484 research outputs found
SELECTION OF OPTIMAL ALâSI COMBINATIONS IN CAST IRON FOR CASTINGS FOR ENGINEERING PURPOSES
In this work, the optimal combinations of Al â Si in cast iron for cast parts for machine-building purposes were determined with the aim of subsequent selection of rational modes of modification and alloying, and the possibility of their implementation under industrial smelting conditions was checked.
The graphical dependence Si=f (Al) is obtained, which is a set of optimal combinations of the content of Al and Si in cast iron, providing the maximum ultimate tensile strength UTSâ245 ... 334 MPa.
The technological audit of the results of serial industrial smelting included the analysis of actual indicators, the calculation of sample distribution functions (mathematical expectation and dispersion) of the Al and Si content in the alloy, as well as the UTS value. The correspondence of the indicators of the content of Al and Si and the value of Ï to the optimal values was assessed by testing the statistical hypotheses: H: M(Al)=Alopt, M(Si)=Siopt, M(ÏĐČ)=ÏĐČopt.On the basis of the obtained results of the assessment of statistical characteristics and verification of hypotheses, it was established that at the chosen significance level α=0.05, the technological process of smelting satisfies the requirements of optimality in terms of the Si content, but in terms of the Al content, the technological process does not meet the requirements of optimality.
The proposed procedure for choosing the optimal combinations of Al and Si makes it possible to choose the amount of correcting additives depending on the actual indicators of the chemical composition during the smelting process. To do this, it is necessary to assess the closeness of the actual composition to the optimal curve Si=f(Al) and choose the one that most satisfies the criteria of rationality. The latter can be the cost of ferroalloys, through which Al and Si are introduce
Phases of the excitonic condensate in two-layer graphene
Two graphene monolayers that are oppositely charged and placed close to each
other are considered. Taking into account valley and spin degeneracy of
electrons we analyze the symmetry of the excitonic insulator states in such a
system and build a phase diagram that takes into account the effect of the
symmetry breaking due to the external in-plane magnetic field and the carrier
density imbalance between the layers.Comment: 12 pages, 6 figures, 1 tabl
Ispitivanje djelovanja ugljiÄnog monoksida na ljude u sluÄaju poĆŸara u zgradi
The research has been conducted to determine the safe residence time for people in a room where the composition of the gas environment has deteriorated due to fire. Carbon monoxide, which is produced by fire, has been found to be lethal for human life and health. Determination of safe time was made based on the study of the composition and amount of fire load in premises and buildings, physical and chemical properties of carbon monoxide, and its effect on the human body. The graphical dependences of the concentration of carbon monoxide in a room, as a function of time, were obtained for eight variants. The results allow authors to determine the possible residence time of a person in a building during a fire before the lethal concentration of carbon monoxide occurs. Studies made it possible to determine the safe residence time of people in a building on fire in a calculated way and to compare it with the normative indicators of the onset of lethal concentration of carbon monoxide in the air. The results obtained determine the safe time during which a person can escape from the building on fire.IstraĆŸivanje je provedeno kako bi se utvrdilo koliko dugo ljudi mogu boraviti u prostoriji u kojoj je kakvoÄa zraka smanjena zbog poĆŸara. UgljiÄni monoksid, proizvod poĆŸara, jest smrtonosan i opasan za zdravlje. Sigurno vrijeme boravka utvrÄeno je na temelju ispitivanja sastava i koliÄine poĆŸarnog optereÄenja u prostorijama i zgradama, fizikalnih i kemijskih svojstava ugljiÄnog monoksida i njegova djelovanja na ljudsko tijelo. GrafiÄki je prikazana ovisnost koncentracije ugljiÄnog monoksida u prostoriji kao funkcije vremena, i to za osam varijanti. Rezultati omoguÄuju da se utvrdi moguÄe vrijeme boravka u zgradi tijekom poĆŸara prije nego doÄe do smrtonosne koncentracije ugljiÄnog monoksida. Ispitivanjem je izraÄunato vrijeme sigurnog boravka u poĆŸarom zahvaÄenoj zgradi te je moguÄa usporedba s normativnim pokazateljima dostizanja smrtonosne koncentracije ugljiÄnog dioksida u zraku. Rezultati sluĆŸe za utvrÄivanje sigurnog vremena za bijeg ljudi iz poĆŸarom zahvaÄene zgrade
Strategy for the functioning of the tourist ecological and recreational cluster of rural areas of the Rostov region
The article discusses the main aspects of the strategy for the functioning of the tourist eco-recreational cluster in rural areas of the Rostov region. A review of the research base on which research related to the study of tourism clusters is based. The possibility of functioning of the ecological and recreational cluster is also substantiated, its functions and significance for the development of inbound and domestic tourism, the economy and the social sphere of rural areas are determined. The zoning of the territory of the Rostov region according to the prevailing types of emerging ecological and recreational clusters is proposed and the specifics of their activities in rural areas are indicated. The article also presents a typical scheme for the functioning of a tourist ecological and recreational cluster with the identification of the main relationships of objects of a different nature. The economic and social effect of the organization of ecological and recreational clusters in rural areas is shown
ĐĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃ ŃŃĐŒŃŃĐ”Đč ĐœĐ° ĐŸŃĐœĐŸĐČŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ Đ· ĐČĐžĐșĐŸŃĐžŃŃĐ°ĐœĐœŃĐŒ ĐŒĐ”ŃĐŸĐŽŃ ĐżŃŃĐŒĐŸĐłĐŸ ŃĐŸĐ·ŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ°
Thermophysical properties of various substances and mixtures were studied by the non-destructive method. It is proposed to determine the thermal conductivity of substances and mixtures by the thermistor direct heating method.The device was created for measuring the thermal conductivity of various substances and mixtures, the operation of which is based on measuring the temperature of thermistor heating in the test substance. The nonlinear nature of the obtained thermistor heating dependence is taken into account.Based on the studies, the possibility of determining the composition of the mixture by its thermal conductivity coefficient is shown. The results of experimental studies with reference liquids, solutions of sugar, glycerin and alcohol in water are presented. The results of the studies to determine the thermophysical properties (TPP) of biological substances (human blood and blood plasma, egg white and yolk and others), some vegetables using the method of thermistor direct heating in the temperature range from +25 °Х to +40 °Х are given. It is substantiated that when studying the TPP of substances by thermistor direct heating, it is possible to determine the composition of mixtures by their thermal conductivity, but it is necessary to take into account individual properties of the studied liquids. Recommendations are given for studying the TPP of substances and determining the composition of mixtures by their thermal conductivity, taking into account individual properties of the studied substances.Using the proposed method of thermistor direct heating to determine a mixture of solutions, biological materials and food products allows analyzing the composition of nanosubstances, obtaining reliable data on the degree of allergic reaction, and in determining the composition of food products â taking into account the data obtained when developing refrigeration equipment and extending the shelf life of products while maintaining their useful qualities.ĐŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœŃ ŃĐ”ĐżĐ»ĐŸŃОзОŃĐ”ŃĐșОД ŃĐČĐŸĐčŃŃĐČĐ° ŃазлОŃĐœŃŃ
ĐČĐ”ŃĐ”ŃŃĐČ Đž ŃĐŒĐ”ŃĐ”Đč ĐœĐ”ŃĐ°Đ·ŃŃŃĐ°ŃŃĐžĐŒ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ. ĐŃДЎлагаДŃŃŃ ĐŸĐżŃДЎДлОŃŃ ĐČДлОŃĐžĐœŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž ĐČĐ”ŃĐ”ŃŃĐČ Đž ŃĐŒĐ”ŃĐ”Đč ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ°.ĐĄĐŸĐ·ĐŽĐ°ĐœĐŸ ŃŃŃŃĐŸĐčŃŃĐČĐŸ ĐŽĐ»Ń ĐžĐ·ĐŒĐ”ŃĐ”ĐœĐžŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž ŃазлОŃĐœŃŃ
ĐČĐ”ŃĐ”ŃŃĐČ Đž ŃĐŒĐ”ŃĐ”Đč, ĐżŃĐžĐœŃОп ĐŽĐ”ĐčŃŃĐČĐžŃ ĐșĐŸŃĐŸŃĐŸĐłĐŸ ĐŸŃĐœĐŸĐČĐ°Đœ ĐœĐ° ĐžĐ·ĐŒĐ”ŃĐ”ĐœĐžĐž ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃŃ ŃĐ°Đ·ĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐČ ĐžŃŃлДЎŃĐ”ĐŒĐŸĐŒ ĐČĐ”ŃĐ”ŃŃĐČĐ”. ĐŃĐž ŃŃĐŸĐŒ ŃŃĐžŃŃĐČĐ°Đ”ŃŃŃ ĐœĐ”Đ»ĐžĐœĐ”ĐčĐœŃĐč Ń
Đ°ŃĐ°ĐșŃĐ”Ń ĐżĐŸĐ»ŃŃĐ”ĐœĐœĐŸĐč Đ·Đ°ĐČĐžŃĐžĐŒĐŸŃŃĐž ŃĐ°Đ·ĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ°.ĐĐ° ĐŸŃĐœĐŸĐČĐ” ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐœŃŃ
ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč ĐżĐŸĐșĐ°Đ·Đ°ĐœĐ° ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸŃŃŃ ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐŸŃŃĐ°ĐČĐ° ŃĐŒĐ”ŃĐž ĐżĐŸ ДД ĐșĐŸŃŃŃĐžŃĐžĐ”ĐœŃŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž. ĐŃДЎŃŃĐ°ĐČĐ»Đ”ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃŃ ŃĐșŃпДŃĐžĐŒĐ”ĐœŃĐ°Đ»ŃĐœŃŃ
ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč Ń ŃŃĐ°Đ»ĐŸĐœĐœŃĐŒĐž жОЎĐșĐŸŃŃŃĐŒĐž, ŃĐ°ŃŃĐČĐŸŃĐ°ĐŒĐž ŃĐ°Ń
Đ°ŃĐ°, глОŃĐ”ŃĐžĐœĐ° Đž ŃпОŃŃĐ° ĐČ ĐČĐŸĐŽĐ”. ĐŃДЎŃŃĐ°ĐČĐ»Đ”ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃŃ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč ĐżĐŸ ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐ”ĐżĐ»ĐŸŃОзОŃĐ”ŃĐșĐžŃ
ŃĐČĐŸĐčŃŃĐČ (йЀХ) Đ±ĐžĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐžŃ
ĐČĐ”ŃĐ”ŃŃĐČ (ĐșŃĐŸĐČŃ Đž ĐżĐ»Đ°Đ·ĐŒĐ° ĐșŃĐŸĐČĐž ŃĐ”Đ»ĐŸĐČĐ”ĐșĐ°, Đ±Đ”Đ»ĐŸĐș Đž жДлŃĐŸĐș ĐșŃŃĐžĐœĐŸĐłĐŸ ŃĐčŃĐ° Đž ĐŽŃŃгОД), ĐœĐ”ĐșĐŸŃĐŸŃŃŃ
ĐŸĐČĐŸŃĐ”Đč Ń ĐżĐŸĐŒĐŸŃŃŃ ĐŒĐ”ŃĐŸĐŽĐ° ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐČ ĐŽĐžĐ°ĐżĐ°Đ·ĐŸĐœĐ” ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃ ĐŸŃ +25 °Х ĐŽĐŸ +40 °Х. ĐĐ±ĐŸŃĐœĐŸĐČĐ°ĐœĐŸ, ŃŃĐŸ ĐżŃĐž ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃŃ
йЀХ ĐČĐ”ŃĐ”ŃŃĐČ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸ ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžĐ” ŃĐŸŃŃĐ°ĐČĐ° ŃĐŒĐ”ŃĐ”Đč ĐżĐŸ ĐžŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž, ĐœĐŸ ĐżŃĐž ŃŃĐŸĐŒ ĐœĐ”ĐŸĐ±Ń
ĐŸĐŽĐžĐŒĐŸ ŃŃĐžŃŃĐČĐ°ŃŃ ĐžĐœĐŽĐžĐČОЎŃĐ°Đ»ŃĐœŃĐ” ŃĐČĐŸĐčŃŃĐČĐ° ĐžŃŃлДЎŃĐ”ĐŒŃŃ
жОЎĐșĐŸŃŃĐ”Đč. ĐĐ°ĐœŃ ŃĐ”ĐșĐŸĐŒĐ”ĐœĐŽĐ°ŃОО ĐżĐŸ ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐžŃ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐąĐ€ĐĄ ĐČĐ”ŃĐ”ŃŃĐČ Đž ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ĐżĐŸ ĐžŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž ŃĐŸŃŃĐ°ĐČĐ° ŃĐŒĐ”ŃĐ”Đč Ń ŃŃĐ”ŃĐŸĐŒ ĐžĐœĐŽĐžĐČОЎŃĐ°Đ»ŃĐœŃŃ
ŃĐČĐŸĐčŃŃĐČ ĐžŃŃлДЎŃĐ”ĐŒŃŃ
ĐČĐ”ŃĐ”ŃŃĐČ.ĐŃĐżĐŸĐ»ŃĐ·ĐŸĐČĐ°ĐœĐžĐ” ĐżŃĐ”ĐŽĐ»ĐŸĐ¶Đ”ĐœĐœĐŸĐłĐŸ ĐŒĐ”ŃĐŸĐŽĐ° ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐŽĐ»Ń ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐŒĐ”ŃĐž ŃĐ°ŃŃĐČĐŸŃĐŸĐČ, Đ±ĐžĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐžŃ
ĐŒĐ°ŃĐ”ŃĐžĐ°Đ»ĐŸĐČ Đž пОŃĐ”ĐČŃŃ
ĐżŃĐŸĐŽŃĐșŃĐŸĐČ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń Đ°ĐœĐ°Đ»ĐžĐ·ĐžŃĐŸĐČĐ°ŃŃ ŃĐŸŃŃĐ°ĐČ ĐœĐ°ĐœĐŸĐČĐ”ŃĐ”ŃŃĐČ, ĐżĐŸĐ»ŃŃĐ°ŃŃ ĐŽĐŸŃŃĐŸĐČĐ”ŃĐœŃĐ” ĐŽĐ°ĐœĐœŃĐ” ĐŸ ŃŃĐ”ĐżĐ”ĐœĐž аллДŃгОŃĐ”ŃĐșĐŸĐč ŃДаĐșŃОО. Đ ĐČ ŃĐ»ŃŃĐ°Đ” ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐŸŃŃĐ°ĐČĐ° пОŃĐ”ĐČŃŃ
ĐżŃĐŸĐŽŃĐșŃĐŸĐČ - ŃŃĐžŃŃĐČĐ°ŃŃ ĐżĐŸĐ»ŃŃĐ”ĐœĐœŃĐ” ĐŽĐ°ĐœĐœŃĐ” ĐżŃĐž ŃĐ°Đ·ŃĐ°Đ±ĐŸŃĐșĐ” Ń
ĐŸĐ»ĐŸĐŽĐžĐ»ŃĐœĐŸĐłĐŸ ĐŸĐ±ĐŸŃŃĐŽĐŸĐČĐ°ĐœĐžŃ Đž ĐżŃĐŸĐŽĐ»Đ”ĐœĐžĐž ŃŃĐŸĐșĐ° Ń
ŃĐ°ĐœĐ”ĐœĐžŃ ĐżŃĐŸĐŽŃĐșŃĐŸĐČ Ń ŃĐŸŃ
ŃĐ°ĐœĐ”ĐœĐžĐ”ĐŒ ĐžŃ
ĐżĐŸĐ»Đ”Đ·ĐœŃŃ
ĐșĐ°ŃĐ”ŃŃĐČĐĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœĐŸ ŃĐ”ĐżĐ»ĐŸŃŃĐ·ĐžŃĐœŃ ĐČлаŃŃĐžĐČĐŸŃŃŃ ŃŃĐ·ĐœĐŸĐŒĐ°ĐœŃŃĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃĐŒŃŃĐ”Đč ĐœĐ”ŃŃĐčĐœŃĐČĐœĐžĐŒ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ. ĐŃĐŸĐżĐŸĐœŃŃŃŃŃŃ ĐČĐžĐ·ĐœĐ°ŃĐžŃĐž ĐČДлОŃĐžĐœŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃĐŒŃŃĐ”Đč ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ°.ĐĄŃĐČĐŸŃĐ”ĐœĐŸ ĐżŃĐžŃŃŃŃĐč ĐŽĐ»Ń ĐČĐžĐŒŃŃŃĐČĐ°ĐœĐœŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ ŃŃĐ·ĐœĐŸĐŒĐ°ĐœŃŃĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃĐŒŃŃĐ”Đč, ĐżŃĐžĐœŃОп ĐŽŃŃ ŃĐșĐŸĐłĐŸ базŃŃŃŃŃŃ ĐœĐ° ĐČĐžĐŒŃŃŃĐČĐ°ĐœĐœŃ ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃĐž ŃĐŸĐ·ŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐČ ĐŽĐŸŃĐ»ŃЎжŃĐČĐ°ĐœŃĐč ŃĐ”ŃĐŸĐČĐžĐœŃ. ĐŃĐž ŃŃĐŸĐŒŃ ĐČŃĐ°Ń
ĐŸĐČŃŃŃŃŃŃ ĐœĐ”Đ»ŃĐœŃĐčĐœĐžĐč Ń
Đ°ŃĐ°ĐșŃĐ”Ń ĐŸŃŃĐžĐŒĐ°ĐœĐŸŃ Đ·Đ°Đ»Đ”Đ¶ĐœĐŸŃŃŃ ŃĐŸĐ·ŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ°.ĐĐ° ĐŸŃĐœĐŸĐČŃ ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐžŃ
ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœŃ ĐżĐŸĐșĐ°Đ·Đ°ĐœĐ° ĐŒĐŸĐ¶Đ»ĐžĐČŃŃŃŃ ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃŃ Đ·Đ° ŃŃ ĐșĐŸĐ”ŃŃŃŃŃĐœŃĐŸĐŒ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ. ĐĐ°ĐŽĐ°ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃĐž Đ”ĐșŃпДŃĐžĐŒĐ”ĐœŃĐ°Đ»ŃĐœĐžŃ
ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœŃ Đ· Đ”ŃĐ°Đ»ĐŸĐœĐœĐžĐŒĐž ŃŃĐŽĐžĐœĐ°ĐŒĐž, ŃĐŸĐ·ŃĐžĐœĐ°ĐŒĐž ŃŃĐșŃŃ, глŃŃĐ”ŃĐžĐœŃ ŃĐ° ŃпОŃŃŃ Ń ĐČĐŸĐŽŃ.  ĐĐ°ĐŽĐ°ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃĐž ĐČĐžĐŒŃŃŃĐČĐ°ĐœŃ ŃĐ”ĐżĐ»ĐŸŃŃĐ·ĐžŃĐœĐžŃ
ĐČлаŃŃĐžĐČĐŸŃŃĐ”Đč (йЀĐ) бŃĐŸĐ»ĐŸĐłŃŃĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ (ĐșŃĐŸĐČ ŃĐ° ĐżĐ»Đ°Đ·ĐŒĐ° ĐșŃĐŸĐČŃ Đ»ŃĐŽĐžĐœĐž, бŃĐ»ĐŸĐș ŃĐ° Đ¶ĐŸĐČŃĐŸĐș ĐșŃŃŃŃĐŸĐłĐŸ ŃĐčŃŃ ŃĐ° ŃĐœŃŃ), ĐŽĐ”ŃĐșĐžŃ
ĐŸĐČĐŸŃŃĐČ Đ·Đ° ĐŽĐŸĐżĐŸĐŒĐŸĐłĐŸŃ ĐŒĐ”ŃĐŸĐŽŃ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐČ ĐŽŃĐ°ĐżĐ°Đ·ĐŸĐœŃ ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃ ĐČŃĐŽ +25 °Х ĐŽĐŸ +40 °Х.  ĐбÒŃŃĐœŃĐŸĐČĐ°ĐœĐŸ, ŃĐŸ ĐżŃĐž ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœĐœŃŃ
йЀРŃĐ”ŃĐŸĐČĐžĐœ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐŒĐŸĐ¶Đ»ĐžĐČĐ” ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃĐ”Đč Đ·Đ° ŃŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœŃŃŃŃ, алД ĐżŃĐž ŃŃĐŸĐŒŃ ĐœĐ”ĐŸĐ±Ń
ŃĐŽĐœĐŸ ĐČŃĐ°Ń
ĐŸĐČŃĐČĐ°ŃĐž ŃĐœĐŽĐžĐČŃĐŽŃĐ°Đ»ŃĐœŃ ĐČлаŃŃĐžĐČĐŸŃŃŃ ĐŽĐŸŃĐ»ŃЎжŃĐČĐ°ĐœĐžŃ
ŃŃĐŽĐžĐœ. ĐĐ°ĐŽĐ°ĐœĐŸ ŃĐ”ĐșĐŸĐŒĐ”ĐœĐŽĐ°ŃŃŃ ŃĐŸĐŽĐŸ ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐœŃ ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœĐœŃ ĐąĐ€Đ ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ Đ·Đ° ŃŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœŃŃŃŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃĐ”Đč Đ· ĐČŃĐ°Ń
ŃĐČĐ°ĐœĐœŃĐŒ ŃĐœĐŽĐžĐČŃĐŽŃĐ°Đ»ŃĐœĐžŃ
ĐČлаŃŃĐžĐČĐŸŃŃĐ”Đč ĐŽĐŸŃĐ»ŃЎжŃĐČĐ°ĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ.ĐĐžĐșĐŸŃĐžŃŃĐ°ĐœĐœŃ Đ·Đ°ĐżŃĐŸĐżĐŸĐœĐŸĐČĐ°ĐœĐŸĐłĐŸ ĐŒĐ”ŃĐŸĐŽŃ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐŽĐ»Ń ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃŃ ŃĐŸĐ·ŃĐžĐœŃĐČ, бŃĐŸĐ»ĐŸĐłŃŃĐœĐžŃ
ĐŒĐ°ŃĐ”ŃŃĐ°Đ»ŃĐČ ŃĐ° Ń
Đ°ŃŃĐŸĐČĐžŃ
ĐżŃĐŸĐŽŃĐșŃŃĐČ ĐœĐ°ĐŽĐ°Ń ĐŒĐŸĐ¶Đ»ĐžĐČŃŃŃŃ Đ°ĐœĐ°Đ»ŃĐ·ŃĐČĐ°ŃĐž ŃĐșлаЎ ĐœĐ°ĐœĐŸŃĐ”ŃĐŸĐČĐžĐœ, ĐŸŃŃĐžĐŒŃĐČĐ°ŃĐž ĐŽĐŸŃŃĐŸĐČŃŃĐœŃ ĐŽĐ°ĐœŃ ĐżŃĐŸ ŃŃŃĐżŃĐœŃ Đ°Đ»Đ”ŃĐłŃŃĐœĐŸŃ ŃДаĐșŃŃŃ. Đ Ń ĐČОпаЎĐșŃ ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ Ń
Đ°ŃŃĐŸĐČĐžŃ
ĐżŃĐŸĐŽŃĐșŃŃĐČ â ĐČŃĐ°Ń
ĐŸĐČŃĐČĐ°ŃĐž ĐŸŃŃĐžĐŒĐ°ĐœŃ ĐŽĐ°ĐœŃ ĐżŃĐž ŃĐŸĐ·ŃĐŸĐ±ŃŃ Ń
ĐŸĐ»ĐŸĐŽĐžĐ»ŃĐœĐŸĐłĐŸ ĐŸĐ±Đ»Đ°ĐŽĐœĐ°ĐœĐœŃ ŃĐ° ĐżŃĐŸĐŽĐŸĐČĐ¶Đ”ĐœĐœŃ ŃŃŃĐŸĐșŃ Đ·Đ±Đ”ŃŃĐłĐ°ĐœĐœŃ ĐżŃĐŸĐŽŃĐșŃŃĐČ Đ·Ń Đ·Đ±Đ”ŃĐ”Đ¶Đ”ĐœĐœŃĐŒ ŃŃ
ĐșĐŸŃĐžŃĐœĐžŃ
ĐČлаŃŃĐžĐČĐŸŃŃĐ”
ĐĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃ ŃŃĐŒŃŃĐ”Đč ĐœĐ° ĐŸŃĐœĐŸĐČŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ Đ· ĐČĐžĐșĐŸŃĐžŃŃĐ°ĐœĐœŃĐŒ ĐŒĐ”ŃĐŸĐŽŃ ĐżŃŃĐŒĐŸĐłĐŸ ŃĐŸĐ·ŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ°
Thermophysical properties of various substances and mixtures were studied by the non-destructive method. It is proposed to determine the thermal conductivity of substances and mixtures by the thermistor direct heating method.The device was created for measuring the thermal conductivity of various substances and mixtures, the operation of which is based on measuring the temperature of thermistor heating in the test substance. The nonlinear nature of the obtained thermistor heating dependence is taken into account.Based on the studies, the possibility of determining the composition of the mixture by its thermal conductivity coefficient is shown. The results of experimental studies with reference liquids, solutions of sugar, glycerin and alcohol in water are presented. The results of the studies to determine the thermophysical properties (TPP) of biological substances (human blood and blood plasma, egg white and yolk and others), some vegetables using the method of thermistor direct heating in the temperature range from +25 °Х to +40 °Х are given. It is substantiated that when studying the TPP of substances by thermistor direct heating, it is possible to determine the composition of mixtures by their thermal conductivity, but it is necessary to take into account individual properties of the studied liquids. Recommendations are given for studying the TPP of substances and determining the composition of mixtures by their thermal conductivity, taking into account individual properties of the studied substances.Using the proposed method of thermistor direct heating to determine a mixture of solutions, biological materials and food products allows analyzing the composition of nanosubstances, obtaining reliable data on the degree of allergic reaction, and in determining the composition of food products â taking into account the data obtained when developing refrigeration equipment and extending the shelf life of products while maintaining their useful qualities.ĐŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœŃ ŃĐ”ĐżĐ»ĐŸŃОзОŃĐ”ŃĐșОД ŃĐČĐŸĐčŃŃĐČĐ° ŃазлОŃĐœŃŃ
ĐČĐ”ŃĐ”ŃŃĐČ Đž ŃĐŒĐ”ŃĐ”Đč ĐœĐ”ŃĐ°Đ·ŃŃŃĐ°ŃŃĐžĐŒ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ. ĐŃДЎлагаДŃŃŃ ĐŸĐżŃДЎДлОŃŃ ĐČДлОŃĐžĐœŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž ĐČĐ”ŃĐ”ŃŃĐČ Đž ŃĐŒĐ”ŃĐ”Đč ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ°.ĐĄĐŸĐ·ĐŽĐ°ĐœĐŸ ŃŃŃŃĐŸĐčŃŃĐČĐŸ ĐŽĐ»Ń ĐžĐ·ĐŒĐ”ŃĐ”ĐœĐžŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž ŃазлОŃĐœŃŃ
ĐČĐ”ŃĐ”ŃŃĐČ Đž ŃĐŒĐ”ŃĐ”Đč, ĐżŃĐžĐœŃОп ĐŽĐ”ĐčŃŃĐČĐžŃ ĐșĐŸŃĐŸŃĐŸĐłĐŸ ĐŸŃĐœĐŸĐČĐ°Đœ ĐœĐ° ĐžĐ·ĐŒĐ”ŃĐ”ĐœĐžĐž ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃŃ ŃĐ°Đ·ĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐČ ĐžŃŃлДЎŃĐ”ĐŒĐŸĐŒ ĐČĐ”ŃĐ”ŃŃĐČĐ”. ĐŃĐž ŃŃĐŸĐŒ ŃŃĐžŃŃĐČĐ°Đ”ŃŃŃ ĐœĐ”Đ»ĐžĐœĐ”ĐčĐœŃĐč Ń
Đ°ŃĐ°ĐșŃĐ”Ń ĐżĐŸĐ»ŃŃĐ”ĐœĐœĐŸĐč Đ·Đ°ĐČĐžŃĐžĐŒĐŸŃŃĐž ŃĐ°Đ·ĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ°.ĐĐ° ĐŸŃĐœĐŸĐČĐ” ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐœŃŃ
ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč ĐżĐŸĐșĐ°Đ·Đ°ĐœĐ° ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸŃŃŃ ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐŸŃŃĐ°ĐČĐ° ŃĐŒĐ”ŃĐž ĐżĐŸ ДД ĐșĐŸŃŃŃĐžŃĐžĐ”ĐœŃŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž. ĐŃДЎŃŃĐ°ĐČĐ»Đ”ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃŃ ŃĐșŃпДŃĐžĐŒĐ”ĐœŃĐ°Đ»ŃĐœŃŃ
ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč Ń ŃŃĐ°Đ»ĐŸĐœĐœŃĐŒĐž жОЎĐșĐŸŃŃŃĐŒĐž, ŃĐ°ŃŃĐČĐŸŃĐ°ĐŒĐž ŃĐ°Ń
Đ°ŃĐ°, глОŃĐ”ŃĐžĐœĐ° Đž ŃпОŃŃĐ° ĐČ ĐČĐŸĐŽĐ”. ĐŃДЎŃŃĐ°ĐČĐ»Đ”ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃŃ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč ĐżĐŸ ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐ”ĐżĐ»ĐŸŃОзОŃĐ”ŃĐșĐžŃ
ŃĐČĐŸĐčŃŃĐČ (йЀХ) Đ±ĐžĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐžŃ
ĐČĐ”ŃĐ”ŃŃĐČ (ĐșŃĐŸĐČŃ Đž ĐżĐ»Đ°Đ·ĐŒĐ° ĐșŃĐŸĐČĐž ŃĐ”Đ»ĐŸĐČĐ”ĐșĐ°, Đ±Đ”Đ»ĐŸĐș Đž жДлŃĐŸĐș ĐșŃŃĐžĐœĐŸĐłĐŸ ŃĐčŃĐ° Đž ĐŽŃŃгОД), ĐœĐ”ĐșĐŸŃĐŸŃŃŃ
ĐŸĐČĐŸŃĐ”Đč Ń ĐżĐŸĐŒĐŸŃŃŃ ĐŒĐ”ŃĐŸĐŽĐ° ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐČ ĐŽĐžĐ°ĐżĐ°Đ·ĐŸĐœĐ” ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃ ĐŸŃ +25 °Х ĐŽĐŸ +40 °Х. ĐĐ±ĐŸŃĐœĐŸĐČĐ°ĐœĐŸ, ŃŃĐŸ ĐżŃĐž ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃŃ
йЀХ ĐČĐ”ŃĐ”ŃŃĐČ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸ ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžĐ” ŃĐŸŃŃĐ°ĐČĐ° ŃĐŒĐ”ŃĐ”Đč ĐżĐŸ ĐžŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž, ĐœĐŸ ĐżŃĐž ŃŃĐŸĐŒ ĐœĐ”ĐŸĐ±Ń
ĐŸĐŽĐžĐŒĐŸ ŃŃĐžŃŃĐČĐ°ŃŃ ĐžĐœĐŽĐžĐČОЎŃĐ°Đ»ŃĐœŃĐ” ŃĐČĐŸĐčŃŃĐČĐ° ĐžŃŃлДЎŃĐ”ĐŒŃŃ
жОЎĐșĐŸŃŃĐ”Đč. ĐĐ°ĐœŃ ŃĐ”ĐșĐŸĐŒĐ”ĐœĐŽĐ°ŃОО ĐżĐŸ ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐžŃ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐąĐ€ĐĄ ĐČĐ”ŃĐ”ŃŃĐČ Đž ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ĐżĐŸ ĐžŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČĐŸĐŽĐœĐŸŃŃĐž ŃĐŸŃŃĐ°ĐČĐ° ŃĐŒĐ”ŃĐ”Đč Ń ŃŃĐ”ŃĐŸĐŒ ĐžĐœĐŽĐžĐČОЎŃĐ°Đ»ŃĐœŃŃ
ŃĐČĐŸĐčŃŃĐČ ĐžŃŃлДЎŃĐ”ĐŒŃŃ
ĐČĐ”ŃĐ”ŃŃĐČ.ĐŃĐżĐŸĐ»ŃĐ·ĐŸĐČĐ°ĐœĐžĐ” ĐżŃĐ”ĐŽĐ»ĐŸĐ¶Đ”ĐœĐœĐŸĐłĐŸ ĐŒĐ”ŃĐŸĐŽĐ° ĐżŃŃĐŒĐŸĐłĐŸ ĐżĐŸĐŽĐŸĐłŃĐ”ĐČĐ° ŃĐ”ŃĐŒĐžŃŃĐŸŃĐ° ĐŽĐ»Ń ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐŒĐ”ŃĐž ŃĐ°ŃŃĐČĐŸŃĐŸĐČ, Đ±ĐžĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐžŃ
ĐŒĐ°ŃĐ”ŃĐžĐ°Đ»ĐŸĐČ Đž пОŃĐ”ĐČŃŃ
ĐżŃĐŸĐŽŃĐșŃĐŸĐČ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń Đ°ĐœĐ°Đ»ĐžĐ·ĐžŃĐŸĐČĐ°ŃŃ ŃĐŸŃŃĐ°ĐČ ĐœĐ°ĐœĐŸĐČĐ”ŃĐ”ŃŃĐČ, ĐżĐŸĐ»ŃŃĐ°ŃŃ ĐŽĐŸŃŃĐŸĐČĐ”ŃĐœŃĐ” ĐŽĐ°ĐœĐœŃĐ” ĐŸ ŃŃĐ”ĐżĐ”ĐœĐž аллДŃгОŃĐ”ŃĐșĐŸĐč ŃДаĐșŃОО. Đ ĐČ ŃĐ»ŃŃĐ°Đ” ĐŸĐżŃĐ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃĐŸŃŃĐ°ĐČĐ° пОŃĐ”ĐČŃŃ
ĐżŃĐŸĐŽŃĐșŃĐŸĐČ - ŃŃĐžŃŃĐČĐ°ŃŃ ĐżĐŸĐ»ŃŃĐ”ĐœĐœŃĐ” ĐŽĐ°ĐœĐœŃĐ” ĐżŃĐž ŃĐ°Đ·ŃĐ°Đ±ĐŸŃĐșĐ” Ń
ĐŸĐ»ĐŸĐŽĐžĐ»ŃĐœĐŸĐłĐŸ ĐŸĐ±ĐŸŃŃĐŽĐŸĐČĐ°ĐœĐžŃ Đž ĐżŃĐŸĐŽĐ»Đ”ĐœĐžĐž ŃŃĐŸĐșĐ° Ń
ŃĐ°ĐœĐ”ĐœĐžŃ ĐżŃĐŸĐŽŃĐșŃĐŸĐČ Ń ŃĐŸŃ
ŃĐ°ĐœĐ”ĐœĐžĐ”ĐŒ ĐžŃ
ĐżĐŸĐ»Đ”Đ·ĐœŃŃ
ĐșĐ°ŃĐ”ŃŃĐČĐĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœĐŸ ŃĐ”ĐżĐ»ĐŸŃŃĐ·ĐžŃĐœŃ ĐČлаŃŃĐžĐČĐŸŃŃŃ ŃŃĐ·ĐœĐŸĐŒĐ°ĐœŃŃĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃĐŒŃŃĐ”Đč ĐœĐ”ŃŃĐčĐœŃĐČĐœĐžĐŒ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ. ĐŃĐŸĐżĐŸĐœŃŃŃŃŃŃ ĐČĐžĐ·ĐœĐ°ŃĐžŃĐž ĐČДлОŃĐžĐœŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃĐŒŃŃĐ”Đč ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ°.ĐĄŃĐČĐŸŃĐ”ĐœĐŸ ĐżŃĐžŃŃŃŃĐč ĐŽĐ»Ń ĐČĐžĐŒŃŃŃĐČĐ°ĐœĐœŃ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ ŃŃĐ·ĐœĐŸĐŒĐ°ĐœŃŃĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ŃŃĐŒŃŃĐ”Đč, ĐżŃĐžĐœŃОп ĐŽŃŃ ŃĐșĐŸĐłĐŸ базŃŃŃŃŃŃ ĐœĐ° ĐČĐžĐŒŃŃŃĐČĐ°ĐœĐœŃ ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃĐž ŃĐŸĐ·ŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐČ ĐŽĐŸŃĐ»ŃЎжŃĐČĐ°ĐœŃĐč ŃĐ”ŃĐŸĐČĐžĐœŃ. ĐŃĐž ŃŃĐŸĐŒŃ ĐČŃĐ°Ń
ĐŸĐČŃŃŃŃŃŃ ĐœĐ”Đ»ŃĐœŃĐčĐœĐžĐč Ń
Đ°ŃĐ°ĐșŃĐ”Ń ĐŸŃŃĐžĐŒĐ°ĐœĐŸŃ Đ·Đ°Đ»Đ”Đ¶ĐœĐŸŃŃŃ ŃĐŸĐ·ŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ°.ĐĐ° ĐŸŃĐœĐŸĐČŃ ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐžŃ
ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœŃ ĐżĐŸĐșĐ°Đ·Đ°ĐœĐ° ĐŒĐŸĐ¶Đ»ĐžĐČŃŃŃŃ ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃŃ Đ·Đ° ŃŃ ĐșĐŸĐ”ŃŃŃŃŃĐœŃĐŸĐŒ ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœĐŸŃŃŃ. ĐĐ°ĐŽĐ°ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃĐž Đ”ĐșŃпДŃĐžĐŒĐ”ĐœŃĐ°Đ»ŃĐœĐžŃ
ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœŃ Đ· Đ”ŃĐ°Đ»ĐŸĐœĐœĐžĐŒĐž ŃŃĐŽĐžĐœĐ°ĐŒĐž, ŃĐŸĐ·ŃĐžĐœĐ°ĐŒĐž ŃŃĐșŃŃ, глŃŃĐ”ŃĐžĐœŃ ŃĐ° ŃпОŃŃŃ Ń ĐČĐŸĐŽŃ.  ĐĐ°ĐŽĐ°ĐœŃ ŃДзŃĐ»ŃŃĐ°ŃĐž ĐČĐžĐŒŃŃŃĐČĐ°ĐœŃ ŃĐ”ĐżĐ»ĐŸŃŃĐ·ĐžŃĐœĐžŃ
ĐČлаŃŃĐžĐČĐŸŃŃĐ”Đč (йЀĐ) бŃĐŸĐ»ĐŸĐłŃŃĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ (ĐșŃĐŸĐČ ŃĐ° ĐżĐ»Đ°Đ·ĐŒĐ° ĐșŃĐŸĐČŃ Đ»ŃĐŽĐžĐœĐž, бŃĐ»ĐŸĐș ŃĐ° Đ¶ĐŸĐČŃĐŸĐș ĐșŃŃŃŃĐŸĐłĐŸ ŃĐčŃŃ ŃĐ° ŃĐœŃŃ), ĐŽĐ”ŃĐșĐžŃ
ĐŸĐČĐŸŃŃĐČ Đ·Đ° ĐŽĐŸĐżĐŸĐŒĐŸĐłĐŸŃ ĐŒĐ”ŃĐŸĐŽŃ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐČ ĐŽŃĐ°ĐżĐ°Đ·ĐŸĐœŃ ŃĐ”ĐŒĐżĐ”ŃĐ°ŃŃŃ ĐČŃĐŽ +25 °Х ĐŽĐŸ +40 °Х.  ĐбÒŃŃĐœŃĐŸĐČĐ°ĐœĐŸ, ŃĐŸ ĐżŃĐž ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœĐœŃŃ
йЀРŃĐ”ŃĐŸĐČĐžĐœ ĐŒĐ”ŃĐŸĐŽĐŸĐŒ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐŒĐŸĐ¶Đ»ĐžĐČĐ” ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃĐ”Đč Đ·Đ° ŃŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœŃŃŃŃ, алД ĐżŃĐž ŃŃĐŸĐŒŃ ĐœĐ”ĐŸĐ±Ń
ŃĐŽĐœĐŸ ĐČŃĐ°Ń
ĐŸĐČŃĐČĐ°ŃĐž ŃĐœĐŽĐžĐČŃĐŽŃĐ°Đ»ŃĐœŃ ĐČлаŃŃĐžĐČĐŸŃŃŃ ĐŽĐŸŃĐ»ŃЎжŃĐČĐ°ĐœĐžŃ
ŃŃĐŽĐžĐœ. ĐĐ°ĐŽĐ°ĐœĐŸ ŃĐ”ĐșĐŸĐŒĐ”ĐœĐŽĐ°ŃŃŃ ŃĐŸĐŽĐŸ ĐżŃĐŸĐČĐ”ĐŽĐ”ĐœĐœŃ ĐŽĐŸŃĐ»ŃĐŽĐ¶Đ”ĐœĐœŃ ĐąĐ€Đ ŃĐ”ŃĐŸĐČĐžĐœ ŃĐ° ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ Đ·Đ° ŃŃ
ŃĐ”ĐżĐ»ĐŸĐżŃĐŸĐČŃĐŽĐœŃŃŃŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃĐ”Đč Đ· ĐČŃĐ°Ń
ŃĐČĐ°ĐœĐœŃĐŒ ŃĐœĐŽĐžĐČŃĐŽŃĐ°Đ»ŃĐœĐžŃ
ĐČлаŃŃĐžĐČĐŸŃŃĐ”Đč ĐŽĐŸŃĐ»ŃЎжŃĐČĐ°ĐœĐžŃ
ŃĐ”ŃĐŸĐČĐžĐœ.ĐĐžĐșĐŸŃĐžŃŃĐ°ĐœĐœŃ Đ·Đ°ĐżŃĐŸĐżĐŸĐœĐŸĐČĐ°ĐœĐŸĐłĐŸ ĐŒĐ”ŃĐŸĐŽŃ ĐżŃŃĐŒĐŸĐłĐŸ ĐżŃĐŽŃĐłŃŃĐČŃ ŃĐ”ŃĐŒŃŃŃĐŸŃĐ° ĐŽĐ»Ń ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ ŃŃĐŒŃŃŃ ŃĐŸĐ·ŃĐžĐœŃĐČ, бŃĐŸĐ»ĐŸĐłŃŃĐœĐžŃ
ĐŒĐ°ŃĐ”ŃŃĐ°Đ»ŃĐČ ŃĐ° Ń
Đ°ŃŃĐŸĐČĐžŃ
ĐżŃĐŸĐŽŃĐșŃŃĐČ ĐœĐ°ĐŽĐ°Ń ĐŒĐŸĐ¶Đ»ĐžĐČŃŃŃŃ Đ°ĐœĐ°Đ»ŃĐ·ŃĐČĐ°ŃĐž ŃĐșлаЎ ĐœĐ°ĐœĐŸŃĐ”ŃĐŸĐČĐžĐœ, ĐŸŃŃĐžĐŒŃĐČĐ°ŃĐž ĐŽĐŸŃŃĐŸĐČŃŃĐœŃ ĐŽĐ°ĐœŃ ĐżŃĐŸ ŃŃŃĐżŃĐœŃ Đ°Đ»Đ”ŃĐłŃŃĐœĐŸŃ ŃДаĐșŃŃŃ. Đ Ń ĐČОпаЎĐșŃ ĐČĐžĐ·ĐœĐ°ŃĐ”ĐœĐœŃ ŃĐșĐ»Đ°ĐŽŃ Ń
Đ°ŃŃĐŸĐČĐžŃ
ĐżŃĐŸĐŽŃĐșŃŃĐČ â ĐČŃĐ°Ń
ĐŸĐČŃĐČĐ°ŃĐž ĐŸŃŃĐžĐŒĐ°ĐœŃ ĐŽĐ°ĐœŃ ĐżŃĐž ŃĐŸĐ·ŃĐŸĐ±ŃŃ Ń
ĐŸĐ»ĐŸĐŽĐžĐ»ŃĐœĐŸĐłĐŸ ĐŸĐ±Đ»Đ°ĐŽĐœĐ°ĐœĐœŃ ŃĐ° ĐżŃĐŸĐŽĐŸĐČĐ¶Đ”ĐœĐœŃ ŃŃŃĐŸĐșŃ Đ·Đ±Đ”ŃŃĐłĐ°ĐœĐœŃ ĐżŃĐŸĐŽŃĐșŃŃĐČ Đ·Ń Đ·Đ±Đ”ŃĐ”Đ¶Đ”ĐœĐœŃĐŒ ŃŃ
ĐșĐŸŃĐžŃĐœĐžŃ
ĐČлаŃŃĐžĐČĐŸŃŃĐ”
Core Proteome of the Minimal Cell: Comparative Proteomics of Three Mollicute Species
Mollicutes (mycoplasmas) have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a âminimal cellâ: a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions
Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV
The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe
Development and validation of HERWIG 7 tunes from CMS underlying-event measurements
This paper presents new sets of parameters (âtunesâ) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat
Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at âs = 13 TeV
Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (dÌ t) and chromomagnetic (ÎŒÌ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fbâ1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ÂŻ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ÂŻ final states. The values found for the parameters are AFB(1)=0.048â0.087+0.095(stat)â0.029+0.020(syst),ÎŒÌt=â0.024â0.009+0.013(stat)â0.011+0.016(syst), and a limit is placed on the magnitude of | dÌ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
- âŠ