239 research outputs found

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

    LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt

    Get PDF
    To study the leaf area index, LAI, based thermal performance in distinguishing trees for Cairo's urban developments, ENVI-met plants database was used as platform for a foliage modeling parameter, the leaf area density, LAD. Two Egyptian trees: Ficus elastica. and Peltophorum pterocarpum were simulated in 2 urban sites with one having no trees, whilst the second is having Ficus nitida trees. Trees LAD values were calculated using flat leaves' trees LAI definition to produce maximum ground solid shadow at peak time. An empirical value of 1 for LAI is applied to numerically introduce LAD values for ENVI-met. Basically, different meteorological records showed improvements for pedestrian comfort and ambient microclimate of the building using E elastica. About 40-50% interception of direct radiation, reductions in surfaces' fluxes around trees and in radiant temperature T-mrt in comparison to base cases gave preferability to E elastica. The lack of soil water prevented evapotranspiration to take place effectively and the reduced wind speeds concluded negligible air temperature differences from both base cases except slightly appeared with the F elastica. Results show that a flat leaves tree if does not validate LAI of 1, the ground shading would not fulfill about 50% direct radiation interception and this value can be used as a reference for urban trees selection. Further simulations were held to investigate LAI value of maximum direct radiation interception. Performing additional simulations, F elastica of LAI of 3 intercepted almost 84% of direct radiation and revealed implications about urban trees in practice and its actual LAI. (C) 2009 Elsevier Ltd. All rights reserved

    Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions

    Get PDF
    Oil palm (Elaeis guineensis) agriculture is rapidly expanding and requires large areas of land in the tropics to meet the global demand for palm oil products. Land cover conversion of peat swamp forest to oil palm (large- and small-scale oil palm production) is likely to have negative impacts on microhabitat conditions. This study assessed the impact of peat swamp forest conversion to oil palm plantation on microclimate conditions and soil characteristics. The measurement of microclimate (air temperature, wind speed, light intensity and relative humidity) and soil characteristics (soil surface temperature, soil pH, soil moisture, and ground cover vegetation temperature) were compared at a peat swamp forest, smallholdings and a large-scale plantation. Results showed that the peat swamp forest was 1.5–2.3 °C cooler with significantly greater relative humidity, lower light intensities and wind speed compared to the smallholdings and large-scale plantations. Soil characteristics were also significantly different between the peat swamp forest and both types of oil palm plantations with lower soil pH, soil and ground cover vegetation surface temperatures and greater soil moisture in the peat swamp forest. These results suggest that peat swamp forests have greater ecosystem benefits compared to oil palm plantations with smallholdings agricultural approach as a promising management practice to improve microhabitat conditions. Our findings also justify the conservation of remaining peat swamp forest as it provides a refuge from harsh microclimatic conditions that characterize large plantations and smallholdings

    Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces

    Get PDF
    This paper deals with the interactions between biophysical and microclimatic factors on the one hand with, on the other, the urban morphology of intermediate urban open spaces, the relationship between environmental and bioclimatic thermal comfort, and the implementation of innovative materials and the use of greenery, aimed at the users’ well-being. In particular, the thermal comfort of the open spaces of the consolidated fabrics of the city of Rome is studied, by carrying out simulations of cooling strategies relating to two scenarios applied to Piazza Bainsizza. The first scenario involves the use of cool materials for roofs, cladding surfaces, and pavement, while the second scenario, in addition to the cool materials employed in the first scenario, also includes the use of greenery and permeable green surfaces. The research was performed using summer and winter microclimatic simulations of the CFD (ENVI-met v. 3.1) type, in order to determine the dierent influences of the materials with cold colors, trees, and vegetated surfaces on the thermal comfort of the urban morphology itself. Meanwhile, the comfort assessment was determined through the physiological equivalent temperature (PET) calculated with the RayMan program. The first scenario, with the use of cool materials, improves summer conditions and reduces the urban heat island eect but does not eliminate thermal discomfort due to the lack of shaded surfaces and vegetation. The second scenario, where material renovations is matched with vegetation improvements, has a slightly bad eect on winter conditions but drastically ameliorates the summer situation, both for direct users and, thanks to the strong reduction of the urban heat island eect, to urban inhabitants as a whole

    Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate

    Get PDF
    The growing interest in thermal comfort of outdoor environments yields in different analysis on courtyards as a common space between urban and architectural scales. However, there is a limited knowledge regarding the microclimatic behavior of such spaces. Using ENVI-met simulations, this paper aims to numerically discuss the thermal performance of different configurations of traditionally designed courtyards in Shiraz, Iran, which experiences hot summers and cold winters. The geometrical effects such as orientation and H/W (height to width ratio) of courtyards are considered as potential parameters to improve the microclimatic conditions. In this paper, PMV and UTCI are used as thermal comfort indices. The obtained results indicate mean radiant temperature and wind speed as the most effective parameters for thermal comfort of courtyards. In addition, the aforementioned geometrical parameters might not be able to solely create a desirable condition, but they could significantly improve the thermal comfort of courtyards during summer and winter. To achieve a desirable thermal comfort level, the results suggest using configurations of a high H/W rate and southward orientation in order to obtain better shading during summer as well as allowing the solar radiation in while regulating the wind speed in winter

    Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management

    Get PDF
    Urban road verges can contain significant biodiversity, contribute to structural connectivity between other urban greenspaces, and due to their proximity to road traffic are well placed to provide ecosystem services. Using the UK as a case study we review and critically evaluate a broad range of evidence to assess how this considerable potential can be enhanced despite financial, contractual and public opinion constraints. Reduced mowing frequency and other alterations would enhance biodiversity, aesthetics and pollination services, whilst delivering costs savings and potentially being publically acceptable. Retaining mature trees and planting additional ones is favourable to residents and would enhance biodiversity, pollution and climate regulation, carbon storage, and stormwater management. Optimising these services requires improved selection of tree species, and creating a more diverse tree stock. Due to establishment costs additional tree planting and maintenance could benefit from payment for ecosystem service schemes. Verges could also provide areas for cultivation of biofuels and possibly food production. Maximising the contribution of verges to urban biodiversity and ecosystem services is economical and becoming an increasingly urgent priority as the road network expands and other urban greenspace is lost, requiring enhancement of existing greenspace to facilitate sustainable urban development

    Ecohydrology of street trees: design and irrigation requirements for sustainable water use

    Get PDF
    Whereas the beneficial effects of urban vegetation have long been recognized, growing conditions in urban environments, especially for street trees, are typically harsh and limited by low water availability. Supplemental irrigation may be used to preserve aesthetic quality and ability to provide ecosystem services of urban vegetation but requires careful management of available economic and water resources to reduce urban water footprint. To this purpose, decision makers need quantitative tools, requiring few, physically based parameters and accounting for the uncertainties and future scenarios of the hydroclimatic forcing. Focusing on in-row and isolated trees, a minimalist description of street tree water balance is proposed here, including rainfed and irrigated conditions, and explicitly accounting for tree water requirements, growing conditions (in terms of soil properties and extension of bare soil, permeable and impervious pavements surrounding the tree) and rainfall unpredictability. The proposed model allows the quantification of tree cooling capacity, water stress occurrence and irrigation requirements, as a function of soil, plant and climate characteristics, thus providing indications regarding the tree ability to provide ecosystem services and management costs. In particular, an analysis of different planting designs suggests that a balanced design consisting in bare soil and permeable pavement with size equal to the lateral canopy extension is optimal for water conservation, tree cooling capacity and health. The proposed model provides useful indications towards the definition of site-specific guidelines for species selection and planting design, for sustainable urban vegetatio

    Defining the allometry of stem and crown diameter of urban trees

    Get PDF
    There is a strong allometric relationship between stem diameter at breast height (DBH) and crown diameter in healthy trees in the young to mature stages of their growth. How do geographical position, site conditions and management treatments influence this relationship? This study included only free-standing urban trees, thus providing data on the growth potential of the species included in the survey in typical urban conditions by linking this with estimated tree age. Field work involved recording the dimensions and growing conditions of 400 urban trees in two UK cities; Norwich and Peterborough. Species selected for this study were pedunculate oak (Quercus robur L.), sycamore (Acer pseudoplatanus L.), silver birch (Betula pendula Roth.) and Norway maple (Acer platanoides L.). The mean relationship between DBH and crown diameter exhibited a restricted range (a ratio of 24 to 27) in this large sample. The results indicated that the factor of species did not have a strong impact on the allometric relationship in the case of the four species measured. It is therefore possible to produce good predictions of crown size by combining data from all the species used in this survey. A key finding of this study is that previous tree pruning and external site factors, such as hard surfacing over the rooting area and soil type, had no significant influence on the relationship between DBH and crown diameter
    corecore