26 research outputs found

    Spatial heterogeneity of enteric fever in 2 diverse communities in Nepal

    Get PDF
    Background: Typhoid fever is endemic in the urban Kathmandu Valley of Nepal; however, there have been no population-based studies of typhoid outside of this community in the past 3 decades. Whether typhoid immunization should be prioritized in periurban and rural communities has been unclear.Methods: We performed population-based surveillance for enteric fever in 1 urban catchment (Kathmandu) and 1 periurban and rural catchment (Kavrepalanchok) as part of the Surveillance for Enteric Fever in Asia Project (SEAP). We recruited individuals presenting to outpatient and emergency departments at 2 study hospitals with suspected enteric fever and performed blood cultures. Additionally, we conducted a household survey in each catchment area to characterize care seeking for febrile illness. We evaluated spatial heterogeneity in febrile illness, care seeking, and enteric fever incidence.Results: Between September 2016 and September 2019, we enrolled 5736 participants with suspected enteric fever at 2 study hospitals. Among these, 304 (5.3%) were culture positive for Salmonella Typhi (249 [81.9%]) or Paratyphi A (55 [18.1%]). Adjusted typhoid incidence in Kathmandu was 484 per 100 000 person-years and in Kavrepalanchok was 615 per 100 000 person-years. While all geographic areas for which estimates could be made had incidence \u3e200 per 100 000 person-years, we observed spatial heterogeneity with up to 10-fold variation in incidence between communities.Conclusions: In urban, periurban, and rural communities in and around Kathmandu, we measured a high but heterogenous incidence of typhoid. These findings provide some support for the introduction of conjugate vaccines in Nepal, including outside urban areas, alongside other measures to prevent enteric fever

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Detection of Salmonella Typhi bacteriophages in surface waters as a scalable approach to environmental surveillance.

    No full text
    BackgroundEnvironmental surveillance, using detection of Salmonella Typhi DNA, has emerged as a potentially useful tool to identify typhoid-endemic settings; however, it is relatively costly and requires molecular diagnostic capacity. We sought to determine whether S. Typhi bacteriophages are abundant in water sources in a typhoid-endemic setting, using low-cost assays.MethodologyWe collected drinking and surface water samples from urban, peri-urban and rural areas in 4 regions of Nepal. We performed a double agar overlay with S. Typhi to assess the presence of bacteriophages. We isolated and tested phages against multiple strains to assess their host range. We performed whole genome sequencing of isolated phages, and generated phylogenies using conserved genes.FindingsS. Typhi-specific bacteriophages were detected in 54.9% (198/361) of river and 6.3% (1/16) drinking water samples from the Kathmandu Valley and Kavrepalanchok. Water samples collected within or downstream of population-dense areas were more likely to be positive (72.6%, 193/266) than those collected upstream from population centers (5.3%, 5/95) (p=0.005). In urban Biratnagar and rural Dolakha, where typhoid incidence is low, only 6.7% (1/15, Biratnagar) and 0% (0/16, Dolakha) river water samples contained phages. All S. Typhi phages were unable to infect other Salmonella and non-Salmonella strains, nor a Vi-knockout S. Typhi strain. Representative strains from S. Typhi lineages were variably susceptible to the isolated phages. Phylogenetic analysis showed that S. Typhi phages belonged to the class Caudoviricetes and clustered in three distinct groups.ConclusionsS. Typhi bacteriophages were highly abundant in surface waters of typhoid-endemic communities but rarely detected in low typhoid burden communities. Bacteriophages recovered were specific for S. Typhi and required Vi polysaccharide for infection. Screening small volumes of water with simple, low-cost (~$2) plaque assays enables detection of S. Typhi phages and should be further evaluated as a scalable tool for typhoid environmental surveillance

    Environmental sampling for typhoidal Salmonellas in household and surface waters in Nepal identifies potential transmission pathways.

    No full text
    IntroductionSalmonella Typhi and Salmonella Paratyphi, fecal-oral transmitted bacterium, have temporally and geographically heterogeneous pathways of transmission. Previous work in Kathmandu, Nepal implicated stone waterspouts as a dominant transmission pathway after 77% of samples tested positive for Salmonella Typhi and 70% for Salmonella Paratyphi. Due to a falling water table, these spouts no longer provide drinking water, but typhoid fever persists, and the question of the disease's dominant pathway of transmission remains unanswered.MethodsWe used environmental surveillance to detect Salmonella Typhi and Salmonella Paratyphi A DNA from potential sources of transmission. We collected 370, 1L drinking water samples from a population-based random sample of households in the Kathmandu and Kavre Districts of Nepal between February and October 2019. Between November 2019 and July 2021, we collected 380, 50mL river water samples from 19 sentinel sites on a monthly interval along the rivers leading through the Kathmandu and Kavre Districts. We processed drinking water samples using a single qPCR and processed river water samples using differential centrifugation and qPCR at 0 and after 16 hours of liquid culture enrichment. A 3-cycle threshold (Ct) decrease of Salmonella Typhi or Salmonella Paratyphi, pre- and post-enrichment, was used as evidence of growth. We also performed structured observations of human-environment interactions to understand pathways of potential exposure.ResultsAmong 370 drinking water samples, Salmonella Typhi was detected in 7 samples (1.8%) and Salmonella Paratyphi A was detected in 4 (1.0%) samples. Among 380 river water samples, Salmonella Typhi was detected in 171 (45%) and Salmonella Paratyphi A was detected in 152 (42%) samples. Samples located upstream of the Kathmandu city center were positive for Salmonella Typhi 12% of the time while samples from locations in and downstream were positive 58% and 67% of the time respectively. Individuals were observed bathing, washing clothes, and washing vegetables in the rivers.ImplicationsThese results suggest that drinking water was not the dominant pathway of transmission of Salmonella Typhi and Salmonella Paratyphi A in the Kathmandu Valley in 2019. The high degree of river water contamination and its use for washing vegetables raises the possibility that river systems represent an important source of typhoid exposure in Kathmandu

    Nucleotide-based intergenomic similarities of <i>S</i>. Typhi isolated from Nepal, using VIRIDIC.

    No full text
    A heatmap of hierarchical clustering of the intergenomic similarity values was generated and given as percentage values (right half, blue-green heatmap). Each genome pair is represented by three values (left half), where the top and bottom represent the aligned genome fraction for the genome in the row and column, respectively. The middle value represents the genome length ratio for each genome pair. (TIF)</p
    corecore