16 research outputs found

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer

    Get PDF
    Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3 and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized Luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options

    Inhibiting astrocyte connexin-43 hemichannels blocks radiation-induced vesicular VEGF-A release and blood-brain barrier dysfunction

    No full text
    Therapeutic brain irradiation with ionizing radiation exerts multiple side effects including barrier leakage that disturbs glial-neuronal functioning and may affect cognition. Astrocytes contribute to barrier leakage by endfeet release of various vasoactive substances acting on capillary endothelial cells forming the barrier. Here, we investigated X-ray effects on astrocytic vesicular transport in mice and determined whether interfering with astrocyte connexins affects radiation-induced barrier leakage. We found that astrocytic VEGF-A-loaded VAMP3 vesicles drastically reorganize starting from 6 h post-irradiation and move in a calcium- and Cx43-dependent manner towards endfeet where VEGF-A is released, provoking barrier leakage. Vesicular transport activation, VEGF-A release and leakage 24 h post-irradiation were all potently inhibited by astrocytic Cx43 KO, Cx43S255/262/279/282A (MK4) mutant mice and TATGap19 inhibition of Cx43 hemichannel opening. Astrocyte VEGF release is a major player in complications of brain irradiation, which can be mitigated by anti-VEGF treatments. Targeting Cx43 hemichannels allows to prevent astrocyte VEGF release at an early stage after brain irradiation

    Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis

    No full text
    The blood-brain barrier is formed by capillary endothelial cells expressing connexin 37 (Cx37), Cx40, and Cx43 and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic inflammation in mice. Intraperitoneal LPS administration increased endothelial and astrocytic Cx43 expression; elevated TNF-alpha, IL-1 beta, IFN-gamma, and IL-6 in plasma and IL-6 in the brain; and induced barrier leakage recorded over 24 hours. Barrier leakage was largely prevented by global Cx43 knockdown and Cx43/Cx30 double knockout in astrocytes, slightly diminished by endothelial Cx43 knockout, and not protected by global Cx30 knockout. Intravenous administration of Gap27 or Tat-Gap19 peptides just before LPS also prevented barrier leakage, and intravenously administered BAPTA-AM to chelate intracellular calcium was equally effective. Patch-clamp experiments demonstrated LPS-induced Cx43 hemichannel opening in endothelial cells, which was suppressed by Gap27, Gap19, and BAPTA. LPS additionally triggered astrogliosis that was prevented by intravenous Tat-Gap19 or BAPTA-AM. Cortically applied Tat-Gap19 or BAPTA-AM to primarily target astrocytes also strongly diminished barrier leakage. In vivo dye uptake and in vitro patch-clamp showed Cx43 hemichannel opening in astrocytes that was induced by IL-6 in a calcium-dependent manner. We conclude that targeting endothelial and astrocytic connexins is a powerful approach to limit barrier failure and astrogliosis

    Estimated marginal means +/- 1 standard error for eye-blink magnitude (t-scores).

    No full text
    <p>Substance (placebo, oxytocin) x Picture Content (social, non-social) x STAI Group (low trait anxiety, high trait anxiety) Interaction effect, F (1, 1700) = 6.13, p = 0.013. *p<0.05, ** p < 0.01, *** p < 0.001.</p
    corecore