166 research outputs found

    Combined Effects of Impervious Surface and Vegetation Cover on Air Temperature Variations in a Rapidly Expanding Desert City

    Get PDF
    The goal of this study is to improve our understanding of the interac- tive function of impervious and vegetation covers at different levels of the local and intra-urban spatial scales in relation to air temperatures in an urban environment. A multiple regression model was developed using impervious and vegetation frac- tions at different scales to predict maximum air temperature for the entire Phoenix metropolitan area in Arizona, USA. This study demonstrates that a small amount of impervious cover in a desert city can still increase maximum air temperature despite abundant vegetation cover.

    Geographical and temporal weighted regression (GTWR)

    Get PDF
    Both space and time are fundamental in human activities as well as in various physical processes. Spatiotemporal analysis and modeling has long been a major concern of geographical information science (GIScience), environmental science, hydrology, epidemiology, and other research areas. Although the importance of incorporating the temporal dimension into spatial analysis and modeling has been well recognized, challenges still exist given the complexity of spatiotemporal models. Of particular interest in this article is the spatiotemporal modeling of local nonstationary processes. Specifically, an extension of geographically weighted regression (GWR), geographical and temporal weighted regression (GTWR), is developed in order to account for local effects in both space and time. An efficient model calibration approach is proposed for this statistical technique. Using a 19-year set of house price data in London from 1980 to 1998, empirical results from the application of GTWR to hedonic house price modeling demonstrate the effectiveness of the proposed method and its superiority to the traditional GWR approach, highlighting the importance of temporally explicit spatial modeling

    Advanced seasonal reproductive development in a male urban bird is reflected in earlier plasma luteinizing hormone rise but not energetic status

    Get PDF
    AbstractUrban animals inhabit an environment considerably different than do their non-urban conspecifics, and to persist urban animals must adjust to these novel environments. The timing of seasonal reproductive development (i.e., growth of gonads and secondary sex organs) is a fundamental determinant of the breeding period and is frequently advanced in urban bird populations. However, the underlying mechanism(s) by which birds adjust the timing of reproductive development to urban areas remain(s) largely unknown. Here, we compared the timing of vernal reproductive development in free-ranging urban and non-urban male Abert’s Towhees, Melozone aberti, in Phoenix, Arizona, USA, and tested the non-mutually exclusive hypotheses that earlier reproductive development is due to improved energetic status and/or earlier increase in endocrine activity of the reproductive system. We found that urban birds initiated testicular development earlier than non-urban birds, but this disparity was not associated with differences in body condition, fat stores, or innate immune performance. These results provide no support for the hypothesis that energetic constraints are responsible for delayed reproductive development of non-urban relative to urban male Abert’s Towhees. Urban birds did, however, increase their plasma luteinizing hormone, but not plasma testosterone, earlier than non-urban birds. These findings suggest that adjustment to urban areas by Abert’s Towhees involves increases in the endocrine activity of the anterior pituitary gland and/or hypothalamus earlier than non-urban towhees

    The ecological and physiological bases of variation in the phenology of gonad growth in an urban and desert songbird.

    Get PDF
    AbstractBirds often adjust to urban areas by advancing the timing (phenology) of vernal gonad growth. However, the ecological and physiological bases of this adjustment are unclear. We tested whether the habitat-related disparity in gonad growth phenology of male Abert’s towhees, Melozone aberti, is due to greater food availability in urban areas of Phoenix, Arizona USA or, alternatively, a habitat-related difference in the phenology of key food types. To better understand the physiological mechanism underlying variation in gonad growth phenology, we compared the activity of the reproductive system at all levels of hypothalamo-pituitary–gonadal (HPG) axis. We found no habitat-associated difference in food availability (ground arthropod biomass), but, in contrast to the seasonal growth of leaves on desert trees, the leaf foliage of urban trees was already developed at the beginning of our study. Multiple estimates of energetic status did not significantly differ between the non-urban and urban towhees during three years that differed in the habitat-related disparity in gonad growth and winter precipitation levels. Thus, our results provide no support for the hypothesis that greater food abundance in urban areas of Phoenix drives the habitat-related disparity in gonad growth phenology in Abert’s towhees. By contrast, they suggest that differences in the predictability and magnitude of change in food availability between urban and desert areas of Phoenix contribute to the observed habitat-related disparity in gonad growth. Endocrine responsiveness of the gonads may contribute to this phenomenon as desert – but not urban – towhees had a marked plasma testosterone response to GnRH challenge

    Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function.

    Get PDF
    Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution
    • 

    corecore