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Phases of the excitonic condensate in two-layer graphene
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Two graphene monolayers that are oppositely charged and placed close to each other are considered. Taking
into account valley and spin degeneracy of electrons, we analyze the symmetry of the excitonic insulator states
in such a system and build a phase diagram that takes into account the effect of the symmetry breaking due to
the external in-plane magnetic field and the carrier density imbalance between the layers.
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I. INTRODUCTION

The excitonic insulator1–5 was predicted theoretically four
decades ago in 3D semiconductors and then in spatially
separated layers of electrons and holes.6,7 Since then, an
excitonic insulator has been searched for in a variety of
systems. The excitonic insulator is a material where the
electron-hole excitonic correlations lead to the formation of a
gapped state characterized by the order parameter resembling
a superfluid condensate of excitons. Such a correlated state
has been observed in double-quantum well semiconductor
structures in quantizing magnetic fields.8–14 After the experi-
mental discovery of graphene15–18 it has been discussed as a
possible candidate for experimental realization of the excitonic
insulator state19–24 sparking the on-going debate25–27 about the
critical temperature Tc of the excitonic condensate transition
in a two-layer graphene system. Various estimations of Tc

for such a system lay in a wide region of magnitudes from
milli-Kelvins25,27 up to Kelvins28–31 and further up to the room
temperature.22,23 The considered system20–23,25–27 consists of
two parallel, separately controlled graphene monolayers, in
which external gates induce a finite density of electrons
in the layer 1 and holes in the layer 2 [see Fig. 1(a)].
Recently, the two-layer graphene system has been obtained
experimentally.32–37

In this paper, we extend the existing theory of the excitonic
insulator state in a two-layer graphene system: we analyze a
symmetry of the excitonic insulator and classify its phases. As
a result, a phase diagram of the excitonic insulator is built that
takes into account the effect of the symmetry breaking due to
the Zeeman splitting and the asymmetry between electron/hole
densities in the layer 1 and 2. A phase diagram, Fig. 1(b),
contains three phases: B,B ′, and A1. Transitions between
phases are found to be of the first order. These transitions are
subject to the use of an in-plane magnetic field and a variation
of external gate voltages, leading to different charge carriers
densities in layers: the density of all electrons n1e in layer 1
(which corresponds to the Fermi energy E

(1)
F = h̄v

√
πn1e/2),

and density of holes n2h in layer 2 (which corresponds to the
negative Fermi energy in the layer 2, E

(2)
F = −h̄v

√
πn2h/2).

The B phase, Fig. 1(b), exists when there is no magnetic
field and charge carriers densities are the same in both layers
n1e = n2h (i.e., when E

(1)
F = |E(2)

F |).The B ′ phase exists at the
same condition n1e = n2h but when an in-plane magnetic field
is applied, which causes a Zeeman splitting of energies of
electrons with different spin projections. The A1 phase exists
when a symmetry of charge carriers density is violated, e.g.,

n1e > n2h, and when the corresponding splitting of Fermi
energies E

(1)
F − |E(2)

F | is equal to the Zeeman splitting due
to an in-plane magnetic field.

The diversity of obtained phases is due to the high symmetry
of the normal ground state, which can be broken in several
different ways leading to a variety of phases possessing
different symmetry groups. A well-known example of the
system with the diversity of phases due to various normal
state symmetry breaking is liquid Helium-3.38–42 In liquid
Helium-3, the symmetry of the order parameter can be
changed by correspondent external parameters, leading to
phase transitions.

The analysis in this paper is organised as follows. Section II
describes the theoretical model of the considered system.
Pairing of electrons and holes within mean-field theory is
introduced in the Sec. III. Section IV provides symmetry
analysis and the phase classification of the excitonic corre-
lated state. Section V contains detailed description of the
most symmetric phases, their properties are summarizes in
Table I. Results are discussed in Sec. VI.

II. TWO-LAYER HAMILTONIAN

Graphene43–45 is a gapless semiconductor with the Fermi
surface consisting of two distinct points, K+ and K−, called
valleys. Near these Fermi points, electrons have a linear
dispersion E(p) = ±vp, with a velocity v ≈ 108 cm/sec,16

here p = |p|, p = k − K± is the momentum of an electron
relative to the Fermi point. Using external gates, one can
independently tune the carrier density in each of the two
graphene flakes.16 Neglecting tunneling, the electrons in the
two layer graphene system initially can be described with
the Hamiltonian Ĥ2layer = Ĥs.p. + Ĥ11 + Ĥ22 + Ĥ12, here the
single-particle part of the Hamiltonian is

Ĥs.p. =
∑

l,ζ,p,s

(
svp − E

(l)
F

)
a
†
l,ζ,p,s al,ζ,p,s , (1)

the operators a
†
l,ζ,p,s (al,ζ,p,s) create (annihilate) an electron

on the l = 1,2 layer on the s = +/− conduction or valence
band with momentum p = p(cos φp, sin φp),E(1)

F and E
(2)
F

are the Fermi energies, which correspond to charge carrier
densities in the layers. The index ζ denotes four different
pairs of spin projection (↑,↓) and valleys (K+,K−). In the
Hamiltonian Ĥ2layer, the terms Ĥ11 and Ĥ22 take into account
the intralayer interaction. These terms can be ignored in the
following studies, provided that one uses a screened inter-layer
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FIG. 1. (a) The excitonic condensation due to an electron-hole
pairing is studied in the system of two spatially separated graphene
monolayers with an excess of electrons on layer 1 and a lack of
electrons on layer 2. (b) The schematic phase diagram of the excitonic
condensation in the system at different values of a Zeeman splitting
and different values of the asymmetry between Fermi energies in layer
1 and 2, εZ = μB |h| is the Zeeman energy in an in-plane magnetic
field h.

interaction in the term Ĥ12. Hence in Ĥ12, we keep only
those terms that contribute to the BCS mean-field theory,46

absorbing other contributions into a renormalization of the
velocity and the Fermi energy in the single particle part (1) of
the Hamiltonian

Ĥ12 = −
∑

p,p′, s,s ′
V (|p − p′|) 1 + ss ′ cos(φp − φp′)

2

×
∑
ζ,ζ ′

a
†
1,ζ,p,s a

†
2,ζ ′,p′,−s ′ a1,ζ,p′,s ′ a2,ζ ′,p,−s . (2)

The scattering process, described by Ĥ12, is shown on
Fig. 2. The function V (q) denotes a screened Coulomb
interaction in the static limit V (q) = V (q,ω � q). The factor
[1 + ss ′ cos(φp − φp′)]/2 in Eq. (2) reflects chiral properties
of electrons related to the sublattice composition of electronic
Bloch wave functions.44,45 These chiral properties of electrons
result in the suppressed backwards scattering if an electron
does not change the energy band upon scattering (ss ′ = +),
otherwise (ss ′ = −) the electron can not forward scatter.47

III. EXCITONIC PAIRING, MEAN-FIELD ORDER
PARAMETER

The excitonic insulator state of the electron-hole liquid is
characterized by the electron-hole correlations on the Fermi
surface, Fig. 3. Mathematically, it means that in the excitonic

FIG. 2. A typical transition which is described by Ĥ12 in Eq. (2).
Indices l = 1 or 2, ζ, p, and s denote a layer, a pair of the spin
projection and valley, a momentum of an electron, and a conduction
s = + or valence s = − band.

FIG. 3. The excitonic electron-hole bound state in the two-layer
graphene. The left-hand side of the figure shows the electron’s
spectrum in graphene layers 1 and 2. An electron on the Fermi
surface in the layer 1 is shown as a fulfilled circle. Absence of an
electron on the Fermi surface in layer 2 is shown as an empty circle.
Closed line around both circles represents an excitonic pairing, which
is developed due to a Coulomb interaction (shown as a wavy line).
The right-hand side of the figure shows the coincided Fermi circles
in both layers at Fermi momentum pF .

insulating state there is a nonvanishing ground-state average F
of electron operators:

Fζ ζ ′,s(p) = 〈a†
2,ζ ′,p,−sa1,ζ,p,+s〉. (3)

For the existence of the nonzero ground-state average
F, it is crucial that Fermi surfaces for electrons and holes
coincide.46,48 Due to the electron-hole symmetry of the
energy spectrum in graphene, the electron-hole excitonic
correlations (3) in the considered system are most developed
when the density of electrons in the layer 1 is equal to the
density of holes in the layer 2, n1e = n2h, or, in terms of
Fermi energies E

(1)
F = −E

(2)
F , Fig. 3. However, apart from this

condition there can be certain other external conditions when
excitonic correlations (3) can be developed. Thus, although
the excitonic insulator state disappears when the symmetry
n1e = n2h is violated by external gates, we show below that
excitonic correlations can be restored by the in-plane magnetic
field. Based on the detailed analysis of excitonic correlations
in monolayer graphene in the in-plane magnetic field, which is
done by Aleiner and co-authors,19 we show that the excitonic
insulator state can exist in various phases in the two-layer
graphene system.

In order to study phases of the excitonic insulator state at
different external conditions, firstly, we apply the standard
mean-field approximation.46 We assume that the product
of the operators a

†
2,ζ ′,p,−sa1,ζ,p,s weakly deviates from its

nonvanishing ground-state average. We expand the interacting
part Ĥ12, Eq. (2), of the Hamiltonian Ĥ2layer up to the linear
order with respect to these small deviations and neglect
constant terms. The mean-field Hamiltonian of the system
becomes

Ĥmf = Ĥs.p. +
∑

p,s,ζ,ζ ′
[a†

1,ζ,p,s�ζζ ′,s(p)a2,ζ ′,p,−s + H.c.], (4)

where H.c. stands for “Hermitian conjugate,” and

�ζζ ′,s(p) = −
∑
p′,s ′

Fζ ζ ′,s ′ (p′)V (|p − p′|)

× 1 + ss ′ cos(φp − φp′)

2
. (5)
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Quantities �ζζ ′,s(p) form the matrix � of the order parameter.
Index ζ denotes four different pairs of spin projections and
valleys (↑ K+, ↑ K−, ↓ K+, ↓ K−). Thus in the spin⊗valley
space the order parameter is given by the 4 × 4 matrix � with
matrix elements given by Eq. (5). For brevity, we omit index
s and momentum p in the notation for the order parameter �.

For further analysis it is convenient to rewrite the Hamilto-
nian (4) as follows: Ĥmf = ∑

ζ,p,s �
†
ζ,p,sHmf(p,s)�ζ,p,s, where

�ζ,p,s = (
a1,ζ,p,+s,a2,ζ,p,−s

)T
and

Hmf(p,s) =
(

(svp − EF )1 �

�† −(svp − EF )1

)
. (6)

Here, all elements of the matrix Hmf are 4 × 4 matrices in
the spin⊗valley space: diagonal elements have structure of
the identity matrix 1 in this space, whereas � is given by
some 4 × 4 matrix, whose structure is identified in this paper
for each phase of the excitonic correlated state. The matrix
of the order parameter � describes the correlations between
conduction/valence electrons in the layers 1 and 2 below a
critical temperature Tc.

Nevertheless, the phase classification can be made regard-
less of the value of the transition temperature Tc. Assuming
that the excitonic insulator state can be observed in two-layer
graphene system, we analyze the symmetry of the mean field
Hamiltonian (4) and the order parameter �. As a result the
classification of all phases of the excitonic insulating state of
the two-layer graphene system is presented in the next section,
and a detailed discussion of each phase is presented in Sec. V.

IV. SYMMETRY ANALYSIS OF THE CORRELATED STATE

The analysis in this section is based on the idea of breaking
of the initial symmetry of the hamiltonian by the order param-
eter. The initial symmetry group G of the Hamiltonian Ĥ2layer

is formed by global unitary transformations of an electronic
single-particle state in the four-component spin⊗valley space
independently in the layers 1 and 2. These transformations are
represented by independent matrices U(1) and U(2) in layers
1 and 2, respectively. Therefore the group G is given by the
direct product of corresponding unitary groups U4:

G = U
(1)
4 × U

(2)
4 . (7)

Unitary group U
(l)
4 , l = 1,2, consists of 4 × 4 unitary matrices

U(l), which perform transformations of electron’s operators in
the lth layer as follows:

al,ζ,p,s →
∑
ζ ′

U(l)
ζ ζ ′al,ζ ′,p,s . (8)

Thus, as it is seen from Eqs. (4) and (6), under symmetry
transformations (8) the order parameter � transforms as

� −→ U(1)† � U(2). (9)

This implies that the Hamiltonian of the system is not invariant
under the action of the group G any longer. However, for any
fixed nonzero �, there is always some subgroup H of the
group G, H ⊂ G,H = G, such that all transformations from
the group H do not transform �, i.e., the order parameter �

remains invariant:

U(1)†
H � U(2)

H = �. (10)

Such transformations U(1)
H in layer 1 and U(2)

H in layer 2 form a
symmetry group H :(

U(1)
H 0

0 U(2)
H

)
∈ H ⊂ G. (11)

Only transformations from the group H leave the ground
state of the excitonic insulator invariant, i.e., only these
transformations leave the mean-field Hamiltonians (4) and (6)
invariant:(

U(1)†
H 0

0 U(2)†
H

)
Hmf(p,s)

(
U(1)

H 0

0 U(2)
H

)
= Hmf(p,s). (12)

Thus the symmetry group G of the initial uncorrelated normal
ground state of the system is broken down to the symmetry
group H of the ground state of the excitonic insulator.

All transformations from G, which are not included in H,

form the factor space G/H. These transformations change the
order parameter �, however, they do not change the energy
of the corresponding ground state. Therefore the manifold of
all matrices �, which can be obtained by transformations
from G/H, form a degeneracy space of the order parameter.
Consequently, the manifold of the correspondent ground states
form a phase of the correlated state. It is important to notice,
that all these ground states within the same phase are described
by the same symmetry group H, which is a symmetry group
of the order parameter. Therefore phases of a correlated state
can be classified by the symmetry group H and the degeneracy
space of the order parameter.

The phase classification presented in this paper is also
reminiscent of the classification of the various degeneracy
spaces of the order parameter in liquid Helium-3.38–40,42

This classification principle was used in the determination of
superconducting phases in nontrivial superconductors46 and
superfluid phases in liquid Helium-3.41,49

In order to classify phases of the excitonic insulating state,
we are going to classify the degeneracy spaces of order
parameters with the same symmetry. For this, we consider
the condition (10) and use the method of a singular value
decomposition.50 It allows us to represent an arbitrary matrix
� as a product of a unitary matrix Ṽ†, a diagonal matrix D
with real nonnegative numbers on the diagonal, and another
unitary matrix V. Applying the singular value decomposition
to the order parameter at any given values of s and p we obtain

� = Ṽ†
s(p)Ds(p)Vs(p). (13)

However, first of all, we notice that in the considered
system, the lowest ground-state energy is realized when
matrices V,Ṽ do not depend on momentum p and index s = ±.

The reason for this is that in such a case in the expression for
the ground-state energy there is a cancellation of the product
of matrices V and V† (Ṽ and Ṽ†) into a unit matrix. Such
a cancellation leads to the maximal negative contribution
to the ground-state energy, and therefore the energy of the
ground state achieves its minimal value. If we assume that
unitary matrices in Eq. (13) depend on momentum p and index
s = ±, then unitary matrices at different momenta p,p′ and
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different indices s,s ′ do not cancel each other, which increases
the ground-state energy comparatively to the previous case.
Thus we conclude that in order to realize the lowest energy
of the ground state, matrices Ṽ and V can not depend on
the momentum p and index s. Therefore the singular value
decomposition of the matrix of order parameter becomes

� = Ṽ†DV, (14)

where in the right-hand side of the equation (14) only matrix
D depends on p and s, but for brevity we omit these indices.

Second, all transformations from the group G, including
those from the factor space G/H , do not change the diagonal
elements of the matrix D, but change matrices Ṽ, V into any
other unitary matrices. Thus if we introduce the notations

Ṽ′† ≡ U(1)† Ṽ†, V′ ≡ V U(2), (15)

then under the transformation (8) and (9), the order parameter
will transform in the following way:

� = Ṽ†DV −→ �′ = Ṽ′†DV′. (16)

Thus under this transformation the diagonal matrix D does
not change. Recall that the degeneracy space of the order
parameter is obtained by acting on the order parameter �

by all transformations from the group G (here transformations
from subgroup H will not change the order parameter while
remaining transformations from factor-space G/H will create
the degeneracy space of the order parameter). As long as only
matrices V and Ṽ are changed by transformations from G,
we obtain that the degeneracy space of the order parameter
and a phase of the correlated state are determined only by the
diagonal elements of the matrix D.

Finally, from the condition (10) we have found that
all possible degeneracy spaces of the order parameter are
classified by numbers of equal and different diagonal elements
in matrix D. In the case of physically relevant phases, there are
additional restrictions on the diagonal elements of matrix D.
Thus among all possible matrices � only physically relevant
order parameters satisfy the self-consistency equation. For
the phase classification, it is sufficient to consider the BCS
self-consistency equation for the order parameter. Diagonal-
izing the self-consistency equation by unitary matrices from
Eq. (14), one obtains four equations for diagonal elements
of the matrix D, each equation corresponds to some value of
index ζ. These equations have the same structure and depend
on the Fermi momentum pF . If the Fermi momentum pF is
the same for all types of electrons (for all indices ζ ), then these
four self-consistency equations are identical, and apart from
a trivial zero solution they have the same nonzero solution.
Hence in such situation in physically relevant phases, the
arbitrary diagonal element in matrix D can be equal either
to other nonzero diagonal elements, or be equal to a zero. The
application of the in-plane magnetic field, in principle, changes
such a description because of Zeeman splitting. However, in
the case where the Fermi energy is much greater than the
Zeeman energy, EF � εZ , the magnetic field does not change
the situation essentially as long as it is possible to neglect
the difference between Fermi momenta for electrons with
opposite spin projections in the self-consistency equations.
Therefore four self-consistency equations on four diagonal
elements of the matrix D become approximately identical also

when relatively small in-plane magnetic field (εZ � EF ) is
applied.

The nonzero solution of these equations is given by the gap
function gs(p), which at the Fermi surface (s = +,|p| = pF )
determines a gap in the single-particle excitation spectrum.
Thus we conclude that in all physically relevant phases
the matrix D in the singular value decomposition (14) of
the order parameter � consists of zeros or non-negative
diagonal elements, which approximately are equal to the gap
function gs(p).

Substituting the obtained result into Eq. (14), we extract the
gap function as a multiplier. Thus we conclude that the order
parameter � in all physically relevant phases has a form

� ∼= gs(p)Ṽ†DV. (17)

Here, the matrix D is a diagonal matrix with 0 or 1 on
the diagonal. The representation (17) becomes approximate
in the case of the applied in-plane magnetic field with the
condition εZ � EF . The dependence of the order parameter
� on variables s and p is completely given by the function
gs(p).

Having the matrix of the order parameter provided, the
symmetry group H is found from Eq. (10). For this, the matrix
of the order parameter is represented as a single-value
decomposition (14). The constant matrices V and Ṽ are
absorbed into matrices U(1)

H and U(2)
H of the global symmetry

transformations from the symmetry group H. Then Eq. (10)
connects two unitary matrices VU(1)

H V† and ṼU
(2)
H Ṽ† and the

diagonal matrix D with 0 or 1 on the diagonal. Thus the
matrices U(1)

H and U(2)
H of transformations from the symmetry

group H are obtained.

V. PHASES

In this section, we provide a detailed description of phases
of excitonic insulator state in two-layer graphene system.
Results of this section are summarized in Table I.

A. The B phase

Firstly, we consider the situation when there is no external
magnetic field and when the charge carrier densities in layers
are the same n1e = n2h. In such case, the symmetry group
G of the two-layer Hamiltonian of the system in normal
state is given in Eq. (7). Under the mentioned conditions,
the Fermi circle in the conduction band in layer 1 coincides
with the Fermi circle in the valence band in layer 2 due to the
electron-hole symmetry in graphene. Hence the nonvanishing
ground-state average F, Eq. (3), can be formed by all species
of electrons. Taking into account that the ground state with
the lower energy is more stable, we consider the phase when
excitonic correlations are developed among all species of
electrons. In such cases, the order parameter matrix � and the
matrix D, Eq. (17), are not degenerate matrices. Moreover,
because there is only one Fermi circle for all species of
electrons, the most stable ground state is characterized by the
matrix D in Eq. (17) with equal nonzero diagonal elements,
i.e., D is an identity matrix. As discussed in the previous
section, this conclusion follows from the consideration of
the self-consistency equation on the order parameter. Thus
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TABLE I. The phase classification of the excitonic insulating state with respect to following two external parameters: (1) Zeeman energy
εZ = μB |h| in an in-plane magnetic field h and (2) an asymmetry between the electron density n1e in the layer 1 and the hole density n2h in the
layer 2.

Matrix structure
Symmetry group G of the order Symmetry group H Single

External of the two-layer parameter � of the order particle
conditions Hamiltonian Phase (here V,Ṽ ∈ U4) parameter � dim[G/H ] spectrum

B V U
(1,2)
4 16 gapped

n1e = n2h

εZ = 0
U

(1)
4 × U

(2)
4 A′

0 Ṽ† Diag[1,1,1,0] V U
(1)
1 × U

(1,2)
3 × U

(2)
1 21 gapless

A′
1 Ṽ† Diag[1,1,0,0] V U

(1)
2 × U

(1,2)
2 × U

(2)
2 20 gapless

A′
2 Ṽ† Diag[1,0,0,0] V U

(1)
3 × U

(1,2)
1 × U

(2)
3 13 gapless

n1e = n2h

εZ > 0
U

(1↑)
2 × U

(1↓)
2 × U

(2↑)
2 × U

(2↓)
2 B ′

(
0 v
ṽ 0

)
U

(1↑,2↓)
2 × U

(1↓,2↑)
2 8 gapped

v,ṽ ∈ U2

n1e > n2h

εZ > 0

a U
(1↑)
2 × U

(1↓)
2 × U

(2↑)
2 × U

(2↓)
2 A1

(
v 0
0 0

)
U

(1↓)
2 × U

(1↑,2↑)
2 × U

(2↓)
2 4 gapless

v ∈ U2

aHere, we assume parameters to be tuned so that a Fermi surface of electrons only with spin up in layer 1 coincides with the Fermi surface of
holes with spin down in layer 2, for details see Fig. 6.

substituting D = 1 into Eq. (17), we obtain the following
structure for the order parameter in spin⊗valley space:

� = gs(p)V, V ∈ U4. (18)

Such a structure of the order parameter determines the
symmetry group H of the ground state and the degeneracy
space of the order parameter, and consequently it determines
the phase of the excitonic insulator.

The symmetry group H of the ground state in the considered
phase can be found as a group of all unitary transformations
U(1)

H , U(2)
H in layers 1 and 2, which leave the order parameter

invariant, Eq. (10). Solving the condition (10) with the order
parameter (18), we obtain matrices U(1)

H and U(2)
H of symmetry

transformations in the layers 1 and 2, correspondingly. Thus,
having U(1)

H and U(2)
H ,

U(1)
H = U, U(2)

H = V†UV, (19)

we can express an arbitrary element of the group H, Eq. (11),
which transforms electron operators in layers 1 and 2 according
to Eq. (8). Omitting indices ζ,p,s we have(

a1

a2

)
→

(
U 0

0 V†UV

) (
a1

a2

)
. (20)

Here, the matrix V is given by the fixed matrix of the order
parameter (18). The unitary matrix U ∈ U4 is present in
transformations in both layers. This means that the symmetry
group H of the ground state in the considered phase (18)
consists of the combined transformations in both layers 1 and
2. The unitary group of the combined transformations in layers

1 and 2 is denoted as U
(1,2)
4 ,(

U 0

0 V†UV

)
∈ U

(1,2)
4 ≡ H. (21)

The combined transformations from the group U
(1,2)
4 can

also be described in terms of generators of these transforma-
tions. For this, each element of the group is written as the
exponential function of the element of the group’s algebra:(

U 0

0 V†UV

)
= exp[i �θ �
H ] ∈ H, (22)

where �θ is a vector of real variables and a vector �
H consists
of generators of the group H. For the considered phase, these
generators are

(
H )m ≡
(

λm 0

0 V†λmV

)
, m = 0,1, . . . ,15. (23)

In contrast to Eq. (23) transformations, which change the order
parameter and create a degeneracy space G/H, are described
by the following generators:

(
G/H )m ≡
(

λm 0

0 −V†λmV

)
, m = 0,1, . . . ,15. (24)

Here, the 2 × 2 block matrices (
H )m and
(

G/H

)
m

act in the
space of layers 1 and 2, the matrix λm acts on the spin⊗valley
basis in the layer 1 and matrices ±V†λmV acts on the basis
� in layer 2. The spin⊗valley basis � is the same in both
layers. Matrices λm are 4 × 4 Hermitian traceless matrices
of generators of transformations from the unitary group U4.
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FIG. 4. In the B phase within the excitonic paired state, the
electron on the Fermi surface in the layer 1 (grey circle) is
characterized by the index ζ in the spin⊗valley basis �, and the
absent electron (white circle) in the layer 2 is characterized by the
same index ζ but in the spin⊗valley basis V�, which is transformed
by the matrix of the order parameter V.

The total number of generators 
G/H , Eq. (24), equals to the
dimension of the degeneracy space G/H, dim[G/H ]. In the
B phase, dim[G/H ] = dim[G] − dim[H ] = 32 − 16 = 16.

The electron operators in the second layer can be trans-
formed by the matrix of the order parameter: Va2 → a′

2,
see Eqs. (18) and (4), or, equivalently, the spin⊗valley basis
in layer 2 can be transformed by the matrix of the order
parameter. In such a case from Eqs. (20) and (23) it follows,
that the transformation from the group H, in contrast to the
transformation from G/H, can be represented by identical
transformations in both layers. These identical transformations
act by the same matrix U on the spin⊗valley basis � in the
layer 1 and on the transformed spin⊗valley basis V� in the
layer 2, Fig. 4. Hence the matrix of the order parameter (18)
defines the relative unitary rotation of the spin⊗valley basis
� in layer 2 with respect to layer 1. It signifies the relative
symmetry breaking: the ground state is not invariant under
unitary transformations of the basis � in one layer relatively
to the basis � in another layer. The basis � in layer 1 is
“locked” relatively to the basis � in layer 2 by the matrix of
the order parameter that defines the relative unitary rotation of
one basis with respect to another.

Because of the presence of the relative symmetry breaking
by the order parameter (18), the phase discussed here resem-
bles the superfluid B phase in the liquid Helium-3.38–41,46 In
B phase, the matrix of the order parameter is not degenerate.
It means that all species of charge carriers develop excitonic
correlations, therefore a single-particle excitation spectrum is
gapped.

The external conditions (εZ = 0, n1e = n2h) for the B

phase can be violated by an in-plane magnetic field or by
external gates. However, the excitonic correlations continue
to exist in the B phase until the difference of radiuses of
Fermi circles is bigger than 2g+(pF )/v, where g+(pF ) is a
gap in a single-particle excitation spectrum in the B phase.
Indeed, such behavior can be seen, if one creates an asymmetry
between charge carriers densities in layers, which can be
expressed in terms of a shift δEF > 0 of Fermi energies:
E

(1)
F = EF + δEF , E

(2)
F = −EF + δEF . Substituting these

values to the mean-field Hamiltonian (4) and finding its
eigenvalues, one obtains46 two branches of excitation spectrum
ε(±)
s (p) = √

(svp − EF )2 + g2
s (p) ± δEF . At values δEF =

g+(pF ), one of branches of excitation spectrum becomes zero

at s = +,p = pF . At this situation the excitonic pairing stops
being energetically favorable and the system appears in the
normal state via a first-order phase transition. In similar way,
when Fermi circles for charge carriers with opposite spin
projection are separated by 2g+(pF )/v due to an in-plane
magnetic field, excitonic correlations between charge carriers
on these Fermi circles vanish. This fact is schematically shown
in the phase diagram Fig. 1(b): at the borders of the B phase
in the phase diagram excitonic correlations are no longer
energetically stable and the excitonic insulator state transforms
into either a normal state or into another phase via a first-order
phase transition.

B. The A′
0, A′

1, and A′
2 phases

In this section, we consider phases under the same external
conditions as in B phase, thus the symmetry group G is again
given by Eq. (7). We consider phases where order parameters
are characterized by the degenerate matrices of rank r < 4. In
such phases, only a part of electron species develop excitonic
correlations, therefore the single-particle excitation spectrum
is gapless for certain species of electrons. The matrix of
the order parameter can be chosen as follows, compare with
Eq. (17):

� = gs(p)Ṽ†Diag[a,b,c,0]V, Ṽ†,V ∈ U4. (25)

Here, the diagonal matrix Diag determines the order parameter
in phases, which are denoted as A′

0, A′
1, A′

2: numbers (a,b,c)
are given by (1,1,1) in A′

0 phase, (1,1,0) in A′
1 phase, and

(1,0,0) in A′
2 phase. Using the transformed electron operators

Ṽa1 in the layer 1 and Va2 in the layer 2, see Eqs. (4)
and (25), the self-consistency equation on the order parameter
becomes diagonal, and only first r out of four equations for
diagonal elements will have nonzero solutions. We assume
that in the self-consistency equations we can use the screened
interaction among charge carriers in the system in normal
state.27 In this case, self-consistency equations in A′

0,A
′
1,A

′
2

phases are identical to self-consistency equations in B phase,
therefore their nonzero solutions are given by the same gap
function gs(p).

Substituting the order parameter in the symmetry condi-
tion (10) one obtains matrices of symmetry transformations in
layer 1 and 2, for example for A′

1 phase one gets

U(1)
H = Ṽ†

(
u 0

0 u′

)
Ṽ, U(2)

H = V†
(

u 0

0 u′′

)
V, (26)

where

u ∈ U
(1,2)
2 , u′ ∈ U

(1)
2 , u′′ ∈ U

(2)
2 . (27)

Here, similarly to the B phase, the 2 × 2 unitary matrix u
determines the combined unitary rotations of the first two
components of the spin⊗valley basis Ṽ� in layer 1 and the
first two components of the spin⊗valley basis V� in layer
2. Therefore such phase is characterized by a partial relative
symmetry breaking. Remaining matrices u′,u′′ ∈ U2 determine
independent unitary rotations of the other two components of
corresponding spin⊗valley basis in layers. These other two
components correspond to quasiparticle’s states that do not
contribute to the excitonic condensation, their single-particle
excitation spectrum is gappless. Therefore only two out of four
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electron’s species are involved in the excitonic condensation.
Because of this, such a phase is similar to the superfluid A1

phase of liquid Helium-3, where paired states with only one
spin projection Sz = +1 are present in the condensate.46 The
A1 phase of Helium-3 exists only in magnetic field, in order
to underline the stability of the phase in the absence of the
magnetic field we denote the phase discussed here by an
additional prime, therefore it is denoted as the A′

1 phase of
the excitonic insulator. Other phases with degenerate matrices
of order parameters are denoted as A′

0 and A′
2.

In phases A′
0, A′

1, and A′
2 the number of nonzero diagonal

elements in the diagonal matrix Diag determines the rank r of
the symmetry group of combined unitary rotations, denoted as
U (1,2)

r . Zeros in the diagonal of the matrix Diag correspond to
electron states that do not develop excitonic correlations, and
therefore these states can be unitary transformed independently
in each layer.

Consequently, the symmetry group H for A′
0, A′

1, and A′
2

phases can be easily identified. For example, the symmetry
group H for A′

1 phase is the following:

H = U
(1)
2 × U

(1,2)
2 × U

(2)
2 . (28)

The dimension of the degeneracy space is calculated as
follows: for A′

0 phase, dim[G/H ] = 32 − 1 − 9 − 1 = 21;
for A′

1 phase, dim[G/H ] = 32 − 3 × 4 = 20; for A′
2 phase,

dim[G/H ] = 32 − 9 − 1 − 9 = 13.

C. The B′ phase

In this section, we consider the two-layer graphene system
in an in-plane magnetic field. Our analysis is based on the
comprehensive study by Aleiner and co-authors19 of the
spontaneous symmetry breaking in graphene subjected to an
in-plane magnetic field. When an in-plane magnetic field is
applied, the Fermi circles for quasiparticles with different spin
projections become separated due to a Zeeman splitting. Such
splitting changes the symmetry group G, Eq. (7), of the initial
Hamiltonian Ĥ2layer toward a direct product of four unitary
groups U2,

G = U
(1↑)
2 × U

(1↓)
2 × U

(2↑)
2 × U

(2↓)
2 .

Each of these U2 groups transforms a valley space of electrons
with corresponding spin projections in one layer, e.g., U

(1↑)
2

transforms electrons with spin up in layer 1.
The B ′ phase can be obtained from the B phase by the

application of an in-plane magnetic field. Such magnetic field
should be big enough to break the excitonic correlations in the
B phase and to split Fermi circles. Therefore a Zeeman energy
εZ should be bigger than a gap in the excitation spectrum in
the B phase, εZ > g+(pF ). In such a case, due to the initial
equality of charge carrier densities n1e = n2h in the B phase,
the two Fermi circles in layer 1 coincide with two Fermi circles
in layer 2. Thus it leads to the appearance of two different Fermi
circles in the system, Fig. 5. Consequently, the electron-hole
pairs, which appear on different Fermi circles, have different
properties: thus such electron-hole pairs have different spin
projection, +1 or −1, Fig. 5. Also due to slightly different
Fermi momenta, electron-hole pairs on different Fermi circles
are characterized by slightly different gap functions. Hence in

FIG. 5. Excitonic correlations in the two-layer graphene system
with an in-plane magnetic field h in the case of equal charge densities
in layers n1e = n2h. Because of a Zeeman splitting 2εZ there are two
Fermi circles with radiuses pF ± εZ/v. The absent electron with a
particular spin projection is considered as a quasiparticle (hole) with
an opposite spin projection.

the spin⊗valley basis �,

� = (↑ K+, ↑ K−, ↓ K+, ↓ K−) , (29)

the order parameter has the following structure [compare with
Eq. (18)]:

� =
(

0 g′
s(p)v

g′′
s (p)̃v 0

)
. (30)

Here matrices v and ṽ are unitary 2 × 2 matrices, which,
by analogy with the B phase, determine the relative unitary
rotation of a valley space of electron states with one spin
projection in layer 2 relatively to electron states with another
spin projection in layer 1. Functions g′

s(p), g′′
s (p) are gap

functions, which differ from each other only because of the
presence of a Zeeman splitting. However, when the Fermi
energy is much bigger than Zeeman energy, EF � εZ, the
difference between these functions is negligible and they are
approximately equal to the gap function in the B phase,
g′

s(p) ≈ g′′
s (p) ≈ gs(p). Thus

� ≈ gs(p)

(
0 v

ṽ 0

)
.

Using this approximation, the symmetry group H of the order
parameter can be found from the condition (10). As a result,
one obtains matrices U(1)

H and U(2)
H of the transformations (11)

from the group H in the layer 1 and 2, respectively (matrices
are written in the basis (29) in each layer):

U(1)
H =

(
u 0

0 ũ

)
, U(2)

H =
(̃

v†̃ũv 0

0 v†uv

)
. (31)

The corresponding electron operators are transformed as
follows:

a1,↑ → ua1,↑, a2,↓ → v†uva2,↓, u ∈ U
(1↑,2↓)
2 , (32)

a1,↓ → ũa1,↓, a2,↑ → ṽ†̃ũva2,↑, ũ ∈ U
(1↓,2↑)
2 . (33)

The unitary 2 × 2 matrix u, Eq. (32), determines a subgroup of
the group H, which consists of combined unitary rotation of
valley space of electrons with spin up in layer 1 and electrons
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with spin down in layer 2: u ∈ U
(1↑,2↓)
2 . The unitary 2 × 2

matrix ũ, Eq. (33), defines another corresponding subgroup of
the group H, ũ ∈ U

(1↓,2↑)
2 ⊂ H. Hence in the phase considered

here, the symmetry group H of the order parameter is given
by direct product of two subgroups:

H = U
(1↑,2↓)
2 × U

(1↓,2↑)
2 . (34)

Using expressions for groups G and H in the B ′ phase, we
found that the degeneracy space G/H is eight dimensional,
dim[G/H ] = 4 × 4 − 4 − 4 = 8. It is also defined by the
structure of the order parameter (30), i.e., here, the degeneracy
space is determined as a space of all possible unitary 2 × 2
matrices v and ṽ. Because of the nondegenerate matrix of the
order parameter, the single-particle excitation spectrum in this
phase is gapped.

Similarly to the B phase, the excitonic correlations in the
B ′ phase cease to exist when the external conditions (εZ >

g+(pF ), n1e = n2h) are perturbed, i.e., when Fermi circles in
different layers are separated for the energy interval which
is bigger than a double value of a gap in the single-particle
excitation spectrum. Thus, in particular, in the schematic phase
diagram Fig. 1(b) at the border of the B ′ phase (when a
symmetry n1e = n2h of charge carriers densities is violated)
the ground state of the system transforms to an uncorrelated
normal ground state via the first-order phase transition.

D. The A1 phase

In contrast to B and B ′ phases, where all species of charge
carriers develop excitonic correlations, in this section, we
discuss another possible realization of the excitonic insulator
state in the two-layer graphene system. We show that the
excitonic correlated state can exist in the presence of an
in-plane magnetic field and a specially chosen asymmetry in
charge carriers densities in layers.

In order to achieve a necessary external conditions, firstly,
we consider the two-layer system without a magnetic field
and with equal charge carrier densities in layers. Under such
conditions, the spectrum of electrons in both layers have only
one Fermi circle at the Fermi momentum pF . By changing
the external gate voltages, we create asymmetry between
charge carrier densities in layers: n1e > n2h. Thus the Fermi
circle in layer 1 is situated at the momentum pF + δpF , and the
Fermi circle in layer 2 is situated at the momentum pF − δpF ,

where δpF > 0, and pF is the Fermi momentum in the case
n1e = n2h (i.e., in B and B ′ phases). It is assumed that the
separation between Fermi circles is big enough to prevent
the development of excitonic correlations. Keeping the chosen
values of densities, we switch-on an in-plane magnetic field
with such a magnitude that the Zeeman energy εZ is equal
to the energy shift of each Fermi surface, εZ = vδpF , Fig. 6.
The presence of an in-plane magnetic field signifies that the
symmetry group G in such case is the same as in B ′ phase.

The external conditions mentioned above lead to the
situation when only two out of four Fermi circles coincide:
both the Fermi circle of electrons with spin up in the layer 1
(a Fermi circle with a smaller radius in the layer 1) and the
Fermi circle of electrons with spin up in the layer 2 (a Fermi
circle with a bigger radius in the layer 2) are situated at the
same Fermi momenta pF . Thus electron-hole pairs are formed

FIG. 6. Excitonic correlations in the A1 phase. Starting from a
zero magnetic field the asymmetry between charge carrier densities
n1e > n2h is created. In terms of Fermi energies, it means E

(1)
F >

|E(2)
F |. A magnitude of an in-plane magnetic field is chosen such that

a Zeeman energy εZ satisfies the condition: E
(1)
F − εZ = |E(2)

F | + εZ,

where (E(1)
F − εZ)/v is the radius of the Fermi circle for electrons

with spin up in layer 1, and (|E(2)
F | + εZ)/v is a radius of the Fermi

circle for electrons with spin up in layer 2. Both of these Fermi
circles are situated at the same Fermi momentum pF . Therefore two
out of four Fermi circles coincide, leading to excitonic correlations
between only half of electron’s species. Using the expression for the
Fermi energies E

(1)/(2)
F = ±vpF + vδpF , pF > δpF , where δpF =

(
√

n1e − √
n2h)

√
π/2, the condition on the Zeeman energy is the

following: εZ = vδpF .

on these two coincided Fermi circles. Notice that a total spin
projection of such an electron-hole pair is equal to a zero in
contrast to electron-hole pairs with spin projections +1 or −1
in the B ′ phase. Fermi circles for electrons with spin down
in both layers do not coincide with any other Fermi surfaces.
Therefore corresponding electrons and holes are in a normal
state (i.e., they do not participate in excitonic correlations),
their single-particle excitation spectrum is gapless.

Thus for the phase discussed here only half of all electron
species in the system develop excitonic correlations. It is
reflected in the order parameter, whose structure in the
basis (29) in both layers is given by the following expression:

� = gs(p)

(
v 0

0 0

)
. (35)

Here, the gap function gs(p) is the same as in other phases
due to the same Fermi momentum pF in the self-consistency
equation and due to the approximation of the interaction among
charge carriers in all phases by the screened interaction among
charge carriers in the system in normal state. Similarly to the
phases discussed previously, the unitary 2 × 2 matrix v in the
order parameter (35) determines a relative unitary rotation of
the valley space of electrons with spin up in layer 2 relatively
electrons with spin up in layer 1.

Solving the condition (10) with the order parameter (35), we
found that transformations from the group H are represented in
layer 1 and 2 by following matrices U(1)

H and U(2)
H respectively

(both matrices are written in the basis (29) in each layer):

U(1)
H =

(
u 0

0 u′

)
, U(2)

H =
(

v†uv 0

0 u′′

)
. (36)
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Here matrices u,u′,u′′ are unitary 2 × 2 matrices. The matrix
u performs a combined unitary transformation of a valley
space of electrons with spin up in both layers, in addition,
the valley space of electrons in layer 2 is rotated by the
order parameter (35), compare with Eq. (32). The valley space
of electrons with spin down is transformed by the unitary
matrix u′ in layer 1 and by the unitary matrix u′′ in layer 2,
correspondingly:

a1,↑ → ua1,↑, a2,↑ → v†uva2,↑, u ∈ U
(1↑,2↑)
2 , (37)

a1,↓ → u′a1,↓, u′ ∈ U
(1↓)
2 , (38)

a2,↓ → u′′a2,↓, u′′ ∈ U
(2↓)
2 . (39)

Thus group H consists of the direct product of three unitary
groups:

H = U
(1↓)
2 × U

(1↑,2↑)
2 × U

(2↓)
2 . (40)

Using the expressions for initial symmetry group G and
Eq. (40), we find that the degeneracy space G/H in this
phase is four dimensional, dim[G/H ] = 16 − 3 × 4 = 4. It
is determined by the manifold of all possible matrices v ∈ U2

in the structure of the order parameter (35).
The subgroups U

(1↓)
2 and U

(2↓)
2 are present in both groups

G and H, the appearance of the correlated state does not
change them. Therefore for the phase discussed here the initial
symmetry is broken only partially. According to the similarities
with the superfluid A1 phase of liquid Helium-3 (i.e., that the
phase described here exists in magnetic field and has a partial
relative symmetry breaking38–41,46), the phase discussed in this
subsection was denoted as A1 phase.

VI. RESULTS AND DISCUSSIONS

In the present paper, we consider a two-layer graphene
system where external gate voltage induces a finite density of
electrons in one layer and holes in another. Assuming that
the transition temperature Tc toward excitonic insulator is
high enough so that it can be observed, we classify phases
of such correlated state. In order to obtain different excitonic
correlations and therefore different phases, we propose to use
parallel to graphene layers magnetic field and perpendicular
to graphene layers electric field.

Firstly, we consider the Hamiltonian of the two-layer
graphene system. We recognize that the ground state is
characterized by a high symmetry group—the group of unitary
rotations of spin⊗valley space of electrons in each layer inde-
pendently. Below a transition temperature Tc, this symmetry
is reduced by a nonzero order parameter toward a symmetry
of the excitonic insulating ground state, which consists of
electron-hole pairs with electrons on one layer and holes on
another. Following the BCS theory of superconductivity, we
identify the condition for such electron-hole pairing, determine
the order parameter and build a BCS-like mean-field theory
of the excitonic insulator. Analyzing a symmetry breaking of
the initial ground state by the order parameter, we consider
a condition that mutually determines the order parameter and
the corresponding symmetry group of the excitonic insulator
ground state. Using a singular value decomposition of the
matrix of the order parameter, for each phase of the excitonic

insulator, we obtain a corresponding symmetry group of
the ground state, a structure of the order parameter and its
degeneracy space. The results of a phase classification of the
excitonic insulator are shown in Table I, the most energetically
stable phases are shown in the phase diagram, Fig. 1(b), and
on Figs. 4–6.

It is important to notice that the excitonic correlations in
all phases discussed in this paper origin from the coincided
Fermi surfaces at approximately the same Fermi momentum
pF (we use assumption EF � εZ , where the Fermi energy EF

is determined in the system without a magnetic field and with
equal densities of charge carriers in layers n1e = n2h). Thus
assuming that the interaction among charge carriers is the same
in all phases (i.e., that the effect of excitonic correlations on the
screening of the interaction can be neglected27), we obtain that
the energy gap in the single-particle excitation spectrum in all
phases is determined by the same self-consistency equation.
Therefore the transition temperature Tc estimated from the
self-consistency equation46 should be the same for all phases.

At a temperature lower than the transition temperature Tc,
transitions between phases in the phase diagram are found to
be of the first order. Phases of excitonic insulator have different
properties: thus the electron-hole pairs in B ′ phase have total
spin projection +1 or −1, see Fig. 5, whereas in the A1 phase
a total spin projection of an electron-hole pair is equal to zero,
see Fig. 6.

According to the number of estimations of the critical
temperature in the considered system, the most optimistic
estimation gives values of Tc close to a room temperature.22

However, this estimation22 does not take screening of the
Coulomb interaction into account, explaining it by the as-
sumption of the first-order phase transition in the system.
Some other estimations25,27 point on the improbability of
observation of excitonic condensation due to extremely low
transition temperature �1mK, (Tc ≈ 10−7EF ). According to
Refs. 25 and 27, the reason for low transition temperature
lays in the effective screening of the Coulomb interaction by
a big number N of species of electrons.25,51 In the considered
system N = 8, which is given by the product of two valleys,
two spin projections and two layers. Such large N increases
screening and makes excitonic condensation not so effective,
as in the monolayer graphene52 and especially in the monolayer
graphene in a magnetic field,19,53 where Tc can reach values up
to 10−4EF . However, recent investigations, based on a detailed
treatment of the screened Coulomb interaction28–30,54,55 and
on a consideration of a multiband pairing31,54 or pairing with
nonzero momentum56 suggest that the transition temperature
Tc can be sufficiently big for the experimental observation
of the excitonic insulator in the considered system. Together
with recent experimental realization of the two-layer graphene
system32–37 it provides a hope that the phase diagram of the
excitonic insulator, Fig. 1(b), under favorable conditions57–60

will be observed experimentally.
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