513 research outputs found

    Antigen-Presenting Cells in Essential Fatty Acid—Deficient Murine Epidermis: Keratinocytes Bearing Class II (Ia) Antigens May Potentiate the Accessory Cell Function of Langerhans Cells

    Get PDF
    Essential fatty acid deficiency (EFAD) is a useful model for studying the role of (n-6) fatty acid metabolism in normal physiology. Because cutaneous manifestations are among the earliest signs of EFAD and because abnormalities in the distribution and function of tissue macrophages have been documented in EFAD rodents, we studied the distribution and function of Class II MHC (Ia) antigen-bearing cells in EFAD CS7B1/6 mouse epidermis. Immunofluorescence studies revealed 1.9–9.6 (mean ± SEM = 5.2 ± 2.6) times more class II MHC (Ia) antigen-bearing epidermal cells in suspensions prepared from EFAD as compared to normal skin. Analysis of epidermal sheets demonstrated similar numbers of dendritic Ia+ and NLDC145+ cells in EFAD and normal epidermis, however. This discrepancy occurred because some keratinocytes in EFAD epidermal sheets expressed class II MHC (Ia) antigens, whereas keratinocytes in normal mouse epidermis did not. Two-color flow cytometry confirmed that all Ia+ cells in normal epidermis are Langerhans (Ia+ NLDC145+) cells, whereas Ia+ cells in EFAD epidermis are comprised of Langerhans cells and a subpopulation of keratinocytes (Ia+ NLDC145-. Similar levels of Ia antigens were expressed on EFAD and normal Langerhans cells. EFAD and normal epidermal cells were also compared in several in vitro assays of accessory cell function. Epidermal cells prepared from EFAD C57B1/6 mice present the protein antigen DNP-Ova to primed helper T cells more effectively than epidermal cells prepared from normal animals. EFAD epidermal cells are also more potent stimulators of T cells in primary and secondary allogeneic mixed lymphocyte-epidermal cell reactions than normal epidermal cells. The functional differences between EFAD and normal epidermal cells do not appear to result from increased cytokine release or decreased prostaglandin production by EFAD epidermal cells. In view of these findings and the observation that the antigen-presenting cell activity of EFAD epidermal cells correlates with the number of Ia+ keratinocytes in epidermal cell preparations, Ia+ keratinocytes (in the presenceof Langerhans cells) may potentiate cutaneous immune responses in vitro and perhaps in vivo as well. these results also suggest that (n-6) fatty acids or metabolites of (n-6) fatty acids are involved in regulating the expression of class II MHC (Ia) antigens by keratinocytes in vivo

    Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy

    Get PDF
    Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy.BackgroundRenal thrombotic microangiopathy, typified by the hemolytic uremic syndrome, is associated with endothelial cell injury in which the presence of cortical necrosis, extensive glomerular involvement, and arterial occlusive lesions correlates with a poor clinical outcome. We hypothesized that the endothelial survival factor vascular endothelial growth factor (VEGF) may provide protection.MethodSevere, necrotizing, thrombotic microangiopathy was induced in rats by the renal artery perfusion of antiglomerular endothelial antibody, followed by the administration of VEGF or vehicle, and renal injury was evaluated.ResultsControl rats developed severe glomerular and tubulointerstitial injury with extensive renal necrosis. The administration of VEGF significantly reduced the necrosis, preserved the glomerular endothelium and arterioles, and reduced the number of apoptotic cells in glomeruli (at 4 hours) and in the tubulointerstitium (at 4 days). The prosurvival effect of VEGF for endothelium may relate in part to the ability of VEGF to protect endothelial cells from factor-induced apoptosis, as demonstrated for tumor necrosis factor-α (TNF-α), which was shown to be up-regulated through the course of this model of renal microangiopathy. Endothelial nitric oxide synthase expression was preserved in VEGF-treated rats compared with its marked decrease in the surviving glomeruli and interstitium of the antibody-treated rats that did not receive VEGF.ConclusionsVEGF protects against renal necrosis in this model of thrombotic microangiopathy. This protection may be mediated by maintaining endothelial nitric oxide production and/or preventing endothelial cell death

    Airborne observations of peroxy radicals during the EMeRGe campaign in Europe

    Get PDF
    In this study, airborne measurements of the sum of hydroperoxyl (HO2) and organic peroxy (RO2) radicals that react with nitrogen monoxide (NO) to produce nitrogen dioxide (NO2), coupled with actinometry and other key trace gases measurements, have been used to test the current understanding of the fast photochemistry in the outflow of major population centres. The measurements were made during the airborne campaign of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) project in Europe on board the High Altitude and Long Range Research Aircraft (HALO). The measurements of RO on HALO were made using the in situ instrument Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS). RO is to a good approximation the sum of peroxy radicals reacting with NO to produce NO2. RO mixing ratios up to 120 pptv were observed in air masses of different origins and composition under different local actinometric conditions during seven HALO research flights in July 2017 over Europe. Radical production rates were estimated using knowledge of the photolysis frequencies and the precursor concentrations measured on board, as well as the relevant rate coefficients. Generally, high concentrations were measured in air masses with high production rates. In the air masses investigated, is primarily produced by the reaction of O1D with water vapour and the photolysis of nitrous acid (HONO) and of the oxygenated volatile organic compounds (OVOCs, e.g. formaldehyde (HCHO) and glyoxal (CHOCHO)). Due to their short lifetime in most environments, the RO concentrations are expected to be in a photostationary steady state (PSS), i.e. a balance between production and loss rates is assumed. The production and loss rates and the suitability of PSS assumptions to estimate the mixing ratios and variability during the airborne observations are discussed. The PSS assumption for is considered robust enough to calculate mixing ratios for most conditions encountered in the air masses measured. The similarities and discrepancies between measured and PSS calculated mixing ratios are discussed. The dominant terminating processes for in the pollution plumes measured up to 2000 m are the formation of nitrous acid, nitric acid, and organic nitrates. Above 2000 m, HO2–HO2 and HO2–RO2 reactions dominate the removal. calculations by the PSS analytical expression inside the pollution plumes probed often underestimated the measurements. The underestimation is attributed to the limitations of the PSS equation used for the analysis. In particular, this expression does not account for the yields of from the oxidation and photolysis of volatile organic compounds, VOCs, and OVOCs other than those measured during the EMeRGe research flights in Europe. In air masses with NO mixing ratios ≤50 pptv and low ratios, the measured is overestimated by the analytical expression. This may be caused by the formation of H2O and O2 from OH and HO2, being about 4 times faster than the rate of the OH oxidation reaction of the dominant OVOCs considered

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN
    corecore