290 research outputs found

    Cancer incidence in British vegetarians

    Get PDF
    Background: Few prospective studies have examined cancer incidence among vegetarians. Methods: We studied 61 566 British men and women, comprising 32 403 meat eaters, 8562 non-meat eaters who did eat fish ('fish eaters') and 20 601 vegetarians. After an average follow-up of 12.2 years, there were 3350 incident cancers of which 2204 were among meat eaters, 317 among fish eaters and 829 among vegetarians. Relative risks (RRs) were estimated by Cox regression, stratified by sex and recruitment protocol and adjusted for age, smoking, alcohol, body mass index, physical activity level and, for women only, parity and oral contraceptive use. Results: There was significant heterogeneity in cancer risk between groups for the following four cancer sites: stomach cancer, RRs (compared with meat eaters) of 0.29 (95% CI: 0.07–1.20) in fish eaters and 0.36 (0.16–0.78) in vegetarians, P for heterogeneity=0.007; ovarian cancer, RRs of 0.37 (0.18–0.77) in fish eaters and 0.69 (0.45–1.07) in vegetarians, P for heterogeneity=0.007; bladder cancer, RRs of 0.81 (0.36–1.81) in fish eaters and 0.47 (0.25–0.89) in vegetarians, P for heterogeneity=0.05; and cancers of the lymphatic and haematopoietic tissues, RRs of 0.85 (0.56–1.29) in fish eaters and 0.55 (0.39–0.78) in vegetarians, P for heterogeneity=0.002. The RRs for all malignant neoplasms were 0.82 (0.73–0.93) in fish eaters and 0.88 (0.81–0.96) in vegetarians (P for heterogeneity=0.001). Conclusion: The incidence of some cancers may be lower in fish eaters and vegetarians than in meat eaters

    Phenotypic Evidence of Emerging Ivermectin Resistance in Onchocerca volvulus

    Get PDF
    Onchocerciasis, commonly known as river blindness, is caused by the filarial nematode Onchocerca volvulus and is transmitted by a blackfly vector. Over 37 million people are thought to be infected, with over 90 million at risk. Infection predominantly occurs in sub-Saharan Africa. Foci also exist in the Arabian Peninsula and Central and South America. Ivermectin, the sole pharmaceutical available for mass chemotherapy, has been used on a community basis for annual or semi-annual treatment since 1987. Multiple treatments with ivermectin kill the microfilariae that are responsible for the pathology of onchocerciasis. More importantly, ivermectin suppresses the reproductive activity of the adult female worms, thus delaying or preventing the repopulation of the skin with new microfilariae and thereby reducing transmission. This study extends earlier reports of sub-optimal responses to ivermectin by examining repopulation levels of microfilaria one year after treatment, worm burdens per nodule, the age structure of adult female worms recovered from nodules, and the reproductive status of adult female worms 90 days after ivermectin treatment. In some communities which have shown a pattern of sub-optimal response to treatment, the data is consistent with an emergence of ivermectin non response or resistance manifested by a loss of the effect of ivermectin on the suppression of parasite reproduction

    Of Mice, Cattle, and Humans: The Immunology and Treatment of River Blindness

    Get PDF
    River blindness is a seriously debilitating disease caused by the filarial parasite Onchocerca volvulus, which infects millions in Africa as well as in South and Central America. Research has been hampered by a lack of good animal models, as the parasite can only develop fully in humans and some primates. This review highlights the development of two animal model systems that have allowed significant advances in recent years and hold promise for the future. Experimental findings with Litomosoides sigmodontis in mice and Onchocerca ochengi in cattle are placed in the context of how these models can advance our ability to control the human disease

    Stage-specific proteomes from onchocerca ochengi, sister species of the human river blindness parasite, uncover adaptations to a nodular lifestyle

    Get PDF
    Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers

    Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal

    Get PDF
    The onchocerciasis transmission models EPIONCHO and ONCHOSIM have been independently developed and used to explore the feasibility of eliminating onchocerciasis from Africa with mass (annual or biannual) distribution of ivermectin within the timeframes proposed by the World Health Organization (WHO) and endorsed by the 2012 London Declaration on Neglected Tropical Diseases (i.e. by 2020/2025). Based on the findings of our previous model comparison, we implemented technical refinements and tested the projections of EPIONCHO and ONCHOSIM against long-term epidemiological data from two West African transmission foci in Mali and Senegal where the observed prevalence of infection was brought to zero circa 2007–2009 after 15–17 years of mass ivermectin treatment. We simulated these interventions using programmatic information on the frequency and coverage of mass treatments and trained the model projections using longitudinal parasitological data from 27 communities, evaluating the projected outcome of elimination (local parasite extinction) or resurgence. We found that EPIONCHO and ONCHOSIM captured adequately the epidemiological trends during mass treatment but that resurgence, while never predicted by ONCHOSIM, was predicted by EPIONCHO in some communities with the highest (inferred) vector biting rates and associated pre-intervention endemicities. Resurgence can be extremely protracted such that low (microfilarial) prevalence between 1% and 5% can be maintained for 3–5 years before manifesting more prominently. We highlight that post-treatment and post-elimination surveillance protocols must be implemented for long enough and with high enough sensitivity to detect possible residual latent infections potentially indicative of resurgence. We also discuss uncertainty and differences between EPIONCHO and ONCHOSIM projections, the potential importance of vector control in high-transmission settings as a complementary intervention strategy, and the short remaining timeline for African countries to be ready to stop treatment safely and begin surveillance in order to meet the impending 2020/2025 elimination targets

    Criteria for the differentiation between young and old Onchocerca volvulus filariae

    Get PDF
    Drugs exist that show long-lasting inhibition of embryogenesis and microfilaria production or macrofilaricidal activity against Onchocerca volvulus. Therefore, the patients have to be followed-up for several years. Clinical drug trials have to be performed in areas with ongoing transmission to assess the efficacy on younger worms. In addition, future vaccine trials may also require demonstrating efficacy against establishment of new worms. For the evaluation of the efficacy, it is necessary to differentiate between older worms, which were exposed to the drug, and younger worms newly acquired after drug treatment or vaccination. Here, we describe criteria for the differentiation between young and old filariae based on histological studies of worms with a known age from travellers, or from children, or patients living in areas with interrupted transmission in Burkina Faso, Ghana or Uganda. Older worms were larger and presented degenerated tissues. Gomori's iron stain showed that the worms accumulated more iron with increasing age, first in the gut and later in other organs. Using an antibody against O. volvulus lysosomal aspartic protease, the gut of young worms was stained only weakly; whereas, it was stronger labelled in older worms, accompanied by additional staining of hypodermis and epithelia. Using morphological and immunohistological criteria, it was possible to differentiate young (1–3 years old) from older females and to identify young males

    Genetic Selection of Low Fertile Onchocerca volvulus by Ivermectin Treatment

    Get PDF
    Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug and evidence of drug resistance. Drug resistance has a genetic basis. In this study, genetic changes in β-tubulin, a gene associated with ivermectin resistance in nematodes, were seen in parasites obtained from the patients exposed to repeated ivermectin treatment compared with parasites obtained from the same patients before any exposure to ivermectin. Furthermore, the extent of the genetic changes was dependent on the level of ivermectin treatment exposure. This genetic selection was associated with a lower reproductive rate in the female parasites. The data indicates that this genetic selection is for a population of O. volvulus that is more tolerant to ivermectin. This selection could have implications for the development of ivermectin resistance in O. volvulus and for the ongoing onchocerciasis control programmes. Monitoring for the possible development and spread of ivermectin resistance, as part of the control programmes, should be implemented so that any foci of resistant parasites can be treated by alternative control measures

    Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC)

    Get PDF
    Epidemiological data show that reproductive and hormonal factors are involved in the etiology of endometrial cancer, but there is little data on the association with endogenous sex hormone levels. We analyzed the association between prediagnostic serum concentrations of sex steroids and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition using a nested case–control design of 247 incident endometrial cancer cases and 481 controls, matched on center, menopausal status, age, variables relating to blood collection, and, for premenopausal women, phase of menstrual cycle. Using conditional regression analysis, endometrial cancer risk among postmenopausal women was positively associated with increasing levels of total testosterone, free testosterone, estrone, total estradiol, and free estradiol. The odds ratios (ORs) for the highest versus lowest tertile were 2.66 (95% confidence interval (CI) 1.50–4.72; P=0.002 for a continuous linear trend) for estrone, 2.07 (95% CI 1.20–3.60; P=0.001) for estradiol, and 1.66 (95% CI 0.98–2.82; P=0.001) for free estradiol. For total and free testosterone, ORs for the highest versus lowest tertile were 1.44 (95% CI 0.88–2.36; P=0.05) and 2.05 (95% CI 1.23–3.42; P=0.005) respectively. Androstenedione and dehydroepiandrosterone sulfate were not associated with risk. Sex hormone-binding globulin was significantly inversely associated with risk (OR for the highest versus lowest tertile was 0.57, 95% CI 0.34–0.95; P=0.004). In premenopausal women, serum sex hormone concentrations were not clearly associated with endometrial cancer risk, but numbers were too small to draw firm conclusions. In conclusion, relatively high blood concentrations of estrogens and free testosterone are associated with an increased endometrial cancer risk in postmenopausal women
    corecore