepper, R Newbury, H Ahmed, D G Hasko, D C Peacock, J E F Frost,

D A Ritchie, G A C Jones, and G Hill, J Phys Condens Matter l, 6763 (1989)
369Y Hirayama and T Saku, Jpn J Appl Phys (to be published)
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FIG 64 Magnetic field dependence of the senes conductance of two opposite pomt contacts
(measured äs shown m the mset, the point contact Separation is L= 1.0 μιη) for three different
values of the gate voltage (solid curves) at T= 100 mK For clanty, subsequent curves from
bottom to top are offset by 0.5 χ ΙΟ"^"1, with the lowest curve shown at its actual value. The
dotted curves are calculated from Eqs. (15.10) and (10.8), with the pomt contact width äs
adjuslable parameter Taken from A A M Starmg et al, Phys Rev B. 41, 8461 (1990)

The expression for the two-terminal series resistance of two identical
opposite point contacts in terms of the direct transmission probability can be
obtained from the Landauer-Büttiker formalism,5 äs was done in Ref. 329.
We give here an equivalent, somewhat more intuitive derivation. Consider
the geometry shown in Fig. 64 (inset). A fraction Td/N of the current GV
injected through the first point contact by the current source is directly
transmitted through the second point contact (and then drained to ground).
Here G = (2e2/h)N is the conductance of the individual point contact, and V
is the source-drain voltage. The remaining fraction l — Ta/N equilibrates in
the region between the pomt contacts, äs a result of inelastic scattering (elastic
scattering is sufficient if phase coherence does not play a role). Since that
region cannot drain charge (the attached contacts are not connected to
ground), these electrons will eventually leave via one of the two point
contacts. For a Symmetrie structure we may assume that the fraction
K! — Td/N) of the injected current GV is transmitted through the second
point contact after equilibration. The total source-drain current / is the sum
of the direct and indirect contributions:

(15.7)

(15.8)

The series conductance Gseries = I/V becomes
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In the absence of direct transmission (Td = 0), one recovers the ohmic
addition law for the resistance, äs expected for the case of complete
mtervening equihbration (cf the related analysis by Buttiker of tunnehng m
senes barners370 371) At the opposite extreme, if all transmission is
direct(Td = N), the senes conductance is identical to that of the smgle pomt
contact Substitutmg (15 3) into Eq (15 8), we obtain the result329 for small
but nonzero direct transmission

Gsenes=iG(l+/(^mix/2L)) (159)

The quantized plateaus in the senes resistance, observed expenment-
ally,357 are of course not obtamed m the semiclassical calculation leading to
Eq (15 9) However, since the nonadditivity is essentially a semiclassical
collimation effect, the present analysis should give a reasonably rehable
estimate of deviations from additivity for not too narrow pomt contacts For
a companson with expenments we refer to Refs 307 and 329 A fully
quantum mechanical calculation of the senes resistance has been carried out
numencally by Baranger (reported in Ref 306) for two closely spaced
constrictions

So far we have only considered the case of a zero magnetic field In a weak
magnetic field (2/cycl > L) the Situation is rather complicated As discussed in
detail m Ref 329, there are two competmg effects m weak fields On the one
hand, the deflection of the electron beam by the Lorentz force reduces the
direct transmission probability, with the effect of decreasing the senes
conductance On the other hand, the magnetic field enhances the indirect
transmission, with the opposite effect The result is an initial decrease m the
series conductance for small magnetic fields in the case of strong collimation
and an mcrease m the case of weak collimation This is expected to be a
relatively small effect compared with the effects at stronger fields that are
discussed below

In stronger fields (2/cycl < L), the direct transmission probability vamshes,
which greatly simphfies the Situation If we assume that all transmission
between the opposite pomt contacts is with mtervening equihbration, then
the result is329

Gser,es = ~

Here N is the (ß-dependent) number of occupied subbands m the pomt
contacts, and Nwide is the number of occupied Landau levels in the 2DEG
between the pomt contacts The physical ongm of the simple addition rule

370M Buttiker, Phys Rev B 33, 3020 (1986)
371M Buttiker, IBM J Res Dev 32, 63 (1988)
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(15.10) is additivity of the four-terminal longitudinal resistance (13.7). From
this additivity it follows that for n different point contacts in series, Eq. (15.10)
generalizes to

where

* wide

is the four-terminal longitudinal resistance of point contact i. Equation
(15.10) predicts a nonmonotonic ß-dependence for Gscrics. This can most
easily be seen by disregarding the discreteness of TV and Nwldc. We then have
NL « EF/hcoc, while the magnetic field dependence of N (for a square-well
confining potential in the point contacts) is given by Eq. (10.8). The resulting
ß-dependence of Gser,es is shown in Fig. 64 (dotted curves). The nonmono-
tonic behavior is due to the delayed depopulation of subbands in the point
contacts compared with the broad 2DEG. While the number of occupied
Landau levels Nwlde in the region between the point contacts decreases
steadily with B for 2/cyc, < L, the number N of occupied subbands in the
point contacts remains approximately constant until 2/Cimm κ Wmin, with
/c.min = 'cyci(l ~ Ε,./Ερ)112 denoting the cyclotron radius in the point contact
region. In this field interval Gseries increases with B, according to Eq. (15.10).
For stronger fields, depopulation in the point contacts begins to dominate
Gsenes, leading finally to a decreasing conductance (äs is the rule for single
point contacts; see Section 13.b). The peak in Gscnes thus occurs at
77 ~ w
^•'c.mm ^ r 'mm·

The remarkable camelback shape of Gserics versus B predicted by Eq.
(15.10) has been observed experimentally by Staring et a/.372 The data are
shown in Fig. 64 (solid curves) for three values of the gate voltage Kg at
T= 100mK. The measurement configuration is äs shown in the inset, with a
point contact Separation L = 1.0 μηι. The dotted curves in Fig. 64 are the
result of a one-parameter fit to the theoretical expression. It is seen that Eq.
(15.10) provides a good description of the Overall magnetoresistance behavior
from low magnetic fields up to the quantum Hall effect regime. The
additional structure in the experimental curves has several different origins,
for which we refer to the paper by Staring et a/.372 Similar structure in the
two-terminal resistance of a single point contact will be discussed in detail in
Section 21.

372A. A M. Staring, L. W. Molenkamp, C. W. J. Beenakker, L. P. Kcuwenhoven, and C. T.
Foxon, Phys. Rev. B. 41, 8461 (1990)
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We emphasize that Eq (15 10) is based on the assumption of completc
equihbration of the current-carrymg edge states m the region between the
pomt contacts In a quantizing magnetic field, local equihbnum is reached by
mter-Landau level scattermg If the potential landscape (both m the pomt
contacts themselves and m the 2DEG region m between) varies by less than
the Landau level Separation hcoc on the length scale of the magnetic length
(h/eB)i/2, then mter-Landau level scattermg is suppressed m the absence of
other scattermg mechanisms (see Section 18) This means that the transport
from one pomt contact to the other is adiabatic The senes conductance is
then simply Gsencs = (2e2/h)N for two identical pomt contacts
[TV = mn^/Vj, 7V2) for two different pomt contacts in senes] This expression
differs from Eq (15 10) if a barner is present in the pomt contacts, smce that
causes the number 7V of occupied Landau levels in the pomt contact to be less
than the number /Vw l d e of occupied levels in the wide 2DEG [In a strong
magnetic field, N χ (EF — Ec)/h(ac, while /V~wlde κ EF/h(ac ] Adiabatic trans-
port m a magnetic field through two pomt contacts m senes has been studied
expenmentally by Kouwenhoven et al373 and by Main et al374

16 JUNCTION SCATTERING

In the regime of diffusive transport, the Hall bar geometry (a straight
current-carrymg channel with small side contacts for voltage drop measure-
ments) is very convement, smce it allows an mdependent determmation of the
vanous components of the resistivity tensor A downscaled Hall bar was
therefore a natural first choice äs a geometry to study ballistic transport m a
2DEG6768 7 4 1 3 9 1 7 8 3 6 4 The resistances measured m narrow-channel
geometnes are mainly determmed by scattermg at thejunctions with the side
probes 289 These scattermg processes depend strongly on thejunction shape
This is m contrast to the pomt contact geometry, compare the very similar
results of van Wees et al6 and Wharam et alΊ on the quantized conductance
of pomt contacts of a rather different design The strong dependence of the
low-field Hall resistance on thejunction shape was demonstrated theoretical-
ly by Baranger and Stone358 and expenmentally by Ford et al71 and Chang
et al315 These results superseded many earher attempts (listed m Ref 360) to
explam the discovery by Roukes et al67 of the quenchmg of the Hall ejfect
without modehng the shape of the junction reahstically Baranger and
Stone358 argued that the rounded corners (present m a reahstic Situation) at
the junction between the mam channel and the side branches lead to a

373L P Kouwenhoven, B J van Wees, W Kool, C J P M Harmans, A A M Starmg, and C

T Foxon, Phy-i Rev B 40, 8083 (1989)
374P C Mam, P H Beton, B R Snell, A J M Neves, J R Owers-Bradley, L Eaves, S P

Beaumont, and C D W Wilkmson, Phys Rev B 40, 10033 (1989)
375A M Chang, T Υ Chang, and H U Baranger, Phys Rev Leu 63, 996 (1989)
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suppression (quenchmg) of the Hall resistance at low magnetic fields äs a
consequence of the hörn colhmation effect discussed m Section 15 a A Hall
bar with straight corners, m contrast, does not show a genenc suppression of
the Hall resistance,376"378 although quenchmg can occur for special para-
meter values if only a few subbands are occupied m the channel

The quenched Hall effect67 77 375 379 is just one of a whole vanety of
magnetoresistance anomahes observed m narrow Hall bars Other anomahes
are the last Hall plateau,67 68 77 139 178 379 remimscent of quantum Hall
plateaus, but occurrmg at much lower fields, the negative Hall resistance,17 äs
if the carners were holes rather than electrons, the bend resis-
tance,289 306 364 38° a longitudmal resistance associated with a current bend,
which is negative at small magnetic fields and zero at large fields, with an
overshoot to a positive value at mtermediate fields, and more

In Refs 359 and 360 we have shown that all these phenomena can be
quahtatively explamed m terms of a few simple semiclassical mechamsms
(reviewed m Section 16 a) The effects of quantum mterference and of
quantization of the lateral motion m the narrow conductor are not essential
These magnetoresistance anomalies can thus be charactenzed äs classical
magneto size effects in the balhstic regime In Section 5, we have discussed
classical size effects in the quasi-balhstic regime, where the mean free path is
larger than the channel width but smaller than the Separation between the
voltage probes In that regime, the si/e effects found in a 2DEG were known
from work on metal films and wires 102 These earher mvestigations had not
anticipated the diversity of magnetoresistance anomahes due to junction
scattermg in the balhstic regime That is not surpnsmg, considenng that the
theoretical formahsm to descnbe a resistance measurement within a mean
free path had not been developed in that context Indeed, this Landauer-
Buttiker formahsm (descnbed in Section 12) found one of its earliest
apphcations268 in the context of the quenchmg of the Hall effect, and the
success with which the expenmental magnetoresistance anomahes can be
descnbed by means of this formahsm forms strong evidence for its vahdity

a Mechamsms

The vanety of magnetoresistance anomahes mentioned can be understood
m terms of a few simple charactenstics of the curved trajectones of electrons
in a classical bilhard m the presence of a perpendicular magnetic field 359 36°

376D G Ravenhall, H W Wyld, and R L Schult, Phys Rev Lett 62, 1780(1989), R L Schult,
H W Wyld, and D G Ravenhall, Phys Rev B 41, 12760 (1990)

377G Kirczenow, Phys Rev Lett 62, 2993 (1989), Phys Rev B 42, 5375 (1990)
378H Akera and T Ando, Surf Sa 229, 268 (1990)
379C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, D C Peacock, D A

Ritchie, J E F Frost, and G A C Jones, Phys Rev B 38, 8518 (1988)
380Y Avishai and Υ Β Band, Phys Rev Lett 62, 2527 (1989)
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FIG 65 Classical trajectones m an electron bilhard, illustrating the colhmation (a), scram-
blmg (b), rebound (c), magnetic guidmg (d) and electron focusmg (e) effects. Taken from C. W. J.
Beenakker and H van Houten, m "Electronic Properties of Multilayers and Low-Dimensional
Semiconductor Structures" (J. M Chamberlam, L. Eaves, and J C. Portal, eds.). Plenum,
London 1990

At very small magnetic fields, collimation and scrambling are the key concepts.
The gradual widening of the channel on approaching the junction reduces the
injection-acceptance cone, which is the cone of angles with the channel axis
within which an electron is injected into the junction or within which an
electron can enter the channel coming from the junction. This is the hörn
collimation effect329 discussed in Section 15.a (see Fig. 65a). If the injection—
acceptance cone is smaller than 90°, then the cones of two channels at right
angles do not overlap. That means that an electron approaching the side
probe commg from the main channel will be reflected (Fig. 65a) and will then
typically undergo multiple reflections in the junction region (Fig. 65b). The
trajectory is thus scrambled, whereby the probabihty for the electron to enter
the left or right side probe in a weak magnetic field is equalized. This
suppresses the Hall voltage. This "scrambling" mechanism for the quenching
of the Hall effect requires a weaker collimation than the "nozzle" mechanism
put forward by Baranger and Stone358 (we return to both these mechanisms
in Section 16.c). Scrambling is not effective in the geometry shown in Fig. 65c,
in which a large portion of the boundary in the junction is oriented at
approximately 45° with the channel axis. An electron reflected from a side
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probe at this boundary has a large probabihty of entermg the opposite side
probe This is the "rebound" mechanism for a negative Hall resistance
proposed by Ford et al77

At somewhat larger magnetic fields, guidmg takes over As illustrated m
Fig 65d, the electron is guided by the magnetic field along equipotentials
around the corner Guidmg is fully effective when the cyclotron radms /cycl

becomes smaller than the minimal radius of curvature rmm of the corner—
that is, for magnetic fields greater than the guidmg field Bg = hkF/ermm In the
regime B <; Bg thejunction cannot scatter the electron back mto the channel
from which it came The absence of backscattermg in this case is an entirely
classical, weak-field phenomenon (cf Section 13 b) Because of the absence of
backscattermg, the longitudmal resistance vamshes, and the Hall resistance
RH becomes equal to the contact resistance of the channel, just äs in the
quantum Hall effect, but without quantization of Ru The contact resistance
^connci ~ (h/2e2)(n/kp W) is approximately mdependent of the magnetic field
for fields such that the cyclotron diameter 2/cycl is greater than the channel
width W, that is, for fields below ßcrit Ξ 2hkF/eW (see Sections 12 and 13)
This explams the occurrence of the "last plateau" in RH for Bg £ B ̂  ßcril äs a
classical effect At the low-field end of the plateau, the Hall resistance is
sensitive to geometncal >esonances that mcrease the fraction of electrons
guided around the corner mto the side probe Figure 65e illustrates the
occurrence of one such a geometncal resonance äs a result of the magnetic
focusing of electrons mto the side probe, at magnetic fields such that the
Separation of the two perpendicular channels is an integer multiple of the
cyclotron diameter This is in direct analogy with electron focusing m a
double-pomt contact geometry (see Section 14) and leads to penodic
oscillations supenmposed on the Hall plateau Another geometncal re-
sonance with similar effect is discussed m Ref 360

These mechamsms for oscillations m the resistance depend on a com-
mensurabihty between the cyclotron radius and a charactenstic dimension of
the junction, but do not mvolve the wavelength of the electrons äs an
mdependent length scale This distmguishes these geometncal resonances
conceptually from the quantum resonances due to bound states in the
junction considered in Refs 376, 377, and 380-382

b Magnetoresistance Anomahes

In this subsection we compare, followmg Ref 360, the semiclassical theory
with representative expenments on laterally confined two-dimensional

381G Kirczenow, Solid State Comtn 71, 469 (1989)
382F M Peeters, m Ref 16, Phys Rev Leu 61, 589 (1988), Superlattices and Microstructures 6,

217 (1989)
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FIG. 66. Hall resistance äs measured (solid
curve) by Simmons et a/.178, and äs calculated
dashed curve) for the hard-wall geometry in
Iheinset (W=0.8jum and £r = 14meV). The
dotted line is Rn in a bulk 2DEG. Taken from
C. W. J. Beenakker and H. van Houten in
"Electronic Properties of Multilayers and
Low-Dimensional Semiconductor Struc-
tures," (J. M. Chamberlain, L. Eaves, and J. C.
Portal, eds.). Plenum, London, 1990.

electron gases in high-mobility GaAs-AlGaAs heterostructures. The cal-
culations are based on a Simulation of the classical trajectories of a large
number (typically l O4) of electrons with the Fermi energy, to determine the
classical transmission probabilities. The resistances then follow from the
Büttiker formula (12.12). We refer to Refs. 359 and 360 for details on the
method of calculation. We first discuss the Hall resistance RH.

Figure 66 shows the precursor of the classical Hall plateau (the "last
plateau") in a relatively wide Hall cross. The experimental data (solid curve) is
from a paper by Simmons et a/.178 The semiclassical calculation (dashed
curve) is for a square-well confining potential of channel width W= 0.8 μηι
(äs estimated in the experimental paper) and with the relatively sharp corners
shown in the inset. The Fermi energy used in the calculation is EF = 14meV,
which corresponds (via ns = EFm/nh2) to a sheet density in the channel of
ns = 3.9 χ 10 1 5m~ 2, somewhat belowthe va lueof4.9x 10 1 5m~ 2 of the bulk
material in the experiment. Good agreement between theory and experiment
is seen in Fig. 66. Near zero magnetic field, the Hall resistance in this
geometry is close to the linear result RH = B/ens for a bulk 2DEG (dotted
line). The corners are sufficiently smooth to generate a Hall plateau via the
guiding mechanism discussed in Section 16.a. The hörn collimation effect,
however, is not sufficiently large to suppress RH at small B. Indeed, the
injection-acceptance cone for this junction is considerably wider (about
115°) than the maximal angular opening of 90° required for quenching of the
Hall effect via the scrambling mechanism described in Section 16.a.

The low-field Hall resistance changes drastically if the channel width
becomes smaller, relative to the radius of curvature of the corners. Figure 67a
shows experimental data by Ford et al.71 The solid and dotted curves are for
the geometries shown respectively in the upper left and lower right insets of
Fig. 67a. Note that these insets indicate the gates with which the Hall crosses
are defined electrostatically. The equipotentials in the 2DEG will be
smoother than the contours of the gates. The experiment shows a well-
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FIG. 67. Hall resistance äs measured (a) by Ford et al.11 and äs calculated (b). In (a) äs well äs
m (b), the solid curve corresponds to the geometry in the upper left mset, the dotted curve to the
geometry in the lower right inset. The insets in (a) indicate the shape of the gates, not the actual
confining potential. The insets in (b) show equipotentials of the confining potential at EF (thick
contour) and 0 (thin contour). The potential rises parabolically from 0 to £F, and vanishes in the
diamond-shaped region at the center of thejunction. Taken from C. W. J. Beenakker and H. van
Houten, in "Electronic Properties of Multilayers and Low-Dimensional Semiconductor
Structures" (J. M. Chamberlain, L. Eaves, and J. C. Portal, eds.). Plenum, London, 1990.

developed Hall plateau with superimposed fine structure. At small positive
fields RH is either quenched or negative, depending on the geometry. The
geometry is seen to affect also the width of the Hall plateau but not the height.
In Fig. 67b we give the results of the semiclassical theory for the two
geometries in the insets, which should be reasonable representations of the
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(a) (b)
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FIG. 68. Hall resistance Rn = R13 24 (a) and bend resistance RB = ß1243 (b), äs measured
(solid curves) by Timp et al.306 and äs calculated (dashed curves) for the geometry in the inset
(consisting of a parabolic confining potential with the equipotentials at £F and 0 shown
respectively äs thick and thin contours; the parameters are W= 100 nm and EF = 3.9 meV). The
dotted line in (a) is Rfi in a bulk 2DEG. Taken from C. W. J. Beenakker and H. van Houten, in
"Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures" (J. M.
Chamberlain, L. Eaves, and J. C. Portal, eds.). Plenum, London, 1990.

confining potential induced by the gates in the experiment. In the theoretical
plot the resistance and the magnetic field are given in units of

h
2?

hkF
—^r,,
eW

(16.1)

where the channel width W for the parabolic confinement used is defined äs
the Separation of the equipotentials at the Fermi energy (WpaT in Section 10).
The experimental estimates Wx90nm, ns « 1.2 χ ΙΟ15 m"2 imply
R0 = 5.2 kQ, B0 = 0.64 T. With these parameters the calculated resistance
and field scales do not agree well with the experiment, which may be due in
part to the uncertainties in the modeling of the shape of the experimental
confining potential. The ±B asymmetry in the experimental plot is un-
doubtedly due to asymmetries in the cross geometry [in the calculation the
geometry has fourfold symmetry, which leads automatically to
RH(B) = — RH( — B)~\. Apart from these differences, there is agreement in all
the important features: the appearance of quenched and negative Hall
resistances, the independence of the height of the last Hall plateau on the
smoothness of the corners, and the shift of the onset of the last plateau to
lower fields for smoother corners. The oscillations on the last plateau in the
calculation (which, äs we discussed in Section 16.a, are due to geometrical
resonances) are also quite similar to those in the experiment, indicating that
these are classical rather than quantum resonances.

We now turn to the bend resistance /?„. In Fig. 68 we show experimental
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data by Timp et al.306 (solid curves) on RE = R12,43 an<^ ^H = ^13,24
measured in the same Hall cross (defined by gates of a shape similar to that in
the lower right inset of Fig. 67a; see the inset of Fig. 68a for the numbering of
the channels). The dashed curves are calculated for a parabolic confming
Potential in the channels (with the experimental values W= lOOnm,
EF = 3.9 meV) and with corners äs shown in the inset of Fig. 68a. The
calculated quenching of the Hall resistance and the onset of the last plateau
are in good agreement with the experiment, and also the observed overshoot
of the bend resistance around 0.2 T äs well äs the width of the negative peak in
/?B around zero field are well described by the calculation. The calculated
height of the negative peak, however, is too small by more than a factor of 2.
We consider this disagreement to be significant in view of the quantitative
agreement with the other features in both RK and RH. The negative peak in RB

is due to the fact that the collimation effect couples the current source l more
strongly to voltage probe 3 than to voltage probe 4, so RE oc F4 — V3 is
negative for small magnetic fields (at larger fields the Lorentz force destroys
collimation by bending the trajectories, so RB shoots up to a positive value
until guiding takes over and brings RB down to zero by eliminating
backscattering at the junction). The discrepancy in Fig. 68b thus seems to
indicate that the semiclassical calculation underestimates the collimation
effect in this geometry. The positive overshoot of RB seen in Fig. 68b is found
only for rounded corners. This explains the near absence of the effect in the
calculation of Kirczenow381 for a junction with straight corners.

For a discussion of the temperature dependence of the magnetoresistance
anomalies, we refer to Ref. 360. Here it suffices to note that the experiments
discussed were carried out at temperatures around l K, for which we expect
the zero-temperature semiclassical calculation to be appropriate. At lower
temperatures the effects of quantum mechanical phase coherence that have
been neglected will become more important.195 At higher temperatures the
thermal average smears out the magnetoresistance anomalies and eventually
inelastic scattering causes a transition to the diffusive transport regime in
which the resistances have their normal ß-dependence.

c. Electron Waveguide versus Electron Billiard

The overall agreement between the experiments and the semiclassical
calculations is remarkable in view of the fact that the channel width in the
narrowest structures considered is comparable to the Fermi wavelength.
When the first experiments on these "electron waveguides" appeared, it was
expected that the presence of only a small number of occupied transverse
waveguide modes would fundamentally alter the nature of electron trans-
port.68 The results of Refs. 359 and 356 show instead that the modal structure
plays only a minor role and that the magnetoresistance anomalies observed
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are charactenstic for the classical balhstic transport regime The reason that a
phenomenon such äs the quenching of the Hall effect has been observed only
m Hall crosses with narrow channels is simply that the radius of curvature of
the corners at the junction is too small compared with the channel width in
wider structures This is not an essential limitation, and the vanous
magnetoresistance anomahes discussed here should be observable in macro-
scopic Hall bars with artificially smoothed corners, provided of course that
the dimensions of the junction remam well below the mean free path Balhstic
transport is essential, but a small number of occupied modes is not

Although we beheve that the charactenstic features of the magnetoresis-
tance anomahes are now understood, several mteresting points of disagree-
ment between theory and expenment remam that ment further mvestigation
One of these is the discrepancy m the magmtude of the negative bend
resistance at zero magnetic field noted before The disappearance of a region
of quenched Hall resistance at low electron density is another unexpected
observation by Chang et al375 and Roukes et al383 The semiclassical theory
predicts a universal behavior (for a given geometry) if the resistance and
magnetic field are scaled by R0 and B0 defined m Eq (16 1) For a square-well
confining potential the channel width W is the same at each energy, and smce
B0 oc kp one would expect the field region of quenched Hall resistance to vary
with the electron density äs ^/nb For a more reahstic smooth confining
potential, W depends on £F and thus on ns äs well, in a way that is difficult to
estimate reliably In any case, the expenments pomt to a systematic
disappearance of the quench at the lowest densities, which is not accounted
for by the present theory (and has been attnbuted by Chang et a/3 7 5 to
enhanced diffraction at low electron density äs a result of the mcrease in the
Fermi wavelength) For a detailed mvestigation of departures from classical
scalmg, we refer to a paper by Roukes et al384 As a third pomt, we mention
the cunous density dependence of the quenching observed in approximately
straight junctions by Roukes et al ,383 who find a low-field suppression of RH

that occurs only at or near certam specific values of the electron density The
semiclassical model applied to a straight Hall cross (either defined by a
square well or by a parabohc confining potential) gives a low-field slope of RH

close to its bulk 2D value The fully quantum mechanical calculations for a
straight junction376 381 do give quenching at special parameter values, but
not for the many-mode channels m this expenment (in which quenching
occurs with äs many äs 10 modes occupied, whereas in the calculations a
straight cross with more than 3 occupied modes m the channel does not show
a quench)

383M L Roukes, T J Thornton, A Scherer, J A Simmons, B P van der Gaag, and E D Beebe,
m Ref 16

384M L Roukes, A Scherer, and B P van der Gaag, Phys Rev Leu 64,1154(1990)
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In addition to the pomts of disagreement discussed, there are fine details in
the measured magnetoresistances, expecially at the lowest temperatures
(below lOOmK), which are not obtamed m the semiclassical approximation
The quantum mechanical calculations358 376 377 381 show a great deal of fine
structure due to mterference of the waves scattered by the junction The fine
structure m most expenments is not quite äs pronounced äs m the
calculations presumably partly äs a result of a loss of phase coherence after
many multiple scattermgs m the junction The limited degree of phase
coherence m the expenments and the smoothing effect of a finite temperature
help to make the semiclassical model work so well even for the narrowest
channels We draw attention to the fact that classical chaotic scattermg can
also be a source of irregulär resistance fluctuations (see Ref 360)

Some of the most pronounced features m the quantum mechanical
calculations are due to transmission resonances that result from the presence
of bound states m the junction3 7 6 3 7 7 3 8 0"3 8 2 In Section 16a we have
discussed a different mechamsm for transmission resonances that has a
classical, rather than a quantum mechanical, ongm As mentioned in Section
16b, the oscillations on the last Hall plateau observed expenmentally are
quite well accounted for by these geometncal resonances One way to
distinguish expenmentally between these resonance mechanisms is by means
of the temperature dependence, which should be much weaker for the
classical than for the quantum effect One would thus conclude that the
fluctuations in Fig 67a, measured by Ford et al77 at 4 2 K, have a classical
ongm, while the fine structure that Ford et al385 observe only at mK
temperatures (see below) is mtnnsically quantum mechanical

The differences between the semiclassical and the quantum mechamcdl
models may best be illustrated by considering once agam the quenching of
the Hall effect, which has the most subtle explanation and is the most
sensitive to the geometry among the magnetoresistance anomalies observed
in the balhstic regime The classical scrambhng of the trajectories after
multiple reflections suppresses the asymmetry between the transmission
probabihties t, and tr to enter the left or right voltage probe, and without this
transmission asymmetry there can be no Hall voltage We emphasize that this
sei ambhng mechamsm is consistent with the original fmdmgs of Baranger and
Stone358 that quenching requires colhmation The point is that the colhmat-
ιοη effect leads to nonoverlapping mjection-acceptance cones of two per-
pendicular channels, which ensures that electrons cannot enter the voltage
probe from the current source directly, but rather only after multiple
reflections (cf Section 16 a) In this way a rather weak colhmation to within
an mjection-acceptance cone of about 90° angular opemng is sufficient to

385C J B Ford, S Washburn, M Buttiker, C M Knoedler, and J M Hong, Surf Sa 229, 298
(1990)
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mduce a suppression of the Hall resistance via the scramblmg mechanism
Colhmation can also suppress RH directly by strongly reducmg tt and ir

relative to i, (the probabihty for transmission straight through the junction)
This nozzle mechanism, mtroduced by Baranger and Stone,358 requires a
strong colhmation of the mjected beam m order to affect RH appreciably In
the geometnes considered here, we find that quenchmg of RH is due
predommantly to scramblmg and not to the nozzle mechanism (t, and f r each
remain more than 30% of rs), but data by Baranger and Stone358 show that
both mechanisms can play an important role

There is a third proposed mechanism for the quenchmg of the Hall
effect,376 377 which is the reduction of the transmission asymmetry due to a
bound state m the junction The bound state mechanism is purely quantum
mechanical and does not reqmre colhmation (m contrast to the classical
scramblmg and nozzle mechanisms) Numencal calculations have shown that
it is only effective m straight Hall crosses with very narrow channels (not
more than three modes occupied), and even then for special values of the
Ferrm energy only Although this mechanism cannot account for the
expenments performed thus far, it may become of importance m future work
A resonant suppression of the Hall resistance may also occur m strong
magnetic fields, in the regime where the Hall resistance in wide Hall crosses
would be quantized Such an effect is mtimately related to the high-field
Aharonov-Bohm magnetoresistance oscillations in a singly connected
geometry (see Section 21) Ford et al385 have observed oscillations supenm-
posed on quantized Hall plateaux at low temperatures m very narrow crosses
of two different shapes (see Fig 69) The strong temperature dependence
indicates that these oscillations are resonances due to the formation of bound
states m the cross306 385 386

17 TUNNELING

In this section we review recent expenments on tunnelmg through
Potential barners m a two-dimensional electron gas Subsection 17.a deals
with resonant tunnelmg through a bound state m the region between two
barners Resonant tunnelmg has previously been studied extensively in
layered semiconductor heterostructures for transport perpendicular to the
layers 387~389 For example, a thm AlGaAs layer embedded between two
GaAs layers forms a potential barner, whose height and width can be tailored

386M Buttiker, m Ref 9
387R Tsu and L Esaki, Appl Phyi Leu 22, 562 (1973)
388L L Chang, L Esaki, and R Tsu, Appl Phys Leu 24, 593 (1974)
389E S Alves, L Eaves, M Hemm, O H Hughes, M L Leadbeater, F W Sheard, and G A

Toombs, Election Lett 24, 1190(1988)
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FIG. 69. Measured Hall resistance in an abrupt (a) and in a widened (b) cross äs a function of B
in the strong field regime. Large fluctuations are resolved at the low temperature of 22 mK. The
dotted curves indicate the reproducibility of the measurement. Taken from C. J. B. Ford et al
Surf. Sei. 229, 298(1990).

with great precision by means of advanced growth techniques (such äs
molecular beam epitaxy). Because of the free motion in the plane of the layers,
one can only realize bound states with respect to one direction. Tunneling
resonances are consequently smeared out over a broad energy ränge. A
2DEG offers the possibility of confinement in all directions and thus of a
sharp resonance. A gate allows one to define potential barriers of adjustable
height in the 2DEG. In contrast, the heterostructure layers form fixed
potential barriers, so one needs to study a current-voltage characteristic to
tune the System through a resonance (observable äs a peak in the I-V curve).
The gate-induced barriers in a 2DEG offer a useful additional degree of
freedom, allowing a study of resonant tunneling in the linear response regime
of small applied voltages (to which we limit the discussion in this review). A
drawback of these barriers is that their shape cannot be precisely controlled,
or modeled, so that a description of the tunneling process will of necessity be
qualitative.

Subsection 17.b deals with the effects of Coulomb repulsion on tunneling
in a 2DEG. The electrostatic effects of Charge buildup in the l D potential well
formed by heterostructure layers have received considerable attention in
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recent years 389 39° Because of the large capacitance of the potential well m
this case (resultmg from the large surface area of the layers) these are
macroscopic effects, mvolvmg a large number of electrons The 3D potential
well in a 2DEG nanostructure, m contrast, can have a very small capacitance
and may contam a few electrons only The tunnelmg of a smgle electron into
the well will then have a considerable effect on the electrostatic potential
difference with the surroundmg 2DEG For a small apphed voltage this effect
of the Coulomb repulsion can completely suppress the tunnelmg current In
metals this "Coulomb blockade" of tunnelmg has been studied extensive-
ly 391 In those Systems a semiclassical descnption suffices The large Ferrm
wavelength m a 2DEG should allow the study of quantum mechanical effects
on the Coulomb blockade or, more generally, of the interplay between
electron-electron mteractions and resonant tunnelmg 318 392 393

a Resonant Tunnelmg

The simplest geometry m which one might expect to observe transmission
resonances is formed by a smgle potential barner across a 2DEG channel
Such a geometry was studied by Washburn et al394 in a GaAs-AlGaAs
heterostructure contammg a 2-^m-wide channel with a 45-nm-long gate on
top of the heterostructure At low temperatures (around 20 mK) an irregulär
set of peaks was found m the conductance äs a function of gate voltage m the
region close to the depletion threshold The amphtude of the peaks was on
the order of e2/h The ongm of the effect could not be pmned down The
authors examme the possibility that transmission resonances associated with
a square potential barner are responsible for the oscillations m the con-
ductance, but also note that the actual barrier is more likely to be smooth on
the scale of the wavelength For such a smooth barrier the transmission
probability äs a function of energy does not show oscillations It seems most
likely that the effect is disorder-related Davies and Nixon395 have suggested
that some of the structure observed in this experiment could be due to
potential fluctuations in the region under the gate These fluctuations can be
rather pronounced close to the depletion threshold, due to the lack of
screening m the low-density electron gas A quantum mechanical calculation
of transmission through such a fluctuatmg barrier has not been performed
As discussed below, conductance peaks of order e2/h occur in the case of
390A Zaslavsky, V J Goldman, D C Tsui and J E Cunnmgham, Appl Phys Lett 53, 1408

(1988)
391K K Likharev, IBM J Res Dev 32, 144 (1988)
392K Ng and P A Lee, Phys Rev Lett 61, 1768 (1988)
393L I Glazman and K A Matveev, Pis'ma Zh Eksp Teor FIT. 48, 403 (1988) [_JETP Lett 48,

445 (1988)]
394S Washburn, A B Fowler, H Schmid, and D Kern, Phys Rev B 38, 1554 (1988)
395J H Davies, Semicond Sei Technol 3, 995 (1988) See also Ref 72
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resonant tunnelmg via locahzed states m the barner (associated with
impunties), a mechamsm that might well play a role m the expenment of
Washburn et al394

In pursuit of resonant tunnelmg m a 2DEG, Chou et al396 have fabncated
double-barner devices mvolvmg two closely spaced short gates across a wide
GaAs—AlGaAs heterostructure Both the spacmg and the length of the gates
were 100 nm They observed a peak m the transconductance (the derivative of
the channel current with respect to the gate voltage), which was attnbuted to
resonant tunnelmg through a quasi-bound state m the 2D potential well
between the barners Palevski et al391 have also mvestigated transport
through two closely spaced potential barners m a double-gate structure, but
they did not find evidence for transmission resonances

A 3D potential well has truly bound states and is expected to show
the strongest transmission resonances Transport through such a cavity or
"quantum box" has been studied theoretically by several
authors318 333 382 39S Experiments have been performed by Smith et
al 399~401 Their device is based on a quantum pomt contact, but contams two
potential barriers that separate the constnction from the wide 2DEG regions
(see the mset of Fig 70) As the negative gate voltage is mcreased, a potential
well is formed between the two barners, resultmg in confinement m all
directions The tunnelmg regime corresponds to a resistance R that is greater
than h/2e2 It is also possible to study the balhstic regime R < h/2e2 when the
height of the potential barriers is less than the Fermi energy In this regime
the transmission resonances are similar to the resonances in long quantum
pomt contacts (these are determmed by an mterplay of tunnelmg through
evanescent modes and reflection at the entrance and exit of the pomt contact,
cf Section 13) Results of Smith et al399 401 for the resistance äs a function of
gate voltage at 330 mK are reproduced in Fig 70 In the tunnelmg regime
(R > h/2e2) giant resistance oscillations are observed A regulär series of
smaller resistance peaks is found m the balhstic regime (R < h/2e2) Martm-
Moreno and Smith333 have modeled the electrostatic potential in the device
of Refs 399-401 and have performed a quantum mechanical calculation of

396S Υ Chou, D R Allee, R F W Pease, and J S Harris, Jr, Appl Phys Lett 55, 176 (1989)
397A Palevski, M Heiblum, C P Umbach, C M Knoedler, A N Broers, and R H Koch, Phys

Rev Lett 62, 1776 (1989)
398Y Avishai and Υ B Band, Phys Rev B 41, 3253 (1990)
399C G Smith, M Pepper, H Ahmed, J E Frost, D G Hasko, D C Peacock, D A Ritchie,

and G A C Jones, Superlattices and Microstructuref 5, 599 (1989)
400C G Smith, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A Ritchie,

and G A C Jones, J Phys C 21, L893 (1988)
40'C G Smith, M Pepper, H Ahmed, J E F Frost, D G Hasko, D A Ritchie, and G A C

Jones, Surf Sei 228, 387 (1990)
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FIG. 70. Resistance versus gate voltage of a cavity (defined by gates on top of a GaAs-AlGaAs
heterostructure; see inset), showing plateaulike features (for R < h/2e2) and tunneling resonances
(for R > h/2e2). The left- and right-hand curves refer to the adjacent resistance scales. Taken
from C. E. Smith et al, Surf. Sei. 228, 387 (1990).

the resistance. Very reasonable agreement with the experimental data in the
ballistic regime was obtained. The tunneling regime was not compared in
detail with the experimental data. The results were found to depend rather
critically on the assumed chape of the potential, in particular on the rounding
of the tops of the potential barriers. Martin-Moreno and Smith also
investigated the effects of asymmetries in the device structure on the tunneling
resonances and found in particular that small differences in the two barrier
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heights (of order 10%) lead to a sharp suppression of the resonances, a findmg
that sheds hght on the fact that they were observed in certain devices only
Expenmentally, the effect of a magnetic field on the oscillations in the
resistance versus gate voltage was also mvestigated 3"-401 A strong sup-
pression of the peaks was found m relatively weak magnetic fields (of about
OST)

Tunneling through a cavity, äs in the expenment by Smith et al ,399 401 is
formally equivalent to tunneling through an impunty state (see, e g, Refs 402
and 403) The dramatic subthreshold structure found in the conductance of
quasi-one-dimensional MOSFETs has been interpreted m terms of resonant
tunneling through a senes of localized states 32 35~37 Kopley et a/404 have
observed large conductance peaks m a MOSFET with a spht gate (see Fig
71) Below the 200-nm-wide slot m the gate, the Inversion layer is mterrupted
by a potential barner Pronounced conductance peaks were seen at 0 5 K äs
the gate voltage was vaned in the region close to threshold (see Fig 72) No
clear correlation was found between the channel width and the peak spacmg
or amphtude The peaks were attnbuted to resonant transmission through
smgle localized states associated with bound states m the Si band gap m the
nonmverted region under the gate

The theory of resonant tunneling of nomnteractmg electrons through
localized states between two-dimensional reservoirs was developed by Xue
and Lee405 (see also Refs 159 and 406) If the resonances are well separated in
energy, a smgle localized state will give the dominant contnbution to the
transmission probabihty The maximum conductance on resonance is then
e2/h (for one spm direction), regardless of the number of channels N m the
reservoirs 405 406 This maximum (which may be interpreted äs a contact
resistance, similar to that of a quantum pomt contact) is attamed if the
localized state has identical leak rates TL/h and FR/ft to the left and nght
reservoirs Provided these leak rates are small (cf Section 21) the conductance
G äs a function of Fermi energy Er is a Lorentzian centered around the
resonance energy E0

=
 e- Etl^ (171)

This is the Breit-Wigner formula of nuclear physics 93 For an asymmetn-
cally placed impunty the peak height is reduced below e2/h (by up to a factor
4FR/FL, if FL » FR)

402S J Bendmg and M R Beasley, Phys Rev Lett 55, 324 (1985)
403A B Fowler, G L Timp, J J Warner, and R A Webb, Phys Rev Lett 57, 138 (1986)
404T E Kopley, P L McEuen and R G Wheeler, Phys Rev Lett 61, 1654(1988), see also T E

Kopley, Ph D thesis, Yale University, 1989
405W Xue and P A Lee Phys Rev B 38, 3913 (1988)
406V Kalmeyer and R B Laughlm, Phys Rev B 35, 9805 (1987)
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FIG 71 Schematic diagram of a Si
MOSFET with a split gate (a), which creates a
Potential barner in the Inversion layer (b)
Taken from T E Kopley et al Phys Rev Lett
61, 1654 (1988)

The amphtudes of the peaks observed by Kopley et al404 were found to be
in agreement with this prediction, while the Ime shape of an isolated peak
could be well descnbed by a Lorentzian (see inset of Fig 72) (Most of the
peaks overlapped, hampermg a hne-shape analysis) In addition, they studied
the effect of a strong magnetic field on the conductance peaks and found that
the amphtudes of most peaks were substantially suppressed This was
mterpreted äs a reduction of the leak rates because of a reduced overlap
between the wave functions on the impunty and the reservoirs The
amphtude of one particular peak was found to be unaffected by the field,
mdicative of a symmetncally placed impunty m the barner (FR = FL), while
the width ofthat peak was reduced, m agreement with Eq (17 1) This study
therefore exhibits many charactenstic features of resonant tunnehng through
a smgle locahzed state

Transmission resonances due to an impunty m a quantum point contact

68 7 5
Gate voltage (volts)

FIG 72 Oscillations m the conductance äs a
function of gate voltage at 0 5 K are attnbuted to
resonant tunnehng through locahzed states in the
Potential barner A second trace is shown for a
magnetic field of 6 T (with a horizontal offset of
-004V) The inset is a close up of the largest
peak at 6 T, together with a Lorentzian fit Taken
from T E Kopley et al Phys Rev Lett 61, 1654
(1988)
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FIG 73 Conductance äs a function of gate voltage for a quantum pomt contact at 0 55 K The
inset is a close-up of the low-conductance regime, showmg peaks attnbuted to transmission
resonances associated with impunty states m the constnction Taken from P L McEuen et al,
SurJ Sei 229, 312 (1990)

or narrow channel have been studied theoretically m Refs 241, 407, and 408
In an expenment it may be difficult to distmguish these resonances from
those associated with reflection at the entrance and exit of the quantum pomt
contact (discussed m Section 13) A conductance peak associated with
resonant tunnelmg through an impunty state in a quantum pomt contact was
reported by McEuen et al409 The expenmental results are shown m Fig 73
The resonant tunnelmg peak is observed near the onset of the first
conductance plateau, where G < 2e2/h A second peak seen m Fig 73 was
conjectured to be a signature of resonant scattermg, in analog with similar
processes known in atomic physics 41°

We want to conclude this subsection on transmission resonances by
discussing an expenment by Smith et a/401411 on what is essentially a
Fabry-Perot mterferometer The device consists of a pomt contact with
external reflectors in front of its entrance and exit The reflectors are potential
barners erected by means of two additional gate electrodes (see Fig 74a) By

407C S Chu and R S Sorbello, Phys Rev B 40, 5941 (1989)
*08J Masek, P Lipavsky, and B Kramer, J Phys Condens Matter l, 6395 (1989)
409P L McEuen, B W Alphenaar, R G Wheeler, and R N Sacks, Surf Sa 229, 312 (1990)
410G J Schulz, Rev Mod Phys 45, 378 (1973)
*UC G Smith, M Pepper, J E Frost, D G Hasko, D C Peacock, D A Ritchie, and G A C

Jones, J Phys Condens Matter l, 9035 (1989)
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FIG. 74. (a) Schematic diagram of a constriction with two adjustable external reflectors
defined by gates on top of a GaAs-AlGaAs heterostructure. (b) Plot of the constriction
resistance äs a function of gate voltage with the external reflector gates (Yl, Y2) grounded. Inset:
Fabry-Perot-type transmission resonances due to a Variation of the gate voltage on the
reflectors (Yl, Y2) (bottom panel), and Fourier power spectrum (top panel). Taken from C. G.
Smith et al, Surf. Sei. 228, 387 (1990).

varying the gate voltage on the external reflectors of this device, Smith et al.
could tune the effective cavity length without changing the width of the
narrow section. This experiment is therefore more controlled than the
quantum dot experiment399"401 discussed earlier. The resulting periodic
transmission resonances are reproduced in Fig. 74b. A new oscillation
appears each time the Separation between the reflectors increases by AF/2. A
numerical calculation for a similar geometry was performed by Avishai et
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al412 The sigmficance of this expenment is that it is the first clear reahzation
of an electrostatically tuned electron interferometer Such a device has
potential transistor apphcations Other attempts to fabncate an electrostatic
interferometer have been less succesful The electrostatic Aharonov-Bohm
effect m a ring was discussed m Section 8 The sohd-state analogue of the
microwave stub tuner (proposed by Sols et a/413 and by Datta414) was
studied expenmentally by Miller et al415 The idea is to modify the
transmission through a narrow channel by changing the length of a side
branch (by means of a gate across the side branch) Miller et al have
fabncated such a T-shaped conductor and found some evidence for the
desired effect Much of the structure was due, however, to disorder-related
conductance fluctuations The electrostatic Aharonov-Bohm effect had
similar problems Transport m a long and narrow channel is simply not fully
balhstic, because of partially diffuse boundary scattermg and impunty
scattenng The device studied by Smith et al worked because it made use of a
very short constnction (a quantum pomt contact), while the modulation of
the interferometer length was done externally m the wide 2DEG, where the
effects of disorder are much less severe (m high-mobility matenal)

b Coulomb Blockade

In this subsection we would hke to speculate on the effects of electron-
electron interactions on tunnelmg through impunties in narrow semicon-
ductor channels, in relation to a recent paper m which Scott-Thomas et al416

announced the discovery of conductance oscillations penodic m the density
of a narrow Si Inversion layer The device features a contmuous gate on top of
a spht gate, äs illustrated schematically m Fig 75 In the expenment, the
voltage on the upper gate is vaned while the spht-gate voltage is kept
constant Figure 76 shows the conductance äs a function of gate voltage at
0 4 K, äs well äs a set of Founer power spectra obtamed for devices of
different length A stnkmg pattern of rapid penodic oscillations is seen No
correlation is found between the penodicity of the oscillations and the
channel length, in contrast to the transmission resonances in balhstic
constnctions discussed m Sections 13 and 17 a The oscillations die out äs the
channel conductance increases toward e2/h « 4 χ 10~ 5Ω" 1 The conduc-
tance peaks are relatively insensitive to a change in temperature, while the
mimma depend exponentially on temperature äs exp( —£a//cBT), with an
activation energy £a « 50 με V Pronounced nonhneanties occur m the

4 1 2Y Avishai, M Kaveh, and Υ B Band, preprmt
413F Sols, M Macucci, U Ravioli, and K Hess, Appl Phys Leu 54, 350 (1989)
414S Datta Superlattwes and Microstructures 6, 83 (1989)
415D S Miller, R K Lake, S Datta, M S Lundstrom, and R Reifenberger, m Ref 15
416J H F Scott-Thomas, S B Field, M A Kastner, H I Smith, and D A Antomadis, Phys

Rev Leu 62, 583 (1989)
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^~j- second oxide
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slotted
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FIG 75 Schematic cross sectional (a) and top (b) view of a double-gate Si MOSFET device
The lower spht gate is at a negative voltage, confinmg the Inversion layer (due to the positive
voltage on the upper gate) to a narrow channel Taken from J H F Scott-Thomas et al, Phys
Rev Leu 62, 583 (1989)
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FIG 76 Top panel Penodic oscillations m the conductance versus gate voltage at 0 4 K for a
ΙΟ-μηι-long Inversion channel Next three panels Fourter power spectra of this curve and of data
obtamed for 2- and Ι-μιη-long channels Bottom panel Founer spectrum for the Ι-μιη-long
device m a magnetic field of 6 T Taken from J H F Scott-Thomas et al, Phys Rev Leu 62, 583
(1989)

current äs a function of source-drain voltage An Interpretation m terms of
pmned charge density waves was suggested,416 based on a model due to
Larkm and Lee417 and Lee and Rice418 In such a model, one expects the
conductance to be thermally activated, because of the pmnmg of the Charge
density wave by impunties m the one-dimensional channel The activation

417A I Larkm and P A Lee, Phys Rev B 17, 1596 (1978)
418P A Lee and T M Rice, Phys Rev B 19, 3970 (1979)
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FIG 77 Schematic representation of the bottom of
the conduction band Ec and Fermi energy £F in the

2εΔ deviceofFig 76 along the channel The band bending
Ev at the connections of the narrow channel to the wide

source S and dram 0 regions anses from the higher
threshold for the electrostatic creation of a narrow
Inversion layer by a gate (shaded part) Tunnel

~\ barners associated with two scattermg centers are
C \ shown The maximum Fermi energy difference sus

tamable by the Coulomb blockade, A£F = +M
(where Δ = e/2C with C = C, + C2) is indicated
Taken from H van Houten and C W J Beenakker
Phys Rev Leu 63, 1893 (1989)

energy is determmed by the most strongly pmned segment m the channel, and
penodic oscillations m the conductance äs a function of gate voltage
correspond to the condition that an integer number of electrons is contamed
between the two impunties delimitmg that specific segment The same
Interpretation has been given to a similar effect observed m a narrow channel
in a GaAs-AlGaAs heterostructure by Meirav et al 85

We have proposed419 an alternative smgle-electron explanation of the
remarkable effect discovered by Scott-Thomas et a/,416 based upon the
concept of the Coulomb blockade of tunnehng mentioned at the beginnmg of
this section Likharev391 and Müllen et a/420 have studied theoretically the
possibihty of removmg the Coulomb blockade by capacitive chargmg (by
means of a gate electrode) of the region between two tunnel barners They
found that the conductance of this system exhibits penodic peaks äs a
function of gate voltage, due to the modulation of the net Charge (mod e) on
the mterbarner region Following the theoretical papers,391 42° the authors
in Ref 419 proposed that the current through the channel in the expenment
of Scott-Thomas et al416 is hmited by tunnehng through potential barners
constituted by two dominant scattenng centers that dehmit a segment of the
channel (see Fig 77) Because the number of electrons localized in the region
between the two barners is necessanly an integer, a Charge imbalance, and
hence an electrostatic potential difference, arises between this region and the
adjacent regions connected to wide electron gas reservoirs As the gate
voltage is varied, the resultmg Fermi level difference AEF oscillates in a
sawtooth pattern between + eA, where Δ = e/2C and C = C1 + C2 is the
effective capacitance of the region between the two barners The single-
electron chargmg energy e2/2C mamtains the Fermi level difference until
A£F = +eA (this is the Coulomb blockade) When AEF = +eA, the energy

41ς<Η van Houten and C W J Beenakker, Phys Rev Lett 63, 1893 (1989)
420K Müllen, E Ben-Jacob, R C Jaclevic, and Z Schuss, Phys Rev B 37, 98(1988), M Amman,

K Müllen, and E Ben-Jacob, J Appl Phys 65, 339 (1989)
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required for the transfer of a smgle electron to (or from) the region between
the two barners vanishes so that the Coulomb blockade is removed The
conductance then shows a maximum at low temperatures T and source-
drain voltages V (kB T/e, V < Δ) We note that m the case of very different
tunneling rates through the two barners, one would expect Steps m the
current äs a function of source-drain voltage, which are not observed m the
expenments 8S 416 For two similar barners this "Coulomb staircase" is
suppressed 42° The oscillation of the Fermi energy äs the gate voltage is
vaned thus leads to a sequence of conductance peaks The penodicity of the
oscillations corresponds to the addition of a smgle electron to the region
between the two scattermg centers formmg the tunnel barners, so the
oscillations are penodic in the density, äs in the expenment This single-
electron tunnelmg mechamsm also explams the observed activation of the
conductance minima and the insensitivity to a magnetic field 85 416 The
capacitance associated with the region between the scattermg centers is hard
to ascertam The expenmental value of the activation energy £a χ 50 με V
would imply C χ e2/2Ea χ 10~15 F Kastner et a/ 4 2 1 argue that the
capacitance in the device is smaller than this amount by an order of
magnitude (the mcrease in the effective capacitance due to the presence of the
gate electrodes is taken mto account m their estimate) In addition, they pomt
to a discrepancy between the value for the Coulomb blockade mferred from
the nonlinear conductance and that from the thermal activation energy The
temperature dependence of the oscillatory conductance was found to be
quahtatively different m the expenment by Meirav et al85 At elevated
temperatures an exponential T-dependence was found, but at low temper-
dtures the data suggest a much weaker T-dependence It is clear that more
expenmental and theoretical work is needed to arnve at a definitive
Interpretation of this intriguing phenomenon

It would be of interest to study the effects of the Coulomb blockade of
tunneling in a more controlled fashion in a structure with two adjustable
Potential barners Such an expenment was proposed by Glazman and
Shekter,422 who studied theoretically a System similar to the cavity of the
expenments by Smith et a/ 3 9 9 401 (discussed m Section 17a) A difficulty
with this type of device is, äs pomted out in Ref 422, that a Variation m gate
voltage affects the barrier height (and thus their transparency) äs well äs the
Charge m the cavity This is expected to lead to an exponential damping of the
oscillations due to the Coulomb blockade 391 42° A characteristic feature of
these oscillations is their insensitivity to an applied magnetic field, which can
serve to distinguish the effect from oscillations due to resonant tunneling
421M A Kastner, S B Field, U Meirav, J H F Scott-Thomas, D A Antomadis, and M I

Smith, Phys Rev Leu 63, 1894 (1989)
422L I Glazman and R I Shekhter, J Phys Condens Matter \, 5811 (1989)
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(Section 17 a) The field dependence of the peaks observed by Smith et
al399 401 in the tunnelmg regime was not reported, so the question of
whether or not the Coulomb oscillations are observed in their expenment
remains unanswered In our opinion, substantial progress could be made
with the development of Ihm tunnel barners of larger height, which would be
less sensitive to the application of an external gate voltage If our Interpre-
tation of the expenments by Scott-Thomas et al416 and Meirav et alB5 is
correct, such tunnelmg barners might be formed by the mcorporation of
negatively charged impunties (e g, lonized acceptors) in a narrow electron
gas channel This speculation is based on the fact that such acceptor
impunties are present in the Si Inversion layers of the expenment of Scott-
Thomas et al,416 äs well äs in the p-n junctions employed for lateral
confinement by Meirav et al8S

As we were completing this review, we learned of several expenments that
demonstrate the Coulomb blockade in spht-gate confined GaAs-AlGaAs
heterostructures 423~425 These expenments should open the way for the
controlled study of the effects of Coulomb mteractions on tunnelmg in
semiconductor nanostructures

IV. Adiabatic Transport

18 EDGE CHANNELS AND THE QUANTUM HALL EFFECT

In this section we give an overview of the charactenstics of adiabatic
transport via edge channels in the regime of the quantum Hall effect äs a
background to the following sections We restnct ourselves here to the integer
quantum Hall effect, where the edge channels can be descnbed by smgle-
electron states Recent developments on adiabatic transport in the regime of
the fractional quantum Hall effect (which is fundamentally a many-body
effect) will be considered in Section 20

a Introductwn

Both the quantum Hall effect (QHE) and the quantized conductance of a
balhstic pomt contact are descnbed by the same relation, G = Ne2/h,
between the conductance G and the number N of propagating modes at the
Fermi level (counting both spin directions separately) The smooth transition
from zero-field quantization to QHE that follows from this relation is evident
from Fig 48 The nature of the modes is very different, however, in weak and
strong magnetic fields As we discussed in Section 12 a, the propagating

423R J Brown, M Pepper, H Ahmed, D G Hasko, R A Ritchie, J E F Frost, D C Peacock,
and G A C Jones, J Phys Condens Matter, 2, 2105 (1990)

42*L P Kouwenhoven, private commumcation, R Haug, private commumcation
425U Meirav, M A Kastner, and S J Wind, Phys Rev Lett 65, 771 (1990)
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modes m a strong magnetic field consist of edge states, which mteract with
one of the sample edges only Edge states with the same mode mdex are
referred to collectively äs an edge channel Edge channels at opposite edges
propagate m opposite directions In a weak magnetic field, m contrast, the
modes consist of magnetoelectnc subbands that mteract with both edges In
that case there is no spatial Separation of modes propagatmg m opposite
directions

The different spatial extension of edge channels and magnetoelectnc
subbands leads to an entirely different sensitivity to scattermg processes in
weak and strong magnetic fields Firstly, the zero-field conductance
quantization is destroyed by a small amount of elastic scattermg (due to
impunties or roughness of the channel boundanes, cf Refs 313, 316, 317,407,
and 408), while the QHE is robust to scattermg97 This difference is a
consequence of the suppression ofbackscattenng by a magnetic field discussed
m Section 13b, which itself follows from the spatial Separation at opposite
edges of edge channels moving m opposite directions Second, the spatial
Separation of edge channels at the same edge in the case of a smooth confinmg
Potential opens up the possibihty of adiabatic transport (i e, the füll
suppression of interedge channel scattermg) In weak magnetic fields,
adiabaticity is of importance within a pomt contact, but not on longer length
scales (cf Sections 13 a and 15 a) In a wide 2DEG region, scattermg among
the modes in weak fields estabhshes local equilibnum on a length scale given
by the melastic scattermg length (which m a high-mobility GaAs-AlGaAs
heterostructure is presumably not much longer than the elastic scattermg
length /~10μηι) The Situation is stnkmgly different m a strong magnetic
field, where the selectwe population and detection of edge channels observed
by van Wees et al426 has demonstrated the persistence of adiabaticity outside
the pomt contact

In the absence of interedge channel scattermg the vanous edge channels at
the same boundary can be occupied up to different energies and consequently
carry different amounts of current The electron gas at the edge of the sample
is then not m local equilibnum Over some long distance (which is not yet
known precisely) adiabaticity breaks down, leadmg to a partial equihbration
of the edge channels However, äs demonstrated by Komiyama et al421 ar.d
by others,307 428~430 local equilibnum is not fully established even on

426B J van Wees, E M M Willems, C J P M Harmans, C W J Beenakker, H van Houten, J
G Wilhamson, C T Foxon, and J J Harns, Phys Rev Lett 62, 1181 (1989)

427S Komiyama, H Hirai, S Sasa, and S Hiyamizu, Phys Rev B 40, 12566 (1989)
428B J van Wees, E M M Willems, L P Kouwenhoven, C J P M Harmans, J G

Wilhamson, C T Foxon, and J J Harris, Phys Rev B 39, 8066 (1989)
429B W Alphenaar, P L McEuen, R G Wheeler, and R N Sacks, Phys Rev Lett 64, 677

(1990)
430R J Haug and K von Klitzmg, Europhys Lett 10, 489 (1989)
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macroscopic length scales exceedmg 0 25 mm Smce local equihbrmm is a
prereqmsite for the use of a local resistivity tensor, these findmgs imply a
nonlocahty of the transport that had not been anticipated m theones of the
QHE (which are commonly expressed m terms of a local resistivity) 97

A theory of the QHE that is able to explam anomahes resulting from the
absence of local equihbnum has to take mto account the properties of the
current and voltage contacts used to measure the Hall resistance That is not
necessary if local equihbrmm is estabhshed at the voltage contacts, for the
fundamental reason that two Systems in equihbnum that are in contact have
identical electrochemical potentials In the Landauer-Buttiker formahsm
descnbed m Section 12 b, the contacts are modeled by electron gas reservoirs
and the resistances are expressed m terms of transmission probabilities of
propagatmg modes at the Fermi level from one reservoir to the other This
formahsm is not restncted to zero or weak magnetic fields, but can equally
well be apphed to the QHE, where edge channels form the modes In this way
Buttiker could show112 that the nomdeahty of the couphng of the reservoirs
to the conductor affects the accuracy of the QHE m the absence of local
equilibnum An ideal contact in the QHE is one that establishes an
equihbnum population among the outgoing edge channels by distnbuting
the mjected current equally among these propagatmg modes (this is the
equipartitionmg of current discussed for an ideal electron waveguide m
Section 12 b) A quantum point contact that selectively populates certain
edge channels426 can thus be seen äs an extreme example of a nonideal, or
disoidered, contact

b Edge Channels m a Disordered Conductor

After this general introduction, let us now discuss in some detail how edge
channels are formed at the boundary of a 2DEG in a strong magnetic field In
Section 12 a we discussed the edge states m the case of a narrow channel
without disorder, relevant for the point contact geometry Edge states were
seen to ongmate from Landau levels, which m the bulk he below the Fermi
level but nse in energy on approaching the sample boundary (cf Fig 40b)
The point of mtersection of the rcth Landau level (n = l, 2, ) with the Fermi
level forms the site of edge states belonging to the «th edge channel The
number 7V of edge channels at £F is equal to the number of bulk Landau
levels below £h This descnption can easily be generahzed to the case of a
slowly varying potential energy landscape V(x, y) m the 2DEG, m which case
a semiclassical analysis can be apphed 431 The energy £F of an electron at the
Fermi level m a strong magnetic field contams a part (n — i)ftcoc due to the
43'R Kubo, S J Miyake, and N Hashitsume, "Solid State Physics," Vol 17 (F Seitz and D

Turnbull, eds) Academic Press, New York, 1965 M Tsukada, J Phys Soc Jap, 41, 1466
(1976)
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quantized cyclotron motion and a part ±^μΒΒ (depending on the spm
direction) from spm Splitting The remamder is the energy £G due to the
electrostatic potential

The cyclotron orbit center R is guided along equipotentials of V at the
guidmg center energy EG As derived in Section 11 b, the dnft velocity vdnft of
the orbit center (known äs the guidmg center dnft or E χ B drift) is given by

vdnfl(R) = ̂ VF(R)xB, (182)

which mdeed is parallel to the equipotentials An important distmction with
the weak-field case of Section 11 b is that the spatial extension of the
cyclotron orbit can now be neglected, so V is evaluated at the position of the
orbit center in Eq (18 2) [compared with Eq (11 1)] The guidmg center drift
contnbutes a kinetic energy ^mv2

tnfl to the energy of the electron, which is
small for large B and smooth V (More precisely, imt;dnft«hwc if
|VF| « ha>Jlm, with lm the magnetic length defined äs lm = (h/eß)1'2) This
kinetic energy term has therefore not been mcluded m Eq (18 1)

The simphcity of the guidmg center drift along equipotentials has been
origmally used m the percolation theory432 434 of the QHE, soon after its
expenmental discovery 8 In this theory the existence of edge states is ignored,
so the Hall resistance is not expressed m terms of equihbnum properties of
the 2DEG (m contrast to the edge channel formulation that will be discussed)
The physical requirements on the smoothness of the disorder potential have
received considerable attention435 436 m the context of the percolation
theory and, more recently,437 439 m the context of adiabatic transport m
edge channels Strong potential variations should occur on a spatial scale
that is large compared with the magnetic length /m (/m corresponds to the
cyclotron radius m the QHE, /cycl = lm(2n — 1)1/2 κ lm if the Landau level
mdex n κ 1) More rapid potential fluctuations may be present provided their
amphtude is much less than fto>c (the energy Separation of Landau levels)

432R ¥ Kazarmov and S Luryi, Phys Rev B 25, 7626 (1982), S Luryi and R F Kazarmov,

Phys Rev B 27, 1386 (1983), S Luryi, m "High Magnetic Fields in Semiconductor Physics"

(G Landwehr, ed) Springer, Berlin, 1987
433S V lordansky, Solid State Comm 43, l (1982)
434S A Trugman, Phys Rev B 27, 7539 (1983)
435R Joynt and R E Prange, Phys Rev B 29, 3303 (1984)
436R E Prange, m Ref 97
437L I Glazman and M Jonson, J Phys Condens Matter l, 5547 (1989)
438L I Glazman and M Jonson, Phys Rev B 41, 10686 (1990)
439T Martin and S Feng, Phyt Rev Lett 64, 1971 (1990)
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FIG 78 Formation of edge channels m a disordered potential, from vanous viewpomts
discussed m the text

In Fig 78 we have illustrated the formation of edge channels m a smooth
potential energy landscape from vanous viewpomts The wave functions of
states at the Fermi level are extended along equipotentials at the guiding
center energy (18 1), äs shown m Fig 78a (for Landau level mdex n = l, 2, 3
and a smgle spm direction) One can distinguish between extended states near
the sample boundanes and locahzed states encircling potential maxima and
mimma in the bulk The extended states at the Fermi level form the edge
channels The edge channel with the smallest mdex n is closest to the sample
boundary, because it has the largest EG [Eq (18 1)] This is seen more clearly
m the cross-sectional plot of V(x, y) in Fig 78b (along the hne connectmg the
two arrows m Fig 78a) The location of the states at the Fermi level is
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FIG 79 Measurement configuration for the two-termmal resistance R2t, the four-termmal
Hall resistance RH, and the longitudmal resistance RL The edge channels at the Ferrni level are
mdicated, arrows pomt m the direction of motion of edge channels filled by the source contact at
chemical potential £F + δμ The current is equipartitioned among the edge channels at the upper
edge, correspondmg to the case of local equihbnum

mdicated by dots and crosses (dependmg on the direction of motion) The
value of EG for each n is mdicated by the dashed hne If the peaks and dips of
the potential in the bulk have amphtudes below ftcuc/2, then only states with
highest Landau level mdex can exist m the bulk at the Fermi level This is
obvious from Fig 78c, which shows the total energy of a state
EG + (n — ΐ)^ως along the same cross section äs Fig 78b If one identmes
k = —xeB/h, this plot can be compared with Fig 40b of the dispersion
relation £„(&) for a disorder-free electron waveguide m strong magnetic field

A descnption of the QHE based on extended edge states and localized
bulk states, äs in Fig 78, was first put forward by Halperm440 and further
developed by several authors 441 444 In these papers a local equilibnum is
assumed at each edge In the presence of a chemical potential difference δμ
between the edges, each edge channel carnes a current (ε/Κ)δμ and thus
contnbutes e2/h to the Hall conductance (cf the denvation of Landauer's
formula in Section 12 b) In this case of local equilibnum the two-termmal
resistance R2i of the Hall bar is the same äs the four-termmal Hall resistance
RH = R2i = h/e2N (see Fig 79) The longitudmal resistance vamshes, RL = 0

440B I Halperm, Phys Rev B 25, 2185 (1982)
441A H MacDonald and P Streda, Phys Rev B 29, 1616 (1984)
442S M Apenko and Yu E Lozovik, J Phys C 18, 1197 (1985)
443P Streda, J Kucera, and A H MacDonald, Phys Rev Leu 59, 1973 (1987)
444J K Jam and S A Kivelson, Phys Rev B 37, 4276 (1988)
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The distmction between a longitudmal and Hall resistance is topological A
four-termmal resistance measurement gives RH if current and voltage
contacts alternate along the boundary of the conductor, and RL if that is not
the case There is no need to further charactenze the contacts m the case of
local equilibnum at the edge

If the edges are not m local equihbnum, the measured resistance depends
on the properties of the contacts Consider, for example, a Situation m which
the edge channels at the lower edge are m equilibnum at chemical potential
EF, while the edge channels at the upper edge are not m local equilibnum
The current at the upper edge is then not equipartitioned among the N
modes Let /„ be the fraction of the total current / that is carned by states
above EF m the nih edge channel at the upper edge, /„ =/„/ The voltage
contact at the lower edge measures a chemical potential £F regardless of its
properties The voltage contact at the upper edge, however, will measure a
chemical potential that depends on how it couples to each of the edge
channels The transmission probability T„ is the fraction of /„ that is
transmitted through the voltage probe to a reservoir at chemical potential
Ep + δμ The mcommg current

',„ = Σ TJ„I, with Σ /„ = l, (18 3)
n = l n = l

has to be balanced by an outgoing current

/„„, = TW - R) = l δμ £ T„ (184)
fl ΓΪ n — l

of equal magnitude, so that the voltage probe draws no net current (In Eq
(184) we have applied Eq (12 14) to identify the total transmission proba-
bility N — R of outgoing edge channels with the sum of transmission
probabilities T„ of mcommg edge channels) The requirement 7,n = /out

determmes δμ and hence the Hall resistance RH = δμ/el

h ί Ν V Ν

«H = ̂  Σ TnL}( Σ
e \„-i / \ n - i

The Hall resistance has its regulär quantized value RH = h/e2N only if either
f„ = Ί/Ν or Tn = l, for n = l, 2, , N The first case corresponds to local
equihbnum (the current is equipartitioned among the modes), the second case
to an ideal contact (all edge channels are fully transmitted) The Landauer-
Buttiker formahsm discussed in Section 12 b forms the basis on which
anomahes in the QHE due to the absence of local equilibnum m combmation
with nonideal contacts can be treated theoretically 112

A nonequilibnum population of the edge channels is generally the result of
selective backscattenng Because edge channels at opposite edges of the
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sample move in opposite directions, backscattering requires scattering from
one edge to the other. Selective backscattering of edge channels with n > n0 is
induced by a potential barrier across the sample,113'339'340'427 if its height is
between the guiding center energies of edge channel n0 and n0 — l (note that
the edge channel with a larger index n has a smaller value of £G). The
anomalous Shubnikov-De Haas effect,428 to be discussed in Section 19, has
demonstrated that selective backscattering can also occur naturally in the
absence of an imposed potential barrier. The edge channel with the highest
index n = N is selectively backscattered when the Fermi level approaches the
energy (N — ̂ )hwc of the Nth bulk Landau level. The guiding center energy of
the Nth edge channel then approaches zero, and backscattering either by
tunneling or by thermally activated processes becomes effective, but for that
edge channel only, which remains almost completely decoupled from the
other N — l edge channels over distances äs large äs 250 μπι (although on
that length scale the edge channels with n ̂  N — l have equilibrated to a
large extent).429

c. Current Distribution

The edge channel theory has been criticized on the grounds that experi-
ments measure a nonzero current in the bulk of a Hall bar.445 In this
subsection we want to point out that a measurement of the current
distribution cannot be used to prove or disprove the edge channel formula-
tion of the QHE.

The fact that the Hall resistance can be expressed in terms of the
transmission probabilities of edge states at the Fermi level does not imply that
these few states carry a macroscopic current, nor does it imply that the
current flows at the edges. A determination of the spatial current distribution
/(r), rather than just the total current /, requires consideration of all the states
below the Fermi level, which acquire a net drift velocity because of the Hall
field. As we discussed in Section 12.b, knowledge of i(r) is not necessary to
know the resistances in the regime of linear response, because the Einstein
relation allows one to obtain the resistance from the diffusion constant. Edge
channels teil you where the current flows if the electrochemical potential
difference δμ is entirely due to a density difference, relevant for the diffusion
problem. Edge channels have nothing to say about where the current flows if
δμ is mainly of electrostatic origin, relevant for the problem of electrical
conduction. The ratio δμ/Ι is the same for both problems, but i(r) is not.

With this in mind, it remains an interesting problem to find out just how
the current is distributed in a Hall bar, or, alternatively, what is the
electrostatic potential profile. This problem has been treated theoretically in

445 M. E. Cage, in Ref. 97.
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many papers446"455 In the case of a 3D conductor, a Imearly varymg
Potential and uniform current density are produced by a surface Charge As
noted by MacDonald et al ,446 the electrostatics is qualitatively different m
the 2D case because an edge charge δ(χ — W/2) produces a potential
proportional to ln|x — W/2\, which is weighted toward the edge, and hence a
concentration of current at the edge

Experiments aimed at measunng the electrostatic potential distnbution
were ongmally carned out by attaching contacts to the intenor of the Hall
bar and measurmg the voltage differences between adjacent contacts 456~460

It was learned from these studies that relatively small inhomogeneitles in the
density of the 2DEG have a large effect on these voltage differences in the
QHE regime The mam difficulty in the Interpretation of such expenments is
that the voltage difference measured between two contacts is the difference in
electrochemical potential, not the line integral of the electnc field Buttiker461

has argued that the voltage measured at an mtenor contact can exhibit large
vanations for a small increase m magnetic field without an appreciable
change m the current distnbution Contactless measurements of the QHE
from the absorption of microwave radiation462 are one alternative to mtenor
contacts, which might be used to determme the potential (or current)
distnbution

Fontein et a/4 6 3 have used the birefnngence of GaAs induced by an

446A H MacDonald, T M Rice, and W F Bnnkman, Phys Rev B 28, 3648 (1983)
447O Hemonen and P L Taylor, Phys Rev B 32, 633 (1985)
448D J Thouless, J Phys C 18, 6211 (1985)
449V M Pudalov and S G Semenchmsku, Pis'ma Zh Eksp Teor Fiz 42, 188 (1985) [JETP

Lett 42, 232 (1985)]
450W Maass, Europhys Lett 2, 39 (1986)
4 5 1Y OnoandT Ohtsuki, Z Phys ß 68, 445 (1987), T Ohtsuki and Υ Ono, J Phys Soc Jap

58, 2482 (1989)
452R Johnston and L Schweitzer, Z Phys B 70, 25 (1988)
453V Gudraundsson, R R Gerhardts, R Johnston, and L Schweitzer, Z Phys ß 70, 453 (1988)
454T Ando, J Phys Soc Jap 58, 3711 (1989)
455P C van Son, G H Kruithof, and T M Klapwijk, Swf Sa 229,57 (1990), P C van Son and

T M Klapwijk, Eur Phys Lett 12, 429 (1990)
456G Ebert, K von Klitzmg, and G Weimann, J Phys C 18, L257 (1985)
457H Z Zheng, D C Tsm, and A M Chang, Phys Rev B 32, 5506 (1985)
458E K Sichel, H H Sample, and J P Salerno, Phys Rev B 32, 6975 (1987), E K Sichel, M L

Knowles, and H H Sample, J Phys C 19, 5695 (1986)
459R Woltjer, R Eppenga, J Mooren, C E Timmermg, and J P Andre, Europhys Leu 2, 149

(1986)
460B E Kane, D C Tsm, and G Weimann, Phy> Rev Lett 59, 1353 (1987)
46 'M Buttiker, m Ref 15
462F Kuchar, Festkorperprobleme 28, 45 (1988)
463P F Fontein, J A Kleinen, P Hendriks, F A P Blom, J H Wolter, H G M Locks, F A J

M Dnessen, L J Gilmg, and C W J Beenakker, submitted to Phys Rev B
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χ (m m)

FIG 80 Electrostatic potential Vn mduced by passing a current through a Hall bar The
sample edges are at χ = + l mm The data pomts are from the expenment of Fontein et al463, at
two magnetic field values on the RH = h/4e2 quantized Hall plateau (triangles B = 5 T, crosses
B = 5 25 T) The solid curve is calculated from Eq (18 9), assuming an impunty-free Hall bar
with four filled Landau levels The theory contams no adjustable parameters

electnc field to perform a contactless measurement of the electrostatic
potential distnbution m a Hall bar They measure the Hall potential profile
VH(x) äs a change m the local electrostatic potential if a current is passed
through the Hall bar The data pomts shown in Fig 80 were taken at l 5 K
for two magnetic field values on the plateau of quantized Hall resistance at
^h/e2 The potential vanes steeply at the edges (at χ = ±1 mm in Fig 80) and
is approximately linear m the bulk The spatial resolution of the expenment
was 70 /ml, hmited by the laser beam used to measure the birefrmgence The
current distnbution is not directly measured, but can be estimated from the
guiding center dnft (182) (this assumes a slowly varying potential) The
nonequilibnum current density i(x) along the Hall bar is then given by

en dVH(x)
(186)

Fontein et al thus estimate that under the conditions of their expenment two
thirds of the total imposed current 7 = 5 μΑ flows within 70 μηι from the
edges while the remamder is umformly distributed in the bulk

This expenmental data can be modeled464 by means of an integral
equation denved by MacDonald et al446 for the self-consistent potential
profile m an ideal impunty-free sample with N completely filled (spin-spht)
Landau levels The electron charge density pe(x) in the 2DEG is given by

(187)

4C W J Beenakker, unpublished
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This equation follows from the Schrödinger equation in a smoothly varying
electrostatic potential, so the factor between brackets is close to unity.
Substitution of the net charge density ens + pe(x) into the Poisson equation
gives446

r + w/2 / 2 \
να(χ)=-ξ dx' In — |x - x' V"HM. (18.8)

J-W/2 \W )

The characteristic length ξ = ΝΙ^/πα* is defined in terms of the magnetic
length /m and the effective Bohr radius a* = sh2/me2 (with ε the dielectric
constant).

The integral equation (18.8) was solved numerically by MacDonald et
a/.446 and analytically by means of the Wiener-Hopf technique by Thou-
less.448 Here we describe a somewhat simpler approach,464 which is suffi-
ciently accurate for the present purpose. For magnetic field strengths in the
QHE regime the length ξ is very small. For example, if N = 4, lm = l l .Snm
(for B = 5 T), a* = 10 nm (for GaAs with ε = 13ε0 and m = 0.067mc), then
ξ = 17 nm. It is therefore meaningful to look for a solution of Eq. (18.8) in the
limit ξ « W. The result is that VH(x) = constant χ In |(x - W/2)/(x + W/2)\ if
x| ^ W/2 — ξ, with a linear extrapolation from |x| = W/2 — ξ to |x| = W/2.

One may verify that this is indeed the answer, by substituting the preceding
expression into Eq. (18.8) and performing one partial Integration. The
arbitrary constant in the expression for VH may be eliminated in favor of the
total current / flowing through the Hall bar, by applying Eq. (18.6) to the case
of N filled spin-split Landau levels. This gives the final answer

M/
l + In ) In

-1 x- W/2
x+ W/2

W
i f l x K y - ξ , (18.9)

with a linear extrapolation of VH to +i/RH

 m the interval within ξ from the
edge. The Hall resistance is RH = h/Ne2. The approximation (18.9) is
equivalent for small ξ to the analytical solution of Thouless, and is close to
the numerical Solutions given by MacDonald et al., even for a relatively large
value ξ/Ψ = 0.1.

In Fig. 80 the result (18.9) has been plotted (solid curve) for the parameters
of the experiment by Fontein et al. (k/W= 0.85 χ 10~5 for N = 4, B = 5 T,
and W= 2mm). The agreement with experiment is quite satisfactory in view
of the fact that the theory contains no adjustable parameters. The theoretical
profile is steeper at the edges than in the experiment, which may be due to the
limited experimental resolution of 70 μηι. The total voltage drop between the
two edges in the calculation (hl/Ne2 κ 32 mV for / = 5 μΑ and N = 4) agrees
with the measured Hall voltage of »30 m V, but the optically determined
value of 40 mV is somewhat larger—for a reason that we do not understand.
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We have discussed this topic of the current distribution in the QHE in
some detail to convince the reader that the concentration of the potential
drop (and hence of the current) near the edges can be understood from the
electrostatics of edge charges, but cannot be used to test the validity of a
linear response formulation of the QHE in terms of edge states. Indeed, edge
states were completely neglected in the foregoing theoretical analysis, which
nonetheless captures the essential features of the experiment.

19. SELECTIVE POPULATION AND DETECTION OF EDGE CHANNELS

The absence of local equilibrium at the current or voltage contacts leads to
anomalies in the quantum Hall effect, unless the contacts are ideal (in the
sense that each edge channel at the Fermi level is transmitted through the
contact with probability 1). Ideal versus disordered contacts are dealt with in
Sections 19.a and 19.b. A quantum point contact can be seen äs an extreme
example of a disordered contact, äs discussed in Section 19.c. Anomalies in
the Shubnikov-De Haas effect due to the absence of local equilibrium are the
subject of Section 19.d.

a. Ideal Contacts

In a two-terminal measurement of the quantum Hall effect the contact
resistances of the current source and drain are measured in series with the
Hall resistance. For this reason precision measurements of the QHE are
usually performed in a four-terminal measurement configuration, in which
the voltage contacts do not carry a current.445 Contact resistances then do
not play a role, provided that local equilibrium is established near the voltage
contacts [or, by virtue of the reciprocity relation (12.16), near the current
contacts]. As we mentioned in Section 18, local equilibrium can be grossly
violated in the QHE. Accurate quantization then requires that either the
current or the voltage contacts are ideal, in the sense that the edge states at
the Fermi level have unit transmission probability through the contacts.112

In this subsection we return to the four-terminal measurements on a
quantum point contact considered in Section 13.b, but now in the QHE
regime where the earlier assumption of local equilibrium near the voltage
contacts is no longer applicable in general. We assume strong magnetic fields
so that the four-terminal longitudinal resistance RL of the quantum point
contact is determined by the potential barrier in the constriction (rather than
by its width).

Let us apply the Landauer-Büttiker formalism to the geometry of Fig. 81.
As in Section 13.b, the number of spin-degenerate edge channels in the wide
2DEG and in the constriction are denoted by Nwide and JVmin, respectively.
An ideal contact to the wide 2DEG perfectly transmits Wwide channels,
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FIG 81 Motion along equipotentials in the QHE regime, m a four-termmal geometry with a
saddle-shaped potential formed by a split gate (shaded) Ideal contacts are assumed The thin
hnes mdicate the location of the edge channels at the Fermi level, with the arrows pointmg m the
direction of motion of edge channels that are populated by the contacts (crossed squares) Taken
from H van Houten et al, in "Nanostructured Systems" (M A Reed, ed) Academic, New York
1991

whereas the constriction transmits only Nmm channels. The remaining
Nw,dc ~ Nm,n channels are reflected back along the opposite 2DEG boundary
(cf. Fig. 81). We denote by μ, and μΓ the chemical potentials of adjacent
voltage probes to the left and to the nght of the constriction. The current
source is at μ,,, and the drain at μά. Applymg Eq. (12.12) to this case, usmg
Is= — Ia = /, /r = /, = 0, one finds for the magnetic field direction indicated
in Fig. 81,

(h/2e)I =

0 =

0 =

- (Nwlde

We have used the freedom to choose the zero level of chemical potential by
fixing μα = 0, so we have three independent (rather than four dependent)
equations. The two-termmal resistance R2t Ξ μ5/ε! following from Eq. (19.1)
is

h
2?

l
(19.2)

unaffected by the presence of the additional voltage probes in Fig. 81. The
four-terminal longitudinal resistance RL Ξ (μ, — μ,)/ε! is

l l
(19.3)

In the reversed field direction the same result is obtained. Equation (19.3),
denved for ideal contacts without assuming local equilibrium near the
contacts, is identical to Eq. (13.7), derived for the case of local equilibrium.
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FIG. 82. Perspective view of a six-terminal Hall bar containing a point contact, showing the
various two- and four-terminal resistances mentioned in the text. Taken from H. van Houten et
al, in "Nanostructured Systems" (M. A. Reed, ed.). Academic, New York 1991.

In a six-terminal measurement geometry (see Fig. 82), one can also
measure the Hall resistance in the wide regions, which is simply

= R2l - RL or

R -* ~ (19.4)

which is unaffected by the presence of the constriction. This is a consequence
of our assumption of ideal voltage probes. One can also measure the two
four-terminal diagonal resistances R£ and RÜ across the constriction in such
a way that the two voltage probes are on opposite edges of the 2DEG, on
either side of the constriction (see Fig. 82). Additivity of voltages on contacts
teils us that R§ = RH ± RL (for the magnetic field direction of Fig. 82); thus,

h l
1e2 N„ 2e2

l
(19.5)

On field reversal, R£ and RD are interchanged. Thus, a four-terminal
resistance [R^ in Eq. (19.5)] can in principle be equal to the two-terminal
resistance [#2t

 m Eq. (19.2)]. The main difference between these two
quantities is that an additive contribution of the ohmic contact resistance
(and of a part of the diffusive background resistance in weak magnetic fields)
is eliminated in the four-terminal resistance measurement.

The fundamental reason that the assumption of local equilibrium made in
Section 13.b (appropriate for weak magnetic fields) and that of ideal contacts
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FIG 83 "Fractional' quantization m the integer QHE of the four-termmal longitudmal
conductance R^ί of a pomt contact m a magnetic field o f ! 4 T a t T = 0 6 K The solid horizontal
lines mdicate the quantized plateaus predicted by Eq (19 3), with Nw,dl, = 5 and JVmm = 1,2,3,4
The dashed lines give the location of the spm-spht plateaux, which are not well resolved at this
magnetic field value Taken from L P Kouwenhoven, Master's thesis, Delft University of
Technology, 1988

made m this section (for strong fields) yield identical answers is that an ideal
contact attached to the wide 2DEG regions mduces a local equilibnum by
equipartitionmg the outgomg current among the edge channels (This is
illustrated in Fig 81, where the current entering the voltage probe to the nght
of the constnction is carned by a single edge channel, while the equally large
current flowmg out of that probe is equipartitioned over the two edge
channels available for transport m the wide region) In weaker magnetic
fields, when the cyclotron radius exceeds the width of the narrow 2DEG
region connectmg the voltage probe to the Hall bar, not all edge channels m
the wide 2DEG region are transmitted mto the voltage probe (even if it does
not contam a potential barner) This probe is then not effective in equiparti-
tionmg the current That is the reason that the weak-field analysis in Section
13 b required the assumption of a local equilibnum m the wide 2DEG near
the contacts

We now discuss some expenmental results, which confirm the behavior
predicted by Eq (193) m the QHE regime, to complement the weak-field
expenments discussed m Section 13 b Measurements on a quantum pomt
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contact by Kouwenhoven et al307 465 m Fig 83 show the quantization of the
longitudmal conductance R{^1 m fractwns of 2e2/h (for unresolved spm
degeneracy) The magnetic field is kept fixed at l 4 T (such that Nwide = 5) and
the gate voltage is vaned (such that Nmm ranges from l to 4) Conductance
plateaux close to 5/4, 10/3, 15/2, and 20x(2e2//z) (solid horizontal Imes) are
observed, m accord with Eq (19 3) Spm-spht plateaux (dashed Imes) are
barely resolved at this rather low magnetic field Similar data were reported
by Snell et al342 Observations of such a "fractional" quantization due to the
integer QHE were made before on wide Hall bars with regions of different
electron density m senes,466 467 but the theoretical explanation468 given at
that time was less straightforward than Eq (193)

In the high-field regime the pomt contact geometry of Fig 81 is essentially
equivalent to a geometry in which a potential barner is present across the
entire width of the Hall bar (created by means of a narrow contmuous gate)
The latter geometry was studied by Haug et al 34° and by Washburn et al339

The geometnes of both expenments339 34° are the same (see Figs 84 and 85),
but the results exhibit some mterestmg differences because of the different
dimensions of gate and channel Hauge et al 34° used a sample of macro-
scopic dimensions, the channel width being 100 μηι and the gate length 10
and 20μηι Results are shown m Fig 84 As the gate voltage is vaned, a
quantized plateau at h/2e2 is seen m the longitudmal resistance at fixed
magnetic field, in agreement with Eq (193) (the plateau occurs for two spm-
split Landau levels in the wide region and one spm-split level under the gate)
A quahtatively different aspect of the data m Fig 84, compared with Fig 83,
is the presence of a resistance mimmum Equation (193), in contrast, predicts
that RL vanes monotonically with barner height, and thus with gate voltage
A model for the effect has been proposed m a different paper by Haug et
al ,341 based on a competition between backscattenng and tunnelmg through
locahzed states m the barner region They find that edge states that are
totally reflected at a given barner height may be partially transmitted if the
barner height is further increased The importance of tunnelmg is consistent
with the mcrease of the amphtude of the dip äs the gate length is reduced from
20 to 10μηι A related theoretical study was performed by Zhu et al*69

465L P Kouwenhoven, Master's thesis, Delft University of Technology, 1988
466K von Khtzmg, G Ebert, N Klemmichel, H Obloh, G Dorda, and G Weimann, "Proc

ICPS 17" (J D Chadi and W A Harnson, eds) Springer, New York, 1985
467D A Syphers,F F Fang, and P J Stiles, Surf Sa 142, 208 (1984), F F Fang and P J Stiles,

Phys Rev B 27, 6487 (1983), F F Fang and P J Stiles, Phys Rev B 29, 3749 (1984) A B
Berkut, Yu V Dubrovskn, M S Nunuparov, M I Reznikov, and V I Tal'yanski, Pts'ma Zh
Teor Fiz 44, 252 (1986) [JETP Leu 44, 324 (1986)]

468D A Syphers and P J Stiles, Phys Rev B 32, 6620 (1985)
469Y Zhu, J Shi, and S Feng, Phys Rev B 41, 8509 (1990)
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FIG 84 (a) Schematic view of a wide Hall bar contammg a potential barner imposed by a gate
electrode oflength be (b) Longitudmal resistance äs a function of gate voltage in the QHE regime
(two spin-spht Landau levels are occupied m the unperturbed electron gas regions) The plateau
shown is at RL = /!/2e2, in agreement with Eq (19 3) Results for fcg = ΙΟμιη and 20μΓη are
compared A pronounced dip develops in the device with the shortest gate length Taken from R
J Haug ei al,Phys Rev B 39, 10892 (1989)
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FIG 85 (a) Schematic view of a 2-/jm-wide channel contammg a potential barner imposed by a
01-μηι-long gate (b) Top diagonal resistance R13 42 = ^0 and longitudmal resistance
^12 43 = KL

 as d function of gate voltage in a strong magnetic field (ß = 5 2 T), showmg a
quantized plateau m agreement with Eqs (19 5) and (19 3), respectively For companson also the
two zero-field traces are shown, which are almost identical Bottom Difference R& — RL = i?H at
5 2 T A normal quantum Hall plateau is found, with oscillatory structure superimposed in gate
voltage regions where R£ and RL are not quantized Taken from S Washburn et α ϊ , Phys Rev
Leu 6l, 2801 (1988)
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Washburn et al339 studied the longitudmal resistance of a barner defined
by a 0 Ι-μπι-long gate across a 2-^m-wide channel The relevant dimensions
are thus nearly two Orders of magmtude smaller than in the expenment of
Haug et al Agam, the resistance is studied äs a function of gate voltage at
fixed magnetic field The longitudmal (RL = Ri243) an<3 diagonal
(RQ = i?1342) resistances are shown m Fig 85, äs well äs their difference
[which accordmg to Eqs (193) and (195) would equal the Hall resistance
ßH] In this small sample the quantized plateaux predicted by Eq (193) are
clearly seen, but the resistance dips of the large sample of Haug et al are not
We recall that resistance dips were not observed m the quantum pomt
contact expenment of Fig 83 either The model of Haug et al341 would imply
that localized states do not form m barriers of small area Washburn et al
find weak resistance fluctuations in the gate voltage mtervals between
quantized plateaux These fluctuations are presumably due to some form of
quantum interference, but have not been further identified

Related experiments on the quantum Hall effect in a 2DEG with a
potential barner have been performed by Hirai et al and by Komiyama et
a/4 2 7 470~472 These studies have focused on the role of nonideal contacts in
the QHE, which is the subject of the next subsection

b Disordered Contacts

The validity of Eqs (19 2)-(19 5) m the QHE regime breaks down for
nonideal contacts if local equihbrium near the contacts is not estabhshed The
treatment of Section 19 a for ideal contacts imphes that the Hall voltage over
the wide 2DEG regions adjacent to the constriction is unaffected by the
presence of the constriction or potential barrier Experiments by Komiyama
et a /4 2 7 4 7 2 have demonstrated that this is no longer true if one or more
contacts are disordered The analysis of their experiments is rather invol-
ved,472 which is why we do not give a detailed discussion here Instead we
review a different expenment,113 which shows a deviating Hall resistance m a
sample with a constriction and a smgle disordered contact This expenment
can be analyzed m a relatively simple way,307 followmg the work of
Buttiker112 and Komiyama et al427 472

The sample geometry is that of Fig 82 In Fig 86 the four-termmal
longitudmal resistance RL and Hall resistance RH are shown for both a small
voltage ( — 0 3 V ) and a large voltage ( — 2 5 V ) on the gate definmg the
constriction The longitudmal resistance decreases in weak fields because of

470H Hirai, S Komiyama, S Hiyamizu, and S Sasa m "Proc ICPS 19," p 55 (W Zawadaski,
ed ) Institute of Physics, Pohsh Academy of Sciences, 1988

471S Komiyama, H Hirai, S Sasa, and T Fuji, Solid State Comm 73, 91 (1990), H Hirai, S
Komiyama, S Sasa, and T Fujn, J Phys Soc Jap 58, 4086 (1989)

472S Komiyama and H Hirai, Phys Rev B 40, 7767 (1989)
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FIG 86 Nonvanishmg Shubnikov-De Haas mimma m the longitudmal resistance RL and
anomalous quantum Hall resistance RH, measured in the point contact geometry of Fig 82 at
50 mK These expenmental results are extensions to higher fields of the weak-field traces shown
m Fig 50 The Hall resistance has been measured across the wide region, more than 100 μπι away
from the constnction, yet RH is seen to mcrease if the gate voltage is raised from — 0 3 V to
-25V The magmtude at B = 2 2 T of the deviation in RH and of the Shubnikov-De Haas
mimmum m RL are mdicated by arrows, which both for RH and RL have a length of (h/2e2)
(Ί - i), m agreement with the analysis given m the text Taken from H van Houten et al, m
"Nanostructured Systems" (M A Reed, ed) Academic, New York, 1991

reduction of backscattering, äs discussed in Section 13.b. At larger fields
Shubnikov-De Haas oscillations develop. The data for Vg = —0.3V exhibit
zero mimma in the Shubnikov-De Haas oscillations in RL and the normal
quantum Hall resistance RH = (h/2e2)N~t\t, determined by the number of
Landau levels occupied in the wide regions C/Vwlde can be obtamed from the
quantum Hall effect measured in the absence of the constriction or from the
penodicity of the Shubnikov-De Haas oscillations).

At the higher gate voltage Vt — —2.5V, nonvamshing minima in KL are
seen m Fig. 86 äs a result of the formation of a potential barrier in the
constnction. At the minima, RL has the fractional quantization predicted by
Eq. (19.3). For example, the plateau in RL around 2.2T for Vg = -2.5V is
observed to be at KL = 2.1 kQ % (h/2e2) χ (i - ·£), in agreement with the fact
that the two-terminal resistance yields Nmm = 2 and the number of Landau
levels in the wide regions JVwlde = 3. In spite of this agreement, and in
apparent conflict with Eq. (19.4), the Hall resistance RH has increased over its
value for small gate voltages. Indeed, around 2.2 T a Hall plateau at
«H = 6.3kQ«(/z/2e 2)x^ is found for Fg = -2.5V, äs if the number of
occupied Landau levels was given by Nmm = 2 rather than by Nwide = 3. This
unexpected deviation was noted in Ref. 113, but was not understood at the
time. At higher magnetic fields (not shown in Fig. 86) the N = l plateau is
reached, and the deviation in the Hall resistance vanishes.

As pomted out in Ref. 307, the likely explanation of the data of Fig. 86 is
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Ml 2
O B

FIG 87 Illustration of the flow of edge channels along equipotentials m a sample with a
constnction (defined by the shaded gates) and a disordered voltage probe (a potential barner m
the probe is mdicated by the shaded bar) Taken from H van Houten et al, m "Nanostructured
Systems" (M A Reed, ed) Academic, New York

that one of the ohmic contacts used to measure the Hall voltage is disordered
in the sense of Büttiker112 that not all edge channels have unit trans-
mission probability into the voltage probe. The disordered contact can be
modeled by a potential barner in the lead with a height not below that of the
barner in the constnction, äs illustrated in Fig. 87. A net current / flows
through the constriction, determined by its two-terminal resistance according
to / = (2e//!)Nm„^s, with μΒ the chemical potential of the source reservoir (the
chemical potential of the dram reservoir μά is taken äs a zero reference).
Equation (12.12) apphed to the two opposite Hall probes / j and 12 in Fig. 87
takes the form (using /,, = /,., = Ο, μ5 = (h/2e)I/Nmin, and μά = 0)

0 = — - -- Th
**" *- ' min

(19.6a)

0 = Ν,,μ,, - T..
2e N„

- τ,. (19.6b)

where we have assumed that the disordered Hall probe 12 transmits only
7V,2 < Nwlde edge channels because of the barrier in the lead. For the field
direction shown in Fig. 87 one has, under the assumption of no interedge
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channel scattermg from constnction to probe 12, Ts^(l = Afwlde,
Ts^l2 = Tl2^ = 0, and 7 ,̂2 = max(0, Nh - NmJ Equation (196) then
leads to a Hall resistance RH = (μ(ι — μ^/el given by

" 2e2 max(Nl2, NmJ ^ '

In the opposite field direction the normal Hall resistance RH = (/i/2e2)N~lde is
recovered

The assumption of a smgle disordered probe, plus absence of mteredge
channel scattermg from constnction to probe, thus explams the observation
in Fig 86 of an anomalously high quantum Hall resistance for large gate
voltages, such that JVm i n < Nwide Indeed, the expenmental Hall resistance for
Vg = — 2 5 V has a plateau around 2 2 T close to the value RH = (h/2e2)N ~,J,
(with Nmm = 2), in agreement with Eq (197) if Nh *ζ Nmm at this gate voltage
This observation demonstrates the absence of mteredge channel scattermg
over ΙΟΟμηι (the Separation of constnction and probe), but only between the
highest-mdex channel (with mdex n = Ww i d e = 3) and the two lower-mdex
channels Smce the n = l and n = 2 edge channels are either both empty or
both filled (cf Fig 87, where these two edge channels he closest to the sample
boundary), any scattermg between n = l and 2 would have no measurable
effect on the resistances As discussed m Section 19 c, we know from the work
of Alphenaar et al429 that (at least in the present samples) the edge channels
with n ?ζ Nwlde — l do in fact equihbrate to a large extent on a length scale of
ΙΟΟμηι

In the absence of a constnction, or at small gate voltages (where the
constnction is just defined), one has Nmin = 7Vwldc so that the normal Hall
effect is observed m both field directions This is the Situation reahzed m the
expenmental trace for Vg = — 0 3 V in Fig 86 In very strong fields such that
Nmm = Nh = JVw l d e = l (still assummg nonresolved spm Splitting), the
normal result RH = h/2e2 would follow even if the contacts contain a
Potential barner, m agreement with the experiment (not shown m Fig 86)
This is a more general result, which holds also for a barner that only partially
transmits the n = l edge channel1 1 2 308 472 475

A similar analysis äs the foregoing predicts that the longitudmal resistance
measured on the edge of the sample that contams ideal contacts retams its
regulär value (193) On the opposite sample edge the measurement would
involve the disordered contact, and one finds instead

h ( l l
2 \Nn max(N,2, Nmm)

*"U Sivan, Υ Imry, and C Hartzstem, Phys Rev B 39, 1242 (1989)
474U Sivan and Υ Imry, Phys Rev Lett 61, 1001 (1988)
475M Buttiker, Phys Rev B 38, 12724 (1988)
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for the field direction shown m Fig 87, while Eq (193) is recovered for the
other field direction The observation m the expenment of Fig 86 for
Vs= — 2 5 V of a regulär longitudmal resistance [m agreement with Eq
(19 3)], along with an anomalous quantum Hall resistance is thus consistent
with this analysis

The expenments426 429 discussed in the following subsection are topologi-
cally eqmvalent to the geometry of Fig 87, but mvolve quantum pomt
contacts rather than ohmic contacts This gives the possibility of populatmg
and detectmg edge channels selectively, thereby enablmg a study of the effects
of a noneqmlibnum population of edge channels m a controlled manner

c Quantum Pomt Contacts

In Section 14 we have seen how a quantum pomt contact can mject a
coherent superposition of edge channels at the 2DEG boundary, in the
coherent electron focusing expenment59 In that section we restncted
ourselves to weak magnetic fields Here we discuss the expenment by van
Wees et al ,426 which shows how in the QHE regime the pomt contacts can be
operated m a different way äs selectwe injectors (and detectors) of edge
channels We recall that electron focusing can be measured äs a generahzed
Hall resistance, m which case the pronounced peaked structure due to mode
mterference is supenmposed on the weak-field Hall resistance (cf Fig 53) If
the weak-field electron-focusing expenments are extended to stronger magne-
tic fields, a transition is observed to the quantum Hall effect, provided the
mjectmg and detectmg pomt contacts are not too strongly pmched off 5 9 The
oscillations charactenstic of mode mterference disappear m this field regime,
suggestmg that the coupling of the edge channels (which form the propagat-
mg modes from mjector to collector) is suppressed, and adiabatic transport is
reahzed It is now no longer sufficient to model the pomt contacts by a pomt
source-detector of infinitesimal width (äs was done in Section 14), but a
somewhat more detailed descnption of the electrostatic potential V(x, y)
definmg the pomt contacts and the 2DEG boundary between them is
required Schematically, V(x, y) is represented m Fig 88a Fnnging fields from
the spht gate create a potential barner m the pomt contacts, so V has a saddle
form äs shown The heights of the barners £,, £c in the mjector and collector
are separately adjustable by means of the voltages on the spht gates and can
be determmed from the two-termmal conductances of the individual pomt
contacts The pomt contact Separation in the expenment of Ref 426 is small
(l 5jum), so one can assume fully adiabatic transport from mjector to
collector in strong magnetic fields As discussed m Section 18, adiabatic
transport is along equipotentials at the guidmg center energy EG Note that
the edge channel with the smallest index n has the largest guidmg center
energy [accordmg to Eq (18 1)] In the absence of mteredge channel
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(b) μ,

FIG. 88. (a) Schematic potential landscape, showing the 2DEG boundary and the saddle-
shaped injector and collector point contacts. In a strong magnetic field the edge channels are
extended along equipotentials at the guiding center energy, äs indicated here for edge channels
with index n = 1,2 (the arrows point m the direction of motion). In this case a Hall conductance
o((2e2/h)N with N = l would be measured by the point contacts, in spite of the presence of t wo
occupied spin-degenerate Landau levels in the bulk 2DEG. Taken from C. W. J. Beenakker et ai,
Festkorperprobleme 29, 299 (1989). (b) Three-terminal conductor in the electron focusing
geometry. Taken from H. van Houten et al, Phys. Rev. B. 39, 8556 (1989).
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scattermg, edge channels can only be transmitted through a pomt contact if
£G exceeds the potential barrier height (disregardmg tunnelmg through the
barner) The mjector thus mjects N, χ (EF — E,)/ha>c edge channels mto the
2DEG, while the collector is capable of detectmg Nc χ (EF — Ec)/ha>c

channels Along the boundary of the 2DEG, however, a larger number of
Nw,dc ~ Ep/hcßc edge channels, equal to the number of occupied bulk Landau
levels m the 2DEG, are available for transport at the Fermi level The
selective population and detection of Landau levels leads to deviations from
the normal Hall resistance

These considerations can be put on a theoretical basis by applymg the
Landauer-Buttiker formahsm discussed m Section 12 to the electron-
focusing geometry 80 We consider a three-termmal conductor äs shown m
Fig 88b, with pomt contacts m two of the probes (mjector i and collector c),
and a wide ideal drain contact d The collector acts äs a voltage probe,
drawmg no net current, so that 7C = 0 and 7d = — /, The zero of energy is
chosen such that μά = 0 One then finds from Eq (12 12) the two equations

0 = (Ne - K„K - Τ,^μ,, (19 9a)

(h/2e)I, = (Nt - Α,)μ, - Τ,^,μ,, (19 9b)

and obtams for the ratio of collector voltage Vc = μ0/β (measured relative to
the voltage of the current drain) to mjected current /, the result

V 2e2 T

Ü-kä^rj <""»
Here δ = (2e2/h)2T,^cTc^„ and G, = (2e2/h)(Nt - R,), Gc = (2e2/h)(Nc ~ Rc)
denote the conductances of mjector and collector pomt contact

For the magnetic field direction mdicated in Fig 88, the term <5 m Eq
(19 10) can be neglected smce Tc_, « 0 [the resulting Eq (142) was used m
Section 14] An additional simplmcation is possible m the adiabatic transport
regime We consider the case that the barrier m one of the two pomt contacts
is sufficiently higher than m the other, to ensure that electrons that are
transmitted over the highest barrier will have a neghgible probabihty of bemg
reflected at the lowest barrier Then 7^_c is dommated by the transmission
probabihty over the highest barrier, 7^_c « min(N, — R„ Nc — Rc) Subst-
itution m Eq (1910) gives the remarkable result426 that the Hall conductance
GH = IJVC measured in the electron focusmg geometry can be expressed
entirely m terms of the contact conductances G, and Gc

GH « max(G„ Gc) (1911)

Equation (1911) teils us that quantized values of GH occur not at
(2e2/h)Nwac, äs one would expect from the Nwide populated Landau levels m
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FIG. 89. Expenmental correlation between the conductances G„ Gc of mjector and collector,
and the Hall conductance GH = 7,/Kc, shown to demonstrate the vahdity of Eq. (19.11)
(T = l 3 K, pomt contact Separation is 1.5/im) The magnetic field was kept fixed (top: B = 2.5T,
bottom B = 3 8 T, corresponding to a number of occupied bulk Landau levels N = 3 and 2,
respectively) By mcreasing the gate voltage on one half of the spht-gate definmg the mjector, G,
was vaned at constant Gc. Taken from B J van Wees et al, Phys. Rev Leu. 62, 1181 (1989).

the 2DEG but at the smaller value of (2e2/h)m&x(N„ Nc). As shown in Fig. 89
this is indeed observed experimentally.426 Notice in particular how any
deviation from quantization in max(G,, Gc) is faithfully reproduced in GH, in
complete agreement with Eq. (19.11).

The experiment of Ref. 426 was repeated by Alphenaar et a/.429 for much
larger point contact separations (^ΙΟΟμπι), allowing a study of the length
scale for equilibration of edge channels at the 2DEG boundary. Even after
such a long distance, no complete equilibration of the edge channels was
found, äs manifested by a dependence of the Hall resistance on the gate
voltage used to vary the number of edge channels transmitted through the
point contact voltage probe (see Fig. 90). As discussed in Section 18.b, a
dependence of the resistance on the properties of the contacts is only possible
in the absence of local equilibrium. In contrast to the experiment by van Wees
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FIG. 90. Results of an experiment similar to that of Fig. 89, but with a much larger Separation
of 80μηι between injector and collector. Shown are R, = G'1, Rc = G'1, and K„ = G^1 äs a
function of the gate voltage on the collector. (T = 0.45 K, B — 2.8 T; the normal quantized Hall
resistance is j(h/2e2).) Regimes I, II, and III are discussed in the text. Taken from B. W.
Alphenaar et al, Phys. Rev. Lett. 64, 677 (1990).

et al.,426 and in disagreement with Eq. (19.11), the Hall resistance in Fig. 90
does not simply follow the smallest of the contact resistances of current and
voltage probe. This implies that the assumption of fully adiabatic transport
has broken down on a length scale of ΙΟΟμπι.

In the experiment a magnetic field was applied such that three edge
channels were available at the Fermi level. The contact resistance of the
injector was adjusted to R, = h/2e2, so current was injected in a single edge
channel (n = 1) only. The gate voltage defining the collector point contact
was varied. In Fig. 90 the contact resistances of injector (/?;) and collector (Rc)
are plotted äs a function of this gate voltage, together with the Hall resistance
RH. At zero gate voltage the Hall resistance takes on its normal quantized
value [#H = 3(/i/2e2)]. On increasing the negative gate voltage three regions
of interest are traversed (labeled III to I in Fig. 90). In region III edge
channels l and 2 are completely transmitted through the collector, but the
w = 3 channel is partially reflected. In agreement with Eq. (19.11), RH

increases following Rc. As region II is entered, jRH levels off while Rc continues
to increase up to the %h/2e2) quantized value. The fact that RH stops slightly
short of this value proves that some scattering between the n = 3 and n = l, 2
channels has occurred. On increasing the gate voltage further, Rc rises to
h/2e2 in region I. However, RH shows hardly any increase with respect to its
value in region II. This demonstrates that the n = 2 and n = l edge channels
have almost fully equilibrated. A quantitative analysis429 shows that, in fact,
92% of the current originally injected into the n = l edge channel is
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FIG 91 Illustration of the spatial extension (shaded elhpsoids) of edge channels for four
different values of the Fermi energy The n = 3 edge channel can penetrate mto the bulk by
hybndizmg with the n = 3 bulk Landau level, coexistmg at the Fermi level. This would explain
the absence of equilibration between the n = 3 and n = 1,2 edge channels. The penetration depth
/loc and the magnetic length are mdicated. Taken from B W. Alphenaar et αι., Phys Rev Leu. 64,
677 (1990)

redistributed equally over the n = l and n = 2 channels, whereas only 8% is
transferred to the n = 3 edge channel. The suppression of scattering between
the highest-index n — N edge channel and the group of edge channels with
n =ζ N — l was found to exist only if the Fermi level lies in (or near) the Nth
bulk Landau level. As a qualitative explanation it was suggested429·476 that
the Nth edge channel hybridizes with the Nih bulk Landau level when both
types of states coexist at the Fermi level. Such a coexistence does not occur
for n ̂  N — l if the potential fluctuations are small compared with haf (cf.
Fig. 78). The spatial extension of the wave functions of the edge channels is
illustrated in Fig. 91 (shaded ellipsoids) for various values of the Fermi level
between the n = 3 and n = 4 bulk Landau levels. As the Fermi level
approaches the n = 3 bulk Landau level, the corresponding edge channel
penetrates into the bulk, so the overlap with the wave functions of lower-
mdex edge channels decreases. This would explain the decoupling of the
n = 3 and n = l, 2 edge channels.

These experiments thus point the way in which the transition from
microscopic to macroscopic behavior takes place in the QHE, while they also
demonstrate that quite large samples will be required before truly macro-
scopic behavior sets in.

d. Suppression of the Shubnikov-De Haas Oscillations

Shubnikov-De Haas magnetoresistance oscillations were discussed in
Sections 4.c and 10. In weak magnetic fields, where a theoretical description

6J K Jam, unpubhshed
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FIG 92 Illustration of the mechanism for the suppression of Shubnikov- De Haas oscillations
due to selective detection of edge channels The black area denotes the spht-gate pomt contact in
the voltage probe, which is at a distance of 250 μιη from the drain reservoir Dashed arrows
mdicate symbohcally the selective backscattermg m the highest-mdex edge channel, via states m
the highest bulk Landau level that coexist at the Fermi level Taken from H van Houten et al, m
"Nanostructured Systems" (M A Reed, ed) Academic, New York 1991

m terms of a local resistivity tensor apphes, a satisfactory agreement between
theory and expenment is obtamed 20 As we now know, m strong magnetic
fields the concept of a local resistivity tensor may break down entirely
because of the absence of local equilibnum A theory of the Shubmkov-De
Haas effect then has to take mto account explicitly the properties of the
contacts used for the measurement The resultmg anomahes are considered m
this subsection

Van Wees et al428 found that the amphtude of the high-field Shubnikov-
De Haas oscillations was suppressed if a quantum pomt contact was used äs
a voltage probe To discuss this anomalous Shubmkov-De Haas effect, we
consider the three-termmal geometry of Fig 92, where a smgle voltage
contact is present on the boundary between source and dram contacts (An
alternative two-termmal measurement configuration is also possible, see Ref
428 ) The voltage probe p is formed by a quantum pomt contact, while source
s and drain d are normal ohmic contacts (Note that two special contacts were
required for the anomalous quantum Hall effect of Section 19 c) One
straightforwardly finds from Eq (12 12) that the three-termmal resistance
^st — (μρ ~~ Hd)/el rneasured between pomt contact probe and drain is given
by

h

2^(N~S

T•*s-»r

RS)(NP - Rp) -
(19 12)
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FIG. 93. Measurement of the anoraalous Shubnikov-De Haas oscillations m the geometry of
Fig. 92. The plotted longitudmal resistance is the voltage drop between contacts p and d divided
by the current from s to d. At high magnetic fields the oscillations are mcreasmgly suppressed äs
the pomt contact m the voltage probe is pmched off by increasmg the negative gate voltage. The
number of occupied spin-spht Landau levels in the bulk is mdicated at several of the Shubnikov-
De Haas maxima Taken from B. J van Wees et al, Phys. Rev. B. 39, 8066 (1989).

This three-terminal resistance corresponds to a generalized longitudinal
resistance if the magnetic field has the direction of Fig. 92. In the absence of
backscattering in the 2DEG, one has 7^p = 0, so R3t vanishes, äs it should
for a longitudinal resistance in a strong magnetic field.

Shubnikov-De Haas oscillations in the longitudinal resistance arise when
backscattering leads to Ts^p φ 0. The resistance reaches a maximum when
the Fermi level lies in a bulk Landau level, corresponding to a maximum
probability for backscattering (which requires scattering from one edge to the
other across the bulk of the sample, äs indicated by the dashed lines in Fig.
92). From the preceding discussion of the anomalous quantum Hall effect, we
know that the point contact voltage probe in a high magnetic field functions
äs a selective detector of edge channels with index n less than some value
determined by the barrier height in the point contact. If backscattering itself
occurs selectively for the channel with the highest index n = N, and if the edge
channels with n ̂  N — l do not scatter to that edge channel, then a
suppression of the Shubnikov-De Haas oscillations is to be expected when
R3t is measured with a point contact containing a sufficiently high potential
barrier. This was indeed observed experimentally,428 äs shown in Fig. 93. The
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Shubnikov-De Haas maximum at 5 2 T, for example, is found to disappear at
gate voltages such that the pomt contact conductance is equal to, or smaller
than 2e2/h, which means that the pomt contact only transmits two spm-spht
edge channels The number of occupied spm-spht Landau levels m the bulk at
this magnetic field value is 3 This expenment thus demonstrates that the
Shubnikov-De Haas oscillations result from the highest-mdex edge channel
only, presumably because that edge channel can penetrate mto the bulk via
states in the bulk Landau level with the same mdex that coexist at the Fermi
level (cf Section 19 c) Moreover, it is found that this edge channel does not
scatter to the lower-mdex edge channels over the distance of 250 μιη from
probe p to drain d, consistent with the expenment of Alphenaar et al429

In Section 19 a we discussed how an "ideal" contact at the 2DEG
boundary mduces a local equihbnum by equipartitiomng the outgomg
current equally among the edge channels The anomalous Shubnikov-De
Haas effect provides a direct way to study this contact-mduced equihbration
by means of a second pomt contact between the pomt contact voltage probe
p and the current dram d in Fig 92 This expenment was also carned out by
van Wees et al, äs descnbed m Ref 308 Once agam, use was made of the
double-spht-gate pomt contact device (Fig 5b), m this case with a l 5-μιη
Separation between pomt contact p and the second pomt contact It is found
that the Shubnikov-De Haas oscillations m R3l are suppressed only if the
second pomt contact has a conductance of (2e2/h)(Nvllde. — 1) or smaller At
larger conductances the oscillations m R3t return, because this pomt contact
can now couple to the highest-mdex edge channel and distnbute the
backscattered electrons over the lower-mdex edge channels The pomt
contact positioned between contacts p and d thus functions äs a controllable
"edge channel mixer "

The conclusions of the previous paragraph have mteresting imphcations
for the Shubnikov-De Haas oscillations m the strong-field regime even if
measured with contacts that do not selectively detect certain edge channels
only 307 Consider agam the geometry of Fig 92, in the low-gate voltage limit
where the pomt contact voltage probe transmits all edge channels with umt
probabihty (This is the case of an "ideal" contact, cf Section 18 b) To simphfy
expression (19 12) for the three-termmal longitudmal resistance R3t, we use
the fact that the transmission and reflection probabilities Z!_,p, Rs, and Rp

refer to the highest-mdex edge channel only (with mdex n = N), under the
assumptions of selective backscattermg and absence of scattenng to lower-
mdex edge channels discussed earlier As a consequence, Ts^p, Rs, and Rp are
each at most equal to l, thus, up to corrections smaller by a factor N~l,\ve
may put these terms equal to zero m the denommator on the nght-hand side
of Eq (19 12) In the numerator, the transmission probabihty Ts_p may be
replaced by the backscattermg probabihty ibs =ζ l, which is the probabihty
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that the highest-index edge channel injected by the source contact reaches the
point contact probe following scattering across the wide 2DEG (dashed lines
in Fig. 92). With these simplifications Eq. (19.12) takes the form (assuming
spin degeneracy)

R3t = —j ~^Ύx(l + orderTV"1). (19.13)

Only if ibs « l may the backscattering probability be expected to scale
linearly with the Separation of the two contacts p and d (between which the
voltage drop is measured). If £bs is not small, then the upper limit ibs < l leads
to the prediction of a maximum possible amplitude307

of the Shubnikov-De Haas resistance oscillations in a given large magnetic
field, independently of the length of the segment over which the voltage drop
is measured, provided equilibration does not occur on this segment. Equili-
bration might result, for example, from the presence of additional contacts
between the voltage probes, äs discussed before. One easily verifies that the
high-field Shubnikov-De Haas oscillations in Fig. 93 at Vg = —0.6V (when
the point contact is just defined, so that the potential barrier is small) lie well
below the upper limit (19.14). For example, the peak around 2T corresponds
to the case of four occupied spin-degenerate Landau levels, so the theoretical
upper limit is (h/2e2) χ xg « 800 Ω, well above the observed peak value of
about 350 Ω. The prediction of a maximum longitudinal resistance implies
that the linear scaling of the amplitude of the Shubnikov-De Haas oscilla-
tions with the distance between voltage probes found in the weak-field
regime, and expected on the basis of a description in terms of a local
resistivity tensor,20 breaks down in strong magnetic fields. Anomalous
scaling of the Shubnikov-De Haas effect has been observed experiment-
a][y457,460,466 and has recentiy aiso t,een interpreted430 in terms of a

nonequilibrium between the edge channels. A quantitative experimental and
theoretical investigation of these issues has now been carried out by McEuen
et o/ 4 7 7

Selective backscattering and the absence of local equilibrium have
consequences äs well for the two-terminal resistance in strong magnetic
fields.307 In weak fields one usually observes in two-terminal measurements a
superposition of the Shubnikov-De Haas longitudinal resistance oscillations
and the quantized Hall resistance. This superposition shows up äs a
characteristic "overshoot" of the two-terminal resistance äs a function of the
477P. L. McEuen, A. Szafer, C. A. Richter, B. W. Alphenaar, J. K. Jain, and R. N. Sacks, Phys.

Rev. Leu. 64, 2062 (1990).
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magnetic field äs it mcreases from one quantized Hall plateau to the next (the
plateaux comcide with mmima of the Shubnikov-De Haas oscillations) In
the strong-field regime (in the absence of eqmhbration between source and
dram contacts), no such superposition is to be expected Instead, the two-
termmal resistance would mcrease monotonically from (hße^N'1 to
(h/2e2)(N — l)"1 äs the transmission probability from source to dram
decreases from N to N — l We are not aware of an expenmental test of this
predicüon

The foregomg analysis assumes that the length L of the conductor is much
greater than its width W, so edge channels are the only states at the Fermi
level that extend from source to dram If L « W, addiüonal extended states
may appear m the bulk of the 2DEG, whenever the Fermi level lies m a bulk
Landau level An expenment by Fang et al m this short-channel regime, to
which our analysis does not apply, is discussed by Buttiker 386

20 FRACTIONAL QUANTUM HALL EFFECT

Microscopically, quantization of the Hall conductance GH m fractional
multiples of e2/h is entirely different from quantization in integer multiples
While the integer quantum Hall effect8 can be explamed satisfactonly m
terms of the states of nomnteractmg electrons m a magnetic field (see Section
18), the fractional quantum Hall effect478 exists only because of electron-
electron interactions 479 Phenomenologically, however, the two effects are
quite similar Several expenments on edge channel transport in the integer
QHE339340426 reviewed m Section 19 have been repeated480 481 for the
fractional QHE with a similar outcome The Interpretation of Section 19 m
terms of selective population and detection of edge channels cannot be
apphed m that form to the fractional QHE Edge channels m the integer
QHE are defined in one-to-one correspondence to bulk Landau levels
(Section 18 b) The fractional QHE requires a generahzation of the concept of
edge channels that allows for mdependent current channels withm the same
Landau level Two recent papers have addressed this problem482 483 and
have obtamed different answers The present Status of theory and expenment
on transport m "fractional" edge channels is reviewed m Section 20 b,
preceded by a bnef introduction to the fractional QHE

478D C Tsui, H L Stornier, and A C Gossard, Phys Rev Lett 48, 1559 (1982)
479R B Laughlm, Phys Rev Lett 50, 1395 (1983)
480A M Chang and J E Cunnragham, Solid State Comm 72, 651 (1989), Surf Sa 229, 216

(1990)
48'L P Kouwenhoven, B J van Wees, N C van der Vaart, C J P M Harmans, C E

Timmermg, and C T Foxon, Phys Rev Lett 64, 685 (1990), and unpubhshed
482C W J Beenakker, Phys Rev Lett 64, 216 (1990)
483A H MacDonald, Phys Rev Lett 64, 220 (1990)
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a Introductwn

Excellent high-level mtroductions to the fractional QHE m an unbounded
2DEG can be found m Refs 97 and 484 The followmg is an oversimplifica-
tion of Laughlm's theory479 of the effect and is only mtended to mtroduce the
reader to some of the concepts that play a role m edge channel transport m
the fractional QHE

It is mstructive to first consider the motion of two mteractmg electrons m a
strong magnetic field 485 The dynamics of the relative coordmate r decouples
from that of the center of mass Semiclassically, r moves along equipotentmls
of the Coulomb potential e2/er (this is the guidmg center dnft discussed m
Section 18 b) The relative coordmate thus executes a circular motion around
the ongm, correspondmg to the two electrons orbiting around their center of
mass The phase shift acquired on one complete revolution,

(201)

should be an integer multiple of 2π so that

=1,2, (202)

The mterparticle Separation in umts of the magnetic length /m = (h/eB)l/2 is
quantized In the field regime where the fractional QHE is observed, only one
spin-spht Landau level is occupied m general If the electrons have the same
spin, the wave function should change sign when two coordmates are
interchanged In the case considered here of two electrons, an mterchange of
the coordmates is equivalent to r — > — r A change of sign is then obtamed if
the phase shift for one half revolution is an odd multiple of π (i e , for Αφ an
odd multiple of 2π) The Pauh prmciple thus restncts the integer q in Eq
(20 2) to odd values

The mterparticle Separation of a system of more than two electrons is not
quantized Still, one might surmise that the energy at densities ns χ 1/πΡ2

correspondmg to an average Separation r m accord with Eq (20 2) would be
particularly low This occurs when the Landau level fillmg factor v = hnJeB
equals v κ l/q Theoretical work by Laughlin, Haldane, and Hal-
penn479 486 487 shows that the energy density u(v) of a uniform 2DEG in a

484T Chakraborty and P Pietilamen, "The Fractional Quantum Hall Effect" Springer, Berlin,
1988

485R B Laughlin, Phys Rev B 27, 3383 (1983)
486F D M Haldane, Phys Rev Leu 51, 605 (1983)
487B I Halperm, Phys Rev Lett 52, 1583 (1984)
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strong magnetic field has downward cusps at these values of v äs well äs at
other fractions, given generally by

v = p/q, (20.3)

with p and q mutually prime integers and q odd. The cusp in u at integer v is a
consequence solely of Landau level quantization, according to

du/dns = (Int[v] + i)Ätuc. (20.4)

Because of the cusp in u, the chemical potential du/dns has a discontinuity
Δμ = ftcoc at integer v. At these values of the filling factor an infinitesimal
increase in electron density costs a finite amount of energy, so the electron gas
can be said to be incompressible. The cusp in u Ά(. fractional v exists because of
the Coulomb interaction. The discontinuity Δμ is now approximately

Δμ » e2Mn cc V^> wmcn at a typical field of 6 T in GaAs is 10 meV, of the
same magnitude äs the Landau level Separation hcoc oc B.

The incompressibility of the 2DEG at v = p/q implies that a nonzero
minimal energy is required to add Charge to the System. An important
consequence of Laughlin's theory is that Charge can be added only in the
form of quasiparticle excitations of fractional charge e* = e/q. The dis-
continuity Δμ in the chemical potential equals the energy that it costs to
create p pairs of oppositely charged quasiparticles (widely separated from
each other), Δμ = ρ χ 2Δ with Δ the quasiparticle creation energy.

The fractional QHE in a disordered macroscopic sample occurs because
the quasiparticles are localized by potential fluctuations in the bulk of the
2DEG. A Variation of the filling factor v = p/q + δν in an interval around the
fractional value changes the density of localized quasiparticles without
changing the Hall conductance, which retains the value GH = (p/q)e2/h. The
precision of the QHE has been explained by Laughlin488 in terms of the
quantization of the quasiparticle Charge e*, which is argued to imply
quantization of GH at integer multiples of ee*/h.

b. Fractional Edge Channels

In a small sample the fractional QHE can occur in the absence of disorder
and can show deviations from precise quantization. Moreover, in special
geometries481 GH can take on quantized values that are not simply related to
e*. These observations cannot be easily understood within the conventional
description of the fractional QHE, äs outlined in the previous subsection. An
approach along the lines of the edge channel formulation of the integer QHE
(Sections 18 and 19) seems more promising. In Ref. 482 the concept of an edge
channel was generalized to the fractional QHE, and a generalized Landauer

488R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
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formula relatmg the conductance to the transmission probabilities of the edge
channels was denved We review this theory and the application to expen-
ments A different edge channel theory by MacDonald483 is discussed toward
the end of this subsection

The edge channels for the conductance m the linear transport regime are
defined in terms of properties of the equilibnum state of the System If the
electrostatic potential energy V(x,y) vanes slowly m the 2DEG, then the
equilibnum density distnbution n(x, y) follows by requinng that the local
electrochemical potential V(r) + du/dn has the same value μ at each point r in
the 2DEG Here du/dn is the chemical potential of the uniform 2DEG with
density n(r) As discussed in Section 20 a, the internal energy density u(n) of a
uniform mteracting 2DEG in a strong magnetic field has downward cusps at
densities n = vpBe/h correspondmg to certain fractional fillmg factors vp As a
result, the chemical potential du/dn has a discontinuity (an energy gap) at
v = vp, with dup Jan and dup /dn the two hmitmg values äs v —> vp As noted
by Halpenn,489 when μ — V lies in the energy gap the fillmg factor is pmned
at the value vp The equilibnum electron density is thus given by489

n = vpBe/h, if du~/dn < μ — V< dup /dn,

du/dn + F(r) = μ, otherwise (20 5)

Note that K(r) itself depends on n(r) and thus has to be determmed self-
consistently from Eq (20 5), takmg the electrostatic screenmg m the 2DEG
mto account We do not need to solve explicitly for n(r), but we can identify
the edge channels from the followmg general considerations482

At the edge of the 2DEG, the electron density decreases from its bulk value
to zero Eq (20 5) implies that this decrease is stepwise, äs illustrated in Fig
94 The requirement on the smoothness of V for the appearance of a well-
defined region at the edge m which v is pmned at the fractional value vp is that
the change m V withm the magnetic length /m is small compared with the
energy gap dup /dn — du~/dn This ensures that the width of this region is
large compared with /m, which is a necessary (and presumably sufficient)
condition for the formation of the incompressible state Dependmg on the
smoothness of V, one thus obtams a senes of steps at v = vp (p = l, 2, , P) äs
one moves from the edge toward the bulk The senes termmates in the fillmg
factor vp = vbulk of the bulk, assummg that in the bulk the chemical potential
μ — V lies in an energy gap The regions of constant v at the edge form bands
extendmg along the wire These incompressible bands [in which the compress-
ibihty x = (n2d2u/dn2)~1 =0] alternate with bands in which μ— Fdoes not he
m an energy gap The latter compressible bands (in which χ > 0) may be

489B I Halpenn, Helv Phy> Acta 56, 75 (1983)
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FIG 94 Scheraatic drawmg of the Variation m fillmg factor v, electrostatic potential V, and
chemical potential du/dn, at a smooth boundary m a 2DEG The dashed hne m the bottom panel
denotes the constant electrochemical potential μ = V + du/dn The dotted mtervals mdicate a
discontmuity (energy gap) m du/dn and correspond m the top panel to regions of constant
fractional fllhng factor vp that spatially separate the edge channels The width of the edge channel
regions shnnks to zero in the integer QHE, smce the compressibihty χ of these regions is
mfinitely large m that case Taken frora C W J Beenakker, Phys Rev Leu 64, 216 (1990)

identified äs the edge channels of the transport problem, äs will be discussed
later. To resolve a misunderstanding,490 we note that the particular potential
and density profile illustrated in Fig. 94 (in which the edge channels have a
nonzero width) assumes that the compressibility of the edge channels is not
mfinitely large, but the subsequent analysis is independent of this assumption
(requiring only that the edge channels are flanked by bands of zero
compressibility). Indeed, the analysis is applicable also to the integer QHE,
where the edge channels have an infinitely large compressibility and hence an
infimtesimally small width (limited only by the magnetic length).

The conductance is calculated by bringing one end of the conductor in
contact with a reservoir at a slightly higher electrochemical potential μ + Δμ
without changing V (äs in the derivation of the usual Landauer formula; cf.
Section 12.b). The resulting change An in electron density is

Δη = (20.6)

where δ denotes a functional derivative. In the second equality in Eq. (20.6),
we used the fact that n is a functional of μ - V, by virtue of Eq. (20.5). In a

°A M Chang, Solid State Comm 74, 871 (1990)
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FIG 95 Schematic drawmg of the mcompressible bands (hatched) of fractional fillmg factor
vp, alternatmg with the edge channels (arrows mdicate the direction of electron motion m each
channel) (a) A uniform conductor (b) A conductor contammg a barrier of reduced fillmg factor
Taken from C W J Beenakker, Phys Rev Lett 64, 216 (1990)

strong magnetic field, this excess density moves along equipotentials with the
guiding-center-dnft velocity E/B (E = dV/edr being the electric field). The
component udnf t of the drift velocity in the y-direction (along the conductor) is

B l dV
--.

The current density j = —εΔη udnft becomes simply

e dv

(20.7)

(20.8)

It follows from Eq. (20.8) that the incompressible bands of constant v = vp

do not contribute toj. The reservoir injects the current into the compressible
bands at one edge of the conductor only (for which the sign of dv/dx is such
that 7 moves away from the reservoir). The edge channel with index p = 1,2,
..., P is defined äs that compressible band that is flanked by incompressible
bands at filling factors vp and vp _ j. The outermost band from the center of the
conductor, which is the p = l edge channel, is included by defining formally
v0 Ξ 0. The arrangement of alternating edge channels and compressible
bands is illustrated in Fig. 95a. Note that different edges may have a different
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series of edge channels at the same magnetic field value, depending on the
smoothness of the potential V at the edge (which, äs discussed before,
determines the incompressible bands that exist at the edge). This is in contrast
to the Situation in the integer QHE, where a one-to-one correspondence
exists between edge channels and bulk Landau levels (Section 18.b). In the
fractional QHE an infinite hierarchy of energy gaps exists, in principle,
corresponding to an infinite number of possible edge channels, of which only
a small number (corresponding to the largest energy gaps) will be realized in
practice.

The current Ip = (β//ι)Δμ(νρ — v p _ j ) injected into edge channel p by the
reservoir follows directly from Eq. (20.8) on Integration over x. The total
current / through the wire is / = ££=i IPTP, if a fraction Tp of the injected
current Ip is transmitted to the reservoir at the other end of the wire (the
remainder returning via the opposite edge). For the conductance G s eI/Αμ,
one thus obtains the generalized Landuer formula for a two-terminal
conductor,482

G = T Σ TPAVP' (20·9)n P=i

which differs from the usual Landauer formula by the presence of the
fractional weight factors Δνρ = vp — v p _ t . In the integer QHE, Δνρ = l for all
p so that the usual Landauer formula with unit weight factor is recovered.

A multiterminal generalization of Eq. (20.9) for a two-terminal conductor
is easily constructed, following Büttiker5 (cf. Section 12.b):

T<*ß - L

(20.10a)

(20.10b)
p=l

Here Ia is the current in lead α connected to a reservoir at electrochemical
potential μα and fractional filling factor va. Equation (20.10b) defines the
transmission probability Τχβ from reservoir β to reservoir α (or the reflection
probability for α = β) in terms of a sum over the generalized edge channels in
lead ß. The contribution from each edge channel p = l,2,,..,Pß contains the
weight factor Δνρ = vp — νρ_! and the fraction TptXß of the current injected by
reservoir β into the pth edge channel of lead β that reaches reservoir a. Apart
from the fractional weight factors, the structure of Eq. (20.10) is the same äs
that of the usual Büttiker formula (12.12).

Applying the generalized Landauer formula (20.9) to the ideal conductor
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m Fig 95a, where Tp = l for all p, one finds the quantized two-termmal
conductance

G = TP?/vp^v, (2011)

The four-termmal Hall conductance GH has the same value, because each
edge is m local equilibnum In the presence of disorder this edge channel
formulation of the fractional QHE is generahzed m an analogous way äs m
the integer QHE by mcludmg locahzed states in the bulk In a smoothly
varymg disorder potential, these locahzed states take the form of circulatmg
edge channels, äs m Figs 78 and 79 In this way the filling factor of the bulk
can locally deviate from vp without a change m the Hall conductance, leadmg
to the formation of a plateau m the magnetic field dependence of GH In a
narrow channel, locahzed states are not required for a finite plateau width
because the edge channels make it possible for the chemical potential to he m
an energy gap for a fimte-magnetic-field mterval The Hall conductance then
remams quantized at vp(e

2/h) äs long äs μ — V m the bulk lies between
dup/dn and du p Jan

We now turn to a discussion of expenments on the fractional QHE m
semiconductor nanostructures Timp et al491 have measured the fractionally
quantized four-termmal Hall conductance GH m a narrow cross geometry
(defined by two sets of spht gates) The channel width W κ 90 nm is greater
than, but comparable to, the correlation length lm of the mcompressible state
in this expenment (/m χ 9 nm at B = 8 T), so one may expect the fractional
QHE to be modified by the lateral confinement492 Timp et al find, in
addition to quantized plateaux near ,̂ f, and f χ e2/h, a plateau-hke feature
around \ χ e2/h This even-denommator fraction is not observed äs a Hall
plateau m a bulk 2DEG 493 The plateaux m GH correlate with dips m a four-
termmal longitudmal resistance (the bend resistance defined m Section 16)

Consider now a conductor contaming a potential barner The potential
barner corresponds to a region of reduced filling factor vpmii = vmm separatmg
two regions of filling factor vpmjx Ξ vmax The arrangement of edge channels
and mcompressible bands is illustrated in Fig 95b We assume that the
potential barner is sufficiently smooth that scattermg between the edge
channels at opposite edges can be neglected All transmission probabihties
are then either 0 or l Tp = l for l < p s$ Pmm, and Tp = 0 for

49'G Timp, R E Behrmger, J E Cunmngham, and R E Howard, Phys Rev Leu 63, 2268
(1989), G Timp, m Ref 9

492S T Chui, Phys Rev Leu 56, 2395 (1986), Phys Rev B 36, 2806 (1987)
*"H W Jiang, H L Stornier, D C Tsm, L N Pfeiffer, and K W West, Phys Rev 540,12013

(1989)
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FIG. 96. Two-terminal conductance of a constriction containing a potential barrier, äs a
function of the voltage on the split gate defining the constriction, at a fixed magnetic field of 7 T.
The conductance is quantized according to Eq. (20.12). Taken from L. P. Kouwenhoven et al,
unpublished.

ductance is
Equation (20.9) then teils us that the two-terminal con-

G = (e2/h)vn (20.12)

In Fig. 96 we show experimental data by Kouwenhoven et a/.481 of the
fractionally quantized two-terminal conductance of a constriction containing
a potential barrier. The constriction (or point contact) is defined by a split
gate on top of a GaAs-AlGaAs heterostructure. The conductance in Fig. 96
is shown for a fixed magnetic field of 7 T äs a function of the gate voltage.
Increasing the negative gate voltage increases the barrier height, thereby
reducing G below the Hall conductance corresponding to vmax = l in the wide
2DEG. The curve in Fig. 96 shows plateaux corresponding to vmin = l, f, and
^ in Eq. (20.12). The f plateau is not exactly quantized, but is too low by a few
percent. The constriction width on this plateau is estimated481 at 500 nm,
which is a factor of 50 larger than the magnetic length at B = 7 T. It would
seem that scattering between fractional edge channels at opposite edges
(necessary to reduce the conductance below its quantized value) can only
occur via states in the bulk for this large ratio of W/lm.

A four-terminal measurement of the fractional QHE in a conductor
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containing a potential barrier can be analyzed by means of Eq. (20.10),
analogously to the case of the integer QHE discussed in Section 19. The four-
terminal longitudinal resistance RL (in the geometry of Fig. 82) is given by the
analog of Eq. (19.3),

(20.13)

provided that either the edge channels transmitted across the barrier have
equilibrated with the extra edge channels available outside the barrier region
or the voltage contacts are ideal; that is, they have unit transmission
probability for all fractional edge channels. Similarly, the four-terminal
diagonal resistances R£ defined in Fig. 82 are given by [cf. Eq. (19.5)]

V ·vmm

Chang and Cunningham480 have measured RL and RD in the fractional QHE,
using a 1.5-jum-wide 2DEG channel with a gate across a segment of the
channel (the gate length is also approximately 1.5 μητ). Ohmic contacts to the
gated and ungated regions allowed vmm and vmax to be determined independ-
ently. Equations (20.13) and (20.14) were found to hold to within 0.5%
accuracy. This is illustrated in Fig. 97 for the case that vmax = l and vmin

varying from l to 2/3 on increasing the negative gate voltage (at a fixed
magnetic field of 0.114T). Similar results were obtained480 for the case that
vmax = f and vmin varies from f to i

Adiabatic transport in the fractional QHE can be studied by the selective
population and detection of fractional edge channels, achieved by means of
barriers in two closely separated current and voltage contacts (Fig. 98a). The
analysis using Eq. (20.10) is completely analogous to the analysis of the
experiment in the integer QHE,426 discussed in Section 19. Figure 98b
illustrates the arrangement of edge channels and incompressible bands for the
case that the chemical potential lies in an energy gap for the bulk 2DEG (at
v = vbulk), äs well äs for the two barriers (at v, and vv for the barrier in the
current and voltage lead, respectively). Adiabatic transport is assumed over
the barrier, äs well äs from barrier I to barrier V (for the magnetic field
direction indicated in Fig. 98). Equation (20.10) for this case reduces to

C ß
0 = - ννμν - τ min(v„ νν)μ,, (20.15)
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FIG 97 Four-terrainal resistances of a 2DEG channe! contammg a potential barner, äs a
function of the gate volrage (B = 0 114 T, T = 70 mK) The current flows from contact l to
contact 5 (see inset), the resistance curves are labeled by the contacts ι and j between which the
voltage is measured (The curves for i,j = 2,4 and 8,6 are identical) The magnetic field pomts
outward This measurement corresponds to the case vmax = l and vml„ = vb varymg from l at
Kg > - 10 mV to 2/3 at Kg « -90 mV (arrow) The resistances RL = R2 4 = Rs 6 and R^ =R26

are quantized according to Eqs (20 13) and (20 14), respectively The resistances R3 7 and R2 s
are the Hall resistances in the gated and ungated regions, respectively From Eq (20 10) one can
also denve that Rs -, = R3 4 = RL and R2 3 = R7 6 = 0 on the quantized plateaux, äs observed
expenmentally Taken from A M Chang and J E Cunnmgham, Surf Sei 229, 216 (1990)

so the Hall conductance GH = β!/μν becomes

e2 e2

GH = — max(v„ vv) ^ — vb u l k. (20.16)

The quantized Hall plateaux are determined by the fractional filling factors of
the current and voltage leads, not of the bulk 2DEG. Kouwenhoven et a/.481

have demonstrated the selective population and detection of fractional edge
channels in a device with a 2-μπι Separation of the gates m the current and
voltage leads. The gates extended over a length of 40 μηι along the 2DEG
boundary. In Fig. 99 we reproduce one of the experimental traces of
Kouwenhoven et al. The Hall conductance is shown for a fixed magnetic field
of 7.8 T äs a function of the gate voltage (all gates bemg at the same voltage).



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 213

FIG. 98. (a) Schematic of the experimental geometry of Kouwenhoven et a/.481 The crossed
squares are contacts to the 2DEG. One current lead and one voltage lead contain a barrier
(shaded), of which the height can be adjusted by means of a gate (not drawn). The current / flows
between contacts l and 3; the voltage V is measured between contacts 2 and 4. (b) Arrangement
of incompressible bands (hatched) and edge channels near the two barriers. In the absence of
scattering between the two fractional edge channels, one would measure a Hall conductance
G„ = l/V that is fractionally quantized at f χ e2/h, although the bulk has unit filling factor.
Taken from C. W. J. Beenakker, Phys. Rev. Leu. 64, 216 (1990).
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FIG. 99. Anomalously quantized Hall conductance in the geometry of Fig. 98, in accord with
Eq. (20.16) (vbu]k = l, v, = vv decreases from l to 2/3 äs the negative gate voltage is increased).
The temperature is 20 mK. The rapidly rising part (dotted) is an artifact due to barrier pinch-off.
Taken from L. P. Kouwenhoven et al, Phys. Rev. Leu. 64, 685 (1990).
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As the barner heights m the two leads are mcreased, the Hall conductance
decreases from the bulk value l χ e2/h to the value f χ e2/h determmed by the
leads, in accord with Eq (20 16) A more general formula for GH vahd also m
between the quantized plateaux is shown m Ref 481 to be m quantitative
agreement with the expenment

MacDonald has, mdependent of Ref 482, proposed a different generalized
Landauer formula for the fractional QHE 483 The difference with Eq (20 9) is
that the weight factors in MacDonald's formula can take on both positive and
negative values (correspondmg to electron and hole channels) In the case of
local equilibnum at the edge, the sum of weight factors is such that the two
formulations give identical results The results differ m the absence of local
equilibnum if fractional edge channels are selectively populated and detected
For example, MacDonald predicts a negative longitudmal resistance m a
conductor at fillmg factor v = f contammg a segment at v = l Another
imphcation of Ref 483 is that the two-termmal conductance G of a conductor
at vmax = l contammg a potential barner at fillmg factor vmm is reduced to
ΐ χ e2/h if vmm = ̂  [m accord with Eq (20 12)], but remams at l χ e2/h if
vmm = 2/3 That this is not observed expenmentally (cf Fig 96) could be due
to interedge channel scattermg, äs argued by MacDonald The expenment by
Kouwenhoven et al481 (Fig 99), however, is apparently m the adiabatic
regime, and was interpreted m Fig 98 m terms of an edge channel of weight |
at the edge of a conductor at v = l In MacDonald's formulation, the
conductor at v = l has only a single edge channel of weight l This would
need to be reconciled with the expenmental observation of quantization of
the Hall conductance at f χ e2/h

We conclude this section by bnefly addressing the question What Charge
does the resistance measure^ The fractional quantization of the conductance
in the expenments discussed is understood äs a consequence of the fractional
weight factors in the generalized Landauer formula (20 9) These weight
factors Δνρ = vp — v p _ t are not in general equal to e*/e, with e* the fractional
charge of the quasiparücle excitations of Laughhn's incompressible state (cf
Section 20 a) The reason for the absence of a one-to-one correspondence
between Δνρ and e* is that the edge channels themselves are not incompress-
ible 482 The transmission probabihties m Eq (20 9) refer to charged "gapless"
excitations of the edge channels, which are not identical to the charge e*
excitations above the energy gap in the incompressible bands (the latter
charge might be obtamed from thermal activation measurements, cf Ref

494R G Clark, J R Mallett, S R Haynes,J J Harris and C T Foxon, Phys Rev Leu 60, 1747
(1988)

495S A Kivelson and V L Pokrovsky, Phys Rev B 40, 1373 (1989)
496J A Simmons,H P Wei, L W Engel, D C Tsui, and M Shayegan, Phys Rev Lett 63,1731

(1989)
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494) It is an mterestmg and (to date) unsolved problem to determme the
Charge of the edge channel excitations Kivelson and Pokrovsky495 have
suggested performmg tunnelmg expenments m the fractional QHE regime
for such a purpose, by usmg the Charge dependence of the magneüc length
(h/eB)l/2 (which determmes the penetration of the wave function m a tunnel
barner and, hence, the transmission probabihty through the barner) Alter-
natively, one could use the h/e penodicity of the Aharanov-Bohm mag-
netoresistance oscillations äs a measure of the edge channel charge Simmons
et a/496 find that the charactensüc field scale of quasipenodic resistance
fluctuations m a 2-μm-wlde Hall bar mcreases from 0016Γ+ 30% near
v = l, 2, 3, 4 to 0 05 T + 30% near v = ^ This is suggestive of a reduction m
charge from e to e/3, but not conclusive smce the area for the Aharonov-
Bohm effect is not well defined m a Hall bar (cf Section 21)

21 AHARONOV-BOHM EFFECT IN STRONG MAGNETIC FIELDS

As mentioned bnefly m Section 8, the Aharonov-Bohm oscillations m the
magnetoresistance of a ring are gradually suppressed m strong magnetic
fields This suppression provides additional support for edge channel trans-
port m the quantum Hall effect regime (Section 21 a) Entirely new mechan-
isms for the Aharonov-Bohm effect become operative m strong magnetic
fields These mechamsms, resonant tunnelmg and resonant reflection of edge
channels, do not require a ring geometry Theory and expenments on
Aharonov-Bohm oscillations in singly connected geometries are the subject
of Section 20 b

a Suppression of the Aharonov-Bohm Effect m a Ring

In Section 8 we have seen how the quantum mterference of clockwise and
counterclockwise trajectories m a ring in the diffusive transport regime leads
to magnetoresistance oscillations with two different penodicities the funda-
mental Aharonov-Bohm effect with AB = (h/e)S 1 penodicity, and the
harmomc with AB = (h/2e)S~1 penodicity, where S is the area of the ring In
arrays of rings only the h/2e effect is observable, smce the h/e effect has a
sample specific phase and is averaged to zero In expenments by Timp et al 69

and by Ford et al 74 on single rings in the 2DEG of high-mobility GaAs-
AlGaAs heterostructures, the h/e effect was found predommantly The
amphtude of these oscillations is strongly reduced69 74 19S 497 by a large
magnetic field (cf the magnetoresistance traces shown m Fig 26) This
suppression was found to occur for fields such that 2/cycl < W, where W is the
width of the arms of the ring The reason is that m strong magnetic fields the

497G Timp, P M Mankiewich, P DeVegvar, R Behnnger, J E Cunnmgham, R E Howard, H
U Baranger, and J K Jam, Phys Rev B 39, 6227 (1989)
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FIG. 100. Illustration of a localized edge
channel circulating along the inner perimeter
of a ring, and of extended edge channels on the
leads and on the outer perimeter. No
Aharonov-Bohm magnetoresistance oscillat-
ions can occur in the absence of scattering
between these two types of edge channels.

states at the Fermi level that can propagate through the ring are edge states at
the outer perimeter. These states do not complete a revolution around the
ring (see Fig. 100). Scattering between opposite edges is required to complete
a revolution, but such backscattering would also lead to a nonzero longi-
tudinal resistance. This argument112'498 explains the absence of Aharonov-
Bohm oscillations on the quantized Hall plateaux, where the longitudinal
resistance is zero. Magnetoresistance oscillations return between the plateaux
in the Hall resistance, but at a larger value of AB than in weak fields. Timp et
a/.497 have argued that the Aharonov-Bohm oscillations in a ring in strong
magnetic fields are associated with scattering from the outer edge to edge
states circulating along the inner perimeter of the ring. The smaller area
enclosed by the inner perimeter explains the increase in AjB.This Interpre-
tation is supported by numerical calculations.497

b. Aharonov-Bohm Effect in Singly Connected Geometries

(1) Point Contact. Aharonov-Bohm oscillations in the magnetoresistance of
a quantum point contact were discovered by van Loosdrecht et a/.292 The
magnetic field dependence of the two-terminal resistance is shown in Fig. 101,
for various gate voltages. The periodic oscillations occur predominantly
between quantum Hall plateaux, in a limited ränge of gate voltages, and only
at low temperatures (in Fig. 101, T= 50 mK; the effect has disappeared at
l K). The fine structure is very well reproducible if the sample is kept in the
cold, but changes after cycling to room temperature. As one can see from the
enlargements in Fig. 102, a Splitting of the peaks occurs in a ränge of magnetic
fields, presumably äs spin Splitting becomes resolved. A curious aspect of the
effect (which has remained unexplained) is that the oscillations have a much
larger amplitude in one field direction than in the other (see Fig. 101), in
apparent conflict with the +B symmetry of the two-terminal resistance
required by the reciprocity relation (12.16) in the absence of magnetic
impurities. Other devices of the same design did not show oscillations of well-
defined periodicity and had a two-terminal resistance that was approximately
+ B Symmetrie.

498J. K. Jain, Phys. Rev. Lett. 60, 2074 (1988).
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FIG. 101. Two-terminal magnetoresistance of a point contact for a series of gate voltages at
T= 50 mK, showing oscillations that are periodic in B between the quantum Hall plateaux.
The second, third, and fourth curves from the bottom have offsets of, respectively, 5, 10, and
15kn. The rapid oscillations below l T are Shubnikov-De Haas oscillations periodic in 1/ß,
originating from the wide 2DEG regions. The sharp peak around B = OT originales from the
ohmic contacts. Taken from P. H. M. van Loosdrecht et ai, Phys. Rev. B 38, 10162 (1988).
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FIG. 102. Curves a and b are close-ups of the curve for Vs = —1.7 V in Fig. 101. Curve c is a

separate measurement on the same device (note the different field scale due to a change in
electron density in the constriction). Taken from P. H. M. van Loosdrecht et al., Phys. Rev. B 38,
10162 (1988).
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FIG 103 Equipotentials at the guidmg center energy m the saddle-shaped potential created
by a spht gate (shaded) Aharonov-Bohm osciilations m the pomt contact magnetoresistance
result from the interference of tunnelmg paths ab and adcb Tunneling from a to b may be
assisted by an impunty at the entrance of the constnction Taken from P H M van Loosdrecht
et al,Phys Rev B 38, 10162 (1988)

Figure 103 illustrates the tunnelmg mechamsm for the penodic mag-
netoresistance osciilations äs it was ongmally proposed292 to explam the
observations Because of the presence of a barner m the pomt contact, the
electrostatic potential has a saddle form Equipotentials at the guidmg center
energy (18 1) are drawn schematically in Fig 103 (arrows mdicate the
direction of motion along the equipotential) An electron that enters the
constnction at α can be reflected back mto the broad region by tunnelmg to
the opposite edge, either at the potential step at the entrance of the
constnction (from α to b) or at its exit (from d to c) These two tunnelmg paths
acquire an Aharonov-Bohm phase difference499 of eBS/h (were S is the
enclosed area abcd), leadmg to penodic magnetoresistance osciilations (Note
that the penodicity Aß may differ438 50° somewhat from the usual expression
AB = h/eS, smce S itself is ß-dependent due to the ß-dependence of the
guidmg center energy) This mechamsm shows how an Aharonov-Bohm
effect is possible in prmciple m a smgly connected geometry The pomt
contact behaves äs if it were multiply connected, by virtue of the spatial
Separation of edge channels movmg m opposite directions (Related mechan-
isms, based on circulatmg edge currents, have been considered for
Aharonov-Bohm effects m small conductors 473 474 501-503) The osciilations

499J K Jam and S Kivelson, Phys Rev B 37, 4111 (1988)
500B J van Wees, L P Kouwenhoven, C J P M Harmans, J G Willtamson, C E T

Timmenng, M E I Broekaart, C T Foxon, and J J Harns, Phys Rev Leu 62, 2523 (1989)
501E N BogachekandG A Gogadze, Zh Eksp Teor Fiz 63, 1839 (1972) [Soy Phys JETP 36,

973 (1973)]
502N B Brandt, D V Gitsu, A A Nikolaevna, and Ya G Ponomarev, Zh Eksp Teor Fiz 72,

2332 (1977) \Sov Phys JETP 45, 1226 (1977)], N B Brandt, D B Gitsu, V A Dolma, and
Ya G Ponomarev, Zh Eksp Teor Fiz 92, 913 (1987) [Sov Phys JETP 65, 515 (1987)]

503Y Isawa, Surf Sa 170, 38 (1986)
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FIG 104 Cavity (of l 5 μηι diameter) defined by a double set of spht gates A and B For large
negative gate voltages the 2DEG region under the narrow gap between gates A and B is fully
depleted, while transmission remams possible over the potential barner m the wider openmgs at
the left and nght of the cavity Taken from B J van Wees et al, Phys Rev Leu 62, 2523 (1989)

penodic m B are only observed at large magnetic fields (above about l T, the
oscillations at lower fields are Shubmkov-De Haas oscillations penodic m
i/B, due to the senes resistance of the wide 2DEG regions) At low magnetic
fields the spatial Separation of edge channels responsible for the Aharanov-
Bohm effect is not yet effective The spatial Separation can also be destroyed
by a large negative gate voltage (top curve m Fig 101), when the width of the
point contact becomes so small that the wave functions of edge states at
opposite edges overlap

Although the mechamsm illustrated m Fig 103 is attractive because it is
an mtnnsic consequence of the pomt contact geometry, the observed well-
defined penodicity of the magnetoresistance oscillations requires that the
potential mduced by the spht gate vanes rapidly over a short distance (m
order to have a well-defined area S) A smooth saddle potential seems more
reahstic Moreover, one would expect the penodicity to vary more strongly
with gate voltage than the small 10% Variation observed expenmentally äs Vs

is changed from — l 4 to — 1 7 V Glazman and Jonson438 have proposed
that one of the two tunnelmg processes (from α to b in Fig 103) is mediated
by an impunty outside but close to the constnction The combmation of
impunty and pomt contact mtroduces a well-defined area even for a smooth
saddle potential, which moreover will not be strongly gate-voltage-
dependent Such an impunty-assisted Aharonov-Bohm effect in a quantum
pomt contact has been reported by Wharam et al504 In order to study the
Aharonov-Bohm effect due to interedge channel tunnelmg under more
controlled conditions, a double-pomt contact device is required, äs discussed
below

(2) Cavity. Van Wees et al 50° performed magnetoresistance expenments in
a geometry shown schematically m Fig 104 A cavity with two opposite pomt

504D A Wharam M Pepper, R Newbury, H Ahmed, D G Hasko, D C Peacock, J E F
Frost, D A Ritchie, and G A C Jones, J Phys Condens Matter l, 3369 (1989)
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FIG. 105. Magnetoconductance experiments on the device of Fig. 104 at 6 mK, for a fixed gate
voltage of —0.35V. (a) Conductance of point contact A, measured with gate B grounded. (b)
Conductance of point contact B (gate A grounded). (c) Measured conductance of the entire
cavity. (d) Calculated conductance of the cavity, obtained from Eqs. (21.1) and (21.2) with the
measured GA and GB äs input. Taken from B. J. van Wees et al, Phys. Rev. Leu. 62, 2523 (1989).

contact openings is defined in the 2DEG by split gates. The diameter of the
cavity is approximately 1.5μηι. The conductances GA and GB of the two point
contacts A and B can be measured independently (by grounding one set of
gates), with the results plotted in Fig. 105a, b (for Fg = —0.35 V on either gate
A or B). The conductance Gc of the cavity (for Fg = —0.35 V on both the split
gates) is plotted in Fig. 105c. A long series of periodic oscillations is observed
between two quantum Hall plateaux. Similar series of oscillations (but with a
different periodicity) have been observed between other quantum Hall
plateaux. The oscillations are suppressed on the plateaux themselves. The
amplitude of the oscillations is comparable to that observed in the experi-
ment on a single point contact292 (discussed before), but the period is much
smaller (consistent with a larger effective area in the double-point contact
device), and no Splitting of the peaks is observed (presumably due to a fully
resolved spin degeneracy). No gross + B asymmetries were found in the
present experiment, although an accurate test of the symmetry on field
reversal was not possible because of difficulties with the reproducibility. The
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FIG 106 Illustration of mechamsms leadmg to Aharonov-Bohm oscillations m smgly
connected geometnes (a) Cavity contaimng a circulatmg edge state Tunnehng through the left
and nght barners (äs mdicated by dashed hnes) occurs with transmission probabihties TA and TB

On mcreasmg the magnetic field, resonant tunnelmg through the cavity occurs penodically each
time the flux Φ enclosed by the circulatmg edge state increases by one flux quantum h/e (b) A
circulatmg edge state bound on a iocal potential maximum causes resonant backscattermg,
rather than resonant transmission

oscillations are quite fragile, disappearing when the temperature is raised
above 200 mK or when the voltage across the device exceeds 40 μ V (the data
in Fig. 105 were taken at 6mK and 6μΥ). The experimental data are well
described by resonant transmission through a circulating edge state in the
cavity,500 äs illustrated in Fig. 106a and described in detail later. Aharonov-
Bohm oscillations due to resonant transmission through a similar structure
have been reported by Brown et a/.505 and analyzed theoretically by
Yosephin and Kaveh.506

(3) Resonant Transmission and Reflection of Edge Channels. The electrosta-
tic potential in a point contact has a saddle shape (cf. Fig. 103), due to the
combmation of the lateral confmement and the potential barrier. The height
of the barrier can be adjusted by means of the gate voltage. An edge state with
a guiding center energy below the barrier height is a bound state in the cavity
formed by two opposite point contacts, äs is illustrated in Fig. 106a.

505R J Brown, C G Smith, M Pepper, M J Kelly, R Newbury, H Ahmed, D G Hasko,J E
F Frost, D C Peacock, D A Ritchie, and G A C Jones, J Phys Condens Matter l, 6291
(1989)

506Y Yosephin and M Kaveh, J Phys Condens Matter l, 10207 (1989)
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Tunneling of edge channels through the cavity via this bound state occurs
with transmission probability 7^B, which for a single edge channel is given
by474,498

AB ι _ _ mt\ „ />.\ 1 ι η η ^/r» Γ> \ 1 /2 / ± ι (Τ>Λ/ίΛ

(21.1)

Here ίΑ and rA are the transmission and reflection probability amplitudes
through point contact A, TA = |iA|2, and RA = |rA|2 = l — TA are the trans-
mission and reflection probabilities, and fB, rB, TB, J?B denote the correspond-
ing quantities for point contact B. In Eq. (21.1) the phase acquired by the
electron on one revolution around the cavity is the sum of the phase φ0 from
the reflection probability amplitudes (which can be assumed to be only
weakly ß-dependent) and of the Aharonov-Bohm phase Φ = BS, which
varies rapidly with B (Φ is the flux through the area S enclosed by the
equipotential along which the circulating edge state is extended). Resonant
transmission occurs periodically with B, whenever φ0 + Φβ/h is a multiple of
2π. In the weak coupling limit (TA, TB « 1), Eq. (21.1) is equivalent to the
Breit-Wigner resonant tunneling formula (17.1). This equivalence has been
discussed by Büttiker,386 who has also pointed out that the Breit-Wigner
formula is more generally applicable to the case that several edge channels
tunnel through the cavity via the same bound state.

In the case that only a single (spin-split) edge channel is occupied in the
2DEG, the conductance Gc = (ez/OTAB of the cavity follows directly from Eq.
(21.1). The transmission and reflection probabilities can be determined
independently from the individual point contact conductances GA = (e2/h)TA

(and similarly for GB), at least if one may assume that the presence of the
cavity has no effect on TA and 7^ itself (but only on the total transmission
probability TAB). If N > l spin-split edge channels are occupied and the
N — l lowest-index edge channels are fully transmitted, one can write

e2 e2 e2

Gc = — (N - l + TAB), GA = — (N - l + TA), GB = — (N - l + TB).

(21.2)

Van Wees et al.500 have compared this simple model with their experimental
data, äs shown in Fig. 105. The trace in Fig. 105d has been calculated from
Eqs. (21.1) and (21.2) by using the individual point contact conductances in
Fig. 105a, b äs input for TA and T„. The flux Φ has been adjusted to the
experimental periodicity of 3mT, and the phase φ0 in Eq. (21.1) has been
ignored (since that would only amount to a phase shift of the oscillations).
Energy averaging due to the finite temperature and voltage has been taken
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into account in the calculation. The agreement with experimental trace (Fig.
105c) is quite satisfactory.

Resonant reflection of an edge channel can occur in addition to the
resonant transmission already considered. Aharonov-Bohm oscillations due
to interference of the reflections at the entrance and exit of a point contact,
illustrated in Fig. 103, are one example of resonant reflection.292 Jain498 has
considered resonant reflection via a localized state circulating around a
Potential maximum, äs in Fig. 106b. Such a maximum may result naturally
from a repulsive scatterer or artificially in a ring geometry (cf. Fig. 100).
Tunneling of an edge state at each of the channel boundaries through the
localized state occurs with probabilities TA and TB. The reflection probability
of the edge channel is still given by TAB in Eq. (20.1), but the channel
conductance Gc is now a decreasing function of TAB, according to

GC = j (N - TAB). (21.3)

Quasi-periodic magnetoresistance oscillations have been observed in narrow
channels by several groups.70'496'507 These may occur by resonant reflection
via one or more localized states in the channel, äs in Fig. 106b.

22. MAGNETICALLY INDUCED BAND STRUCTURE

The one-dimensional nature of edge channel transport has recently been
exploited in an innovative way by Kouwenhoven et a/.250 to realize a one-
dimensional superlattice exhibiting band structure in strong magnetic fields.
The one-dimensionality results because only the highest-index edge channel
(with the smallest guiding center energy) has an appreciable backscattering
probability. The N — l lower-index edge channels propagate adiabatically,
with approximately unit transmission probability. One-dimensionality in
zero magnetic fields cannot be achieved with present techniques. That is one
important reason why the zero-field superlattice experiments described in
Section 11 could not provide conclusive evidence for a bandstructure effect.
The work by Kouwenhoven et a/.250 is reviewed in Section 22.a. The
magnetically induced band structure differs in an interesting way from the
zero-field band structure familiär from solid-state textbooks, äs we show in
Section 22.b.

a. Magnetotransport through a One-Dimensional Superlattice

The device studied by Kouwenhoven et a/.250 is shown in the inset of Fig.
107. A narrow channel is defined in the 2DEG of a GaAs-AlGaAs

507R. Mottahedeh, M. Pepper, R. Newbury, J. A. A. J. Perenboom, and K.-F. Berggren, Solid
State Comm. 72, 1065 (1989).
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FIG 107 Inset Corrugated gate used to define a narrow channel with a one-dimensional
penodic potential (the total number of barners is 16, correspondmg to 15 umt cells) Plotted is
the conductance m a magnetic field of 2 T äs a function of the voltage on the smooth gate at
lOmK The deep conductance mmima (marked by + and *) are attnbuted to mmigaps, and the
15 enclosed maxima to discrete states in the miniband Taken from L P Kouwenhoven et al,
Phy-i Rev Leu 65, 361 (1990)

heterostructure by two opposite gates. One of the gates is corrugated with
period α = 200 nm, to introduce a periodic modulation of the confining
potential. At large negative gate voltages the channel consists of 15 cavities
[äs in Section 21.b(2)] coupled in series. The conductance of the channel was
measured at lOmK in a fixed magnetic field of 2 T, äs a function of the voltage
on the gate that defines the smooth channel boundary. The results, repro-
duced m Fig. 107, show two pronounced conductance dips (of magnitude
Q.\e2/h), with 15 oscillations in between of considerably smaller amplitude.
The two deep and widely spaced dips are attributed to minigaps, the more
rapid oscillations to discrete states in the miniband.

This Interpretation is supported in Ref. 250 by a calculation of the
transmission probability amplitude t„ through n cavities in series, given by
the recursion formula

Here t and r are transmission and reflection probability amplitudes of the
barrier separating two cavities (all cavitities are assumed to be identical), and
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FIG. 108. Top: Calculated transmission probability TN of an edge channel through a periodic
Potential of N = 15 periods äs a function of the Aharonov-Bohm phase eBS/h (with S the area of
one unit cell). The transmission probability through a single barrier is varied äs shown in the
bottom panel. Taken from L. P. Kouwenhoven et al, Phys. Rev. Lett. 65, 361 (1990).

φ = eBS/h is the Aharonov-Bohm phase for a circulating edge state
enclosing area S. Equation (22.1) is a generalization of Eq. (21.1) for a single
cavity. The dependence on φ of T„ = |i„|2 shown in Fig. 108 is indeed
qualitatively similar to the experiment. Deep minima in the transmission
probability occur with periodicity Δ</> = 2π. Experimentally (where S is
varied via the gate voltage at constant B) this would correspond to
oscillations with periodicity &S = h/eB of Aharonov-Bohm oscillations in a
single cavity. The 15 smaller oscillations between two deep minima have the
periodicity of Aharonov-Bohm oscillations in the entire area covered by the
15 cavities. The observation of such faster oscillations shows that phase
coherence is maintained in the experiment throughout the channel and
thereby provides conclusive evidence for band structure in a lateral
superlattice.

b. Magnetically Induced Band Structure

(1) Skew Minibands. The band structure in the experiment of Kouwenhoven
et al.250 is present only in the quantum Hall effect regime and can thus be said
to be magnetically induced. The magnetic field breaks time-reversal symmetry.
Let us see what consequences that has for the band structure.

The hamiltonian in the Landau gauge A = (0, Bx, 0) is

(py + eBx)2

2m
+ V(x, y), V(x, y + a) = V(x, y), (22.2)

where V is the periodically modulated confming potential. Bloch's theorem is
not affected by the presence of the magnetic field, since 3C remains periodic in
y (in the Landau gauge). The eigenstates Ψ have the form

y), y), (22.3)
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where the function / is a solution periodic in y of the eigenvalue problem

^If the wave number k is restricted to the first Brillouin zone \k\ < π/α, the
index n labels both the subbands from the lateral confinement and the
minibands from the periodic modulation. Since E and V are real, one finds by
taking the complex conjugate of Eq. (22.4) that

E„(k, B) = E„(-k, -B). (22.5)

In zero magnetic fields the energy E is an even function of k, regardless of the
symmetry of the potential V. This can be viewed äs a consequence of time-
reversal symmetry.508 In nonzero magnetic fields, however, E is only even in
k if the lateral confinement is Symmetrie:

E„(k, B) = En(-k, B) only if V(x, y) = V(-x, y). (22.6)

To illustrate the formation of skew minibands in a magnetically induced
band structure, we consider the case of a weak periodic modulation V^y) of
the confining potential V(x, y) = V0(x) + V^x, y). The dispersion relation
E°(k) in the absence of the periodic modulation can be approximated by

E°„(k) = (n- £)Äo)c + V0(x = - kl2
m). (22.7)

The index n labels the Landau levels, and the wave number k runs from — oo
to +00. The semiclassical approximation (22.7) is valid if the confining
potential F0 is smooth on the scale of the magnetic length lm = (h/eB)l/2.
(Equation (22.7) follows from the guiding center energy (18.1), using the
identity X = —kh/eB between the guiding center coordinate and the wave
number; cf. Section 12.a.] For simplicity we restrict ourselves to the strictly
one-dimensional case of one Landau level and suppress the Landau level
index in what follows. To first order in the amplitude of the periodic
modulation K1; the zeroth-order dispersion relation is modified only near the
points of degeneracy Kp defined by

E°(K„ - ρ(2π/ά)) = E°(K„), p = +1, + 2, . . . . (22.8)

A gap opens near Kp, leading to the formation of a band structure äs
illustrated in Fig. 109. The gaps do not occur at multiples of π/α, äs in a
conventional l D band structure. Moreover, the maxima and minima of two
subsequent bands occur at different /c-values. This implies indirect optical
transitions between the bands if the Fermi level lies in the gap.

508L. D. Landau and E. M. Lifshitz, "Statistical Physics," Part 2, Section 55. Pergamon, Oxford,
1980.
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FIG 109. Illustration of magnetically mduced band structure m a narrow channel with a weak
penodic modulation of the confinmg potential V(x) (for the case V(x) φ V( — x)) The dashed
curves represent the unperturbed dispersion relation (22.7) for a smgle Landau level. Skew
mmibands result from the broken time-reversal symmetry m a magnetic field

It is instructive to consider the special case of a parabolic confining
potential VQ(x) = \m(a&2 in more detail, for which the zeroth-order disper-
sion relation can be obtained exactly (Section 10). Since the confinement is
Symmetrie in x, the minigaps in this case occur at the Brillouin zone
boundaries k = ρπ/α. Other gaps at points where the periodic modulation
induces transitions between different 1D subbands are ignored for simplicity.
From Eq. (10.5) one then finds that the Fermi energy lies in a minigap when

Ef — (n —
pnV

2M V a ) '
(22.9)

with the definitions ω = (ω* + ω2,)1'2, Μ = ηιω2/ω2

). In the limiting case
B = 0, Eq. (22.9) reduces to the usual condition249 that Bragg reflection
occurs when the longitudinal momentum mvy is a multiple of hn/a. In the
opposite limit of strong magnetic fields (o>c » ω0), Eq. (22.9) becomes

W,rr = 2
2Ef

.1/2

(22.10)

The effective width Weff of the parabolic potential is the Separation of the
equipotentials at the guiding center energy EG = EF — (n — i)frcoc.

The two-terminal conductance of the periodically modulated channel
drops by e2/h whenever £F lies in a minigap. If the magnetic field dependence



228 C W J BEENAKKER AND H VAN HOUTEN

of We[f is small, then Eq (22 10) shows that the magnetoconductance
oscillations have approximately the penodicity AB ~ h/eaWcff of the
Aharonov-Bohm effect m a smgle unit cell, m agreement with the cal-
culations of Kouwenhoven et al 25° (Note that in their expenment the Fermi
energy is tuned through the mmigap by varymg the gate voltage rather than
the magnetic field) The foregomg analysis is for a channel of infinite length
The mterference of reflections at the entrance and exit of a finite superlattice
of length L leads to transmission resonances249 387 whenever k = pn/L, äs
descnbed by Eqs (22 9) and (22 10) after substitutmg L for a These
transmission resonances are observed by Kouwenhoven et al äs rapid
oscillations m the conductance The number of conductance maxima between
two deep minima from the mmigap equals approximately the number L/a of
unit cells in the superlattice The number of maxima may become somewhat
larger than L/a if one takes into account reflections at the transition from a
narrow channel to a wide 2DEG This might explam the observation in Ref
250 of 16, rather than 15, conductance maxima between two mmigaps in one
particular expenment on a 15-penod superlattice

(2) Bloch Oscillations. In zero magnetic fields, an oscillatory current has
been predicted to occur on apphcation of a de electnc field to an electron gas
in a penodic potential509 This Bloch osallation would result from Bragg
reflection of electrons that, accelerated by the electnc field, approach the
band gap A necessary condition is that the field be sufficiently weak that
tunnelmg across the gap does not occur 51° 513 The wave number increases
m time accordmg to k = eE/h in an electnc field E The time interval between
two Bragg reflections is 2n/ak = h/eaE The oscillatory current thus would
have a frequency AVe/h, with AV= aE the electrostatic potential drop over
one unit cell Bloch oscillations have so far eluded experimental observation

The successful demonstration250 of miniband formation m strong magne-
tic fields naturally leads to the question of whether Bloch oscillations might
be observable m such a System This question would appear to us to have a
negative answer The reason is simple, and it illustrates another interestmg
difference of magnetically mduced band structure In the quantum Hall effect
regime the electnc field is perpendicular to the current, so no acceleration of
the electrons occurs Since k = 0, no Bloch oscillations should be expected

509F Bloch, Z Phys 52, 555 (1928)
510J N Churchill and F E Holmstrom, Phys Leu 85A, 453 (1981)
51'J N Churchill and F E Holmstrom, Am J Phys 50, 848 (1982)
512J Zak, Phys Rev B 38, 6322 (1988)
5I3J B Krieger and G J lafrate, Phys Rev 538,6324(1988)


