445 research outputs found

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.

    Get PDF
    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism <i>Tetrahymena pyriformis</i> to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo­[a]­pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of <i>T. pyriformis</i>, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs

    Age before beauty? Relationships between fertilization success and age-dependent ornaments in barn swallows

    Get PDF
    When males become more ornamented and reproduce more successfully as they grow older, phenotypic correlations between ornament exaggeration and reproductive success can be confounded with age effects in cross-sectional studies, and thus say relatively little about sexual selection on these traits. This is exemplified here in a correlative study of male fertilization success in a large colony of American barn swallows (Hirundo rustica erythrogaster). Previous studies of this species have indicated that two sexually dimorphic traits, tail length and ventral plumage coloration, are positively correlated with male fertilization success, and a mechanism of sexual selection by female choice has been invoked. However, these studies did not control for potential age-related variation in trait expression. Here, we show that male fertilization success was positively correlated with male tail length but not with plumage coloration. We also show that 1-year-old males had shorter tails and lower fertilization success than older males. This age effect accounted for much of the covariance between tail length and fertilization success. Still, there was a positive relationship between tail length and fertilization success among older males. But as this group consisted of males from different age classes, an age effect may be hidden in this relationship as well. Our data also revealed a longitudinal increase in both tail length and fertilization success for individual males. We argue that age-dependent ornament expression and reproductive performance in males complicate inferences about female preferences and sexual selection

    Predictors of stable return-to-work in non-acute, non-specific spinal pain: low total prior sick-listing, high self prediction and young age. A two-year prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-specific spinal pain (NSP), comprising back and/or neck pain, is one of the leading disorders in long-term sick-listing. During 2000-2004, 125 Swedish primary-care patients with non-acute NSP, full-time sick-listed 6 weeks-2 years, were included in a randomized controlled trial to compare a cognitive-behavioural programme with traditional primary care. This prospective cohort study is a re-assessment of the data from the randomized trial with the 2 treatment groups considered as a single cohort. The aim was to investigate which baseline variables predict a stable return-to-work during a 2-year period after baseline: objective variables from function tests, socioeconomic, subjective and/or treatment variables. Stable return-to-work was a return-to-work lasting for at least 1 month from the start of follow-up.</p> <p>Methods</p> <p><it>Stable return-to-work </it>was the outcome variable, the above-mentioned factors were the predictive variables in multiple-logistic regression models, one per follow-up at 6, 12, 18 and 24 months after baseline. The factors from univariate analyzes with a <it>p</it>-value of at most .10 were included. The non-significant variables were excluded stepwise to yield models comprising only significant factors (<it>p </it>< .05). As the comparatively few cases made it risky to associate certain predictors with certain time-points, we finally considered the predictors which were represented in at least 3 follow-ups. They are presented with odds ratios (OR) and 95% confidence intervals.</p> <p>Results</p> <p>Three variables qualified, all of them represented in 3 follow-ups: <it>Low total prior sick-listing </it>(including all diagnoses) was the strongest predictor in 2 follow-ups, 18 and 24 months, OR 4.8 [1.9-12.3] and 3.8 [1.6-8.7] respectively, <it>High self prediction </it>(the patients' own belief in return-to-work) was the strongest at 12 months, OR 5.2 [1.5-17.5] and <it>Young age </it>(max 44 years) the second strongest at 18 months, OR 3.5 [1.3-9.1].</p> <p>Conclusions</p> <p>In primary-care patients with non-acute NSP, the strong predictors of stable return-to-work were 2 socioeconomic variables, <it>Low total prior sick-listing </it>and <it>Young age</it>, and 1 subjective variable, <it>High self-prediction</it>. Objective variables from function tests and treatment variables were non-predictors. Except for <it>Young age</it>, the predictors have previously been insufficiently studied, and so our study should widen knowledge within clinical practice.</p> <p>Trial registration</p> <p>Trial registration number for the original trial NCT00488735.</p

    Pathobiological Implications of the Expression of EGFR, pAkt, NF-κB and MIC-1 in Prostate Cancer Stem Cells and Their Progenies

    Get PDF
    The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt, nuclear factor-kappaB (NF-κB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and immunofluorescence data have revealed that the expression levels of EGFR, Ser473-pAkt, NF-κB p65 and MIC-1 proteins were significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease progression and these biomarkers were expressed in a small subpopulation of CD133+ PC cells and the bulk tumor mass of CD133− PC cells. Importantly, all of these biomarkers were also overexpressed in 80–100% of 30 PC metastasis bone tissue specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of therapeutic interest, the targeting of EGFR, pAkt, NF-κB or MIC-1 was also effective at suppressing the basal and EGF-promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-κB and/or MIC-1 may represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and lethal disease states

    Salmonella paratyphi C: Genetic Divergence from Salmonella choleraesuis and Pathogenic Convergence with Salmonella typhi

    Get PDF
    BACKGROUND: Although over 1400 Salmonella serovars cause usually self-limited gastroenteritis in humans, a few, e.g., Salmonella typhi and S. paratyphi C, cause typhoid, a potentially fatal systemic infection. It is not known whether the typhoid agents have evolved from a common ancestor (by divergent processes) or acquired similar pathogenic traits independently (by convergent processes). Comparison of different typhoid agents with non-typhoidal Salmonella lineages will provide excellent models for studies on how similar pathogens might have evolved. METHODOLOGIES/PRINCIPAL FINDINGS: We sequenced a strain of S. paratyphi C, RKS4594, and compared it with previously sequenced Salmonella strains. RKS4594 contains a chromosome of 4,833,080 bp and a plasmid of 55,414 bp. We predicted 4,640 intact coding sequences (4,578 in the chromosome and 62 in the plasmid) and 152 pseudogenes (149 in the chromosome and 3 in the plasmid). RKS4594 shares as many as 4346 of the 4,640 genes with a strain of S. choleraesuis, which is primarily a swine pathogen, but only 4008 genes with another human-adapted typhoid agent, S. typhi. Comparison of 3691 genes shared by all six sequenced Salmonella strains placed S. paratyphi C and S. choleraesuis together at one end, and S. typhi at the opposite end, of the phylogenetic tree, demonstrating separate ancestries of the human-adapted typhoid agents. S. paratyphi C seemed to have suffered enormous selection pressures during its adaptation to man as suggested by the differential nucleotide substitutions and different sets of pseudogenes, between S. paratyphi C and S. choleraesuis. CONCLUSIONS: S. paratyphi C does not share a common ancestor with other human-adapted typhoid agents, supporting the convergent evolution model of the typhoid agents. S. paratyphi C has diverged from a common ancestor with S. choleraesuis by accumulating genomic novelty during adaptation to man
    corecore