442 research outputs found

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    First evidence for off-shell production of the Higgs boson and measurement of its width

    No full text
    The first evidence for off-shell Higgs production is reported in the final state with two Z bosons decaying into either four charged leptons (muons or electrons), or two charged leptons and two neutrinos, and a measurement of the Higgs boson width is performed. Results are based on data from the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up to 140 fb1^{-1}. The total rate of off-shell Higgs boson production beyond the Z boson pair production threshold, relative to its standard model expectation, is constrained to the interval [0.0061, 2.0] at 95% confidence level. The scenario with no off-shell production is excluded at 99.97% confidence level (3.6 standard deviations). The width of the Higgs boson is extracted as ΓH\Gamma_{\mathrm{H}} = 3.21.7+2.4_{-1.7}^{+2.4} MeV, in agreement with the standard model expectation of 4.1 MeV. The data are also used to set new constraints on anomalous Higgs boson couplings to W and Z boson pairs

    Search for resonances decaying to three W bosons in the hadronic final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search for Kaluza-Klein excited vector boson resonances, WKK_\mathrm{KK}, decaying in cascade to three W bosons via a scalar radion R, WKK_\mathrm{KK}\to WR \to WWW, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at s\sqrt{s} = 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb1^{-1}. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The data observed are in agreement with the standard model expectations. Limits are set on the product of the WKK_\mathrm{KK} resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext

    Measurement of the inclusive and differential ttˉγ\mathrm{t\bar{t}}\gamma cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at s\sqrt{s} =13 TeV

    No full text
    International audienceThe production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e±^{±}μ^{∓}, e+^{+}e^{−}, or μ+^{+}μ^{−}). The measurement is performed using 138 fb1^{−1} of proton-proton collision data recorded by the CMS experiment at s \sqrt{s} = 13 TeV during the 2016–2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 ± 2.5(stat) ± 6.3(syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the tt \overline{t} γ production process using the lepton+jets final state.[graphic not available: see fulltext

    Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at <math altimg="si1.svg"><msqrt><mrow><mi>s</mi></mrow></msqrt><mo linebreak="goodbreak" linebreakstyle="after">=</mo><mn>13</mn><mtext> TeV</mtext></math>

    No full text
    International audienceA search for the nonresonant production of Higgs boson pairs (HH ) via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two tau leptons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of s=13TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138fb−1. Events in which at least one tau lepton decays hadronically are considered and multiple machine learning techniques are used to identify and extract the signal. The data are found to be consistent, within uncertainties, with the standard model (SM) predictions. Upper limits on the HH production cross section are set to constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to 3.3 (5.2) times the SM prediction for the inclusive HH cross section and to 124 (154) times the SM prediction for the vector boson fusion HH cross section. At 95% confidence level, the Higgs field self-coupling is constrained to be within −1.7 and 8.7 times the SM expectation, and the coupling of two Higgs bosons to two vector bosons is constrained to be within −0.4 and 2.6 times the SM expectation
    corecore