44 research outputs found

    Isocyanoborato Complexes of d6 Metals: Photophysics, Electronic Structures and Challenging Applications in Photocatalysis

    Get PDF
    Considering the steadily growing world population and the accompanying increase in energy consumption, the change from fossil fuels as the primary energy source to more environmentally friendly alternatives is unavoidable. Some of the most promising sustainable energy sources are based on solar energy conversion, which is increasingly popular and seems indispensable to enable a greener future. The use of light as an energy source has furthermore been identified as a useful concept in synthetic organic chemistry, because it can enable new reaction types, allows for mild reaction conditions and often provides good selectivity. As the light-absorbing and photoactive species in these reactions, photocatalysts, often based on transition metals, are employed. Even though the selection of available photocatalysts is considerable, there is still a significant potential for the development of novel compounds that could enable more challenging reactions. In this thesis, the borylation of cyanido complexes of d6 metals is identified as a useful concept in order to obtain potent photocatalysts for photoredox- and energy transfer catalysis. In the first part (Chapter 2), a general introduction containing the necessary theoretical background is provided. This includes photophysical principles as well as important literature reports to put the topics discussed in this thesis into a broader perspective. In the main part (Chapters 3 to 5), new isocyanoborato complexes with different metal centers are investigated. In the first project (Chapter 3), the borylation of two well-known ruthenium(II) cyanido complexes is identified as a useful approach to boost their photocatalytic performance. These results are complemented by in-depth photophysical studies, providing insight into the changes of the electronic structure accompanying borylation. This study is then extended in the second and third project to complexes of iridium(III) (Chapter 4) and iron(II) (Chapter 5). In Chapter 4, the focus lies on the possible applications of an IrIII isocyanoborato complex for photochemical transformations. This new luminophore exhibits an exceptionally high triplet energy and therefore enables challenging energy-transfer catalyzed reactions as well as photochemical upconversion deep into the UV. In contrast, Chapter 5 focuses on the electronic structures and excited-state dynamics of two Fe(II) isocyanoborato complexes by combining different experimental techniques, thereby allowing to paint a conclusive picture of the changes associated with borylation. In summary, this thesis provides detailed insight into the photophysics and electronic structures of isocyanoborato complexes based on Ru(II), Ir(III) and Fe(II). Furthermore, the Ru(II) and Ir(III) luminophores are shown to be applicable to several challenging photocatalyzed reactions in synthetic organic chemistry

    Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis

    Get PDF
    Ruthenium(II) polypyridine complexes are among the most popular sensitizers in photocatalysis, but they face some severe limitations concerning accessible excited-state energies and photostability that could hamper future applications. In this study, the borylation of heteroleptic ruthenium(II) cyanide complexes with alpha-diimine ancillary ligands is identified as a useful concept to elevate the energies of photoactive metal-to-ligand charge-transfer (MLCT) states and to obtain unusually photorobust compounds suitable for thermodynamically challenging energy transfer catalysis as well as oxidative and reductive photoredox catalysis. B(C6F5)(3) groups attached to the CN- ligands stabilize the metal-based t(2g)-like orbitals by similar to 0.8 eV, leading to high (MLCT)-M-3 energies (up to 2.50 eV) that are more typical for cyclometalated iridium(III) complexes. Through variation of their alpha-diimine ligands, nonradiative excited-state relaxation pathways involving higher-lying metal-centered states can be controlled, and their luminescence quantum yields and MLCT lifetimes can be optimized. These combined properties make the respective isocyanoborato complexes amenable to photochemical reactions for which common ruthenium(II)-based sensitizers are unsuited, due to a lack of sufficient triplet energy or excited-state redox power. Specifically, this includes photoisomerization reactions, sensitization of nickel-catalyzed cross-couplings, pinacol couplings, and oxidative decarboxylative C-C couplings. Our work is relevant in the greater context of tailoring photoactive coordination compounds to current challenges in synthetic photochemistry and solar energy conversion

    Xanthene[n]arenes: Exceptionally Large, Bowl-Shaped Macrocyclic Building Blocks Suitable for Self-Assembly

    Get PDF
    A new class of macrocycles denoted as "xanthene[ n ]arenes" was synthesized. In contrast to most other macrocycles, they feature a conformationally restricted bowl shape due to the attached alkyl groups at the linking methylene units. This facilitates the synthesis of cavitands and the self-assembly to molecular capsules via noncovalent interactions. The derivatization potential of the novel macrocycles was demonstrated on the xanthene[3]arene scaffold. Besides a deep cavitand and an oxygen-embedded zigzag hydrocarbon belt[12]arene, a modified macrocycle was synthesized that self-assembles into a hydrogen-bonded tetrameric capsule, demonstrating the potential of xanthene[ n ]arenes as a new set of macrocyclic building blocks

    Ochrana jádrovin v ekologickém zemědělství

    Get PDF
    Odolné odrůdy a cílené provádění agrotechnických opatření jsou podmínkou dobrého zdravotního stavu rostlin. Toto základní pravidlo vypadá jednoduše, ale v ekologické pěstitelské praxi to není tak snadné. V této publikaci je přehledně a s ohledem na praktickou proveditelnost popsáno, jaké předpoklady a opatření jsou nutné k produkci zdravých biojablek a hrušek v nízkokmenném sadu

    Accumulation of Four Electrons on a Terphenyl (Bis)disulfide

    Get PDF
    The activation of N2, CO2 or H2O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage

    Toxoplasma and Eimeria co-opt the host cFos expression for intracellular development in mammalian cells

    Get PDF
    Successful asexual reproduction of intracellular pathogens depends on their potential to exploit host resources and subvert antimicrobial defense. In this work, we deployed two prevalent apicomplexan parasites of mammalian cells, namely Toxoplasma gondii and Eimeria falciformis, to identify potential host determinants of infection. Expression analyses of the young adult mouse colonic (YAMC) epithelial cells upon infection by either parasite showed regulation of several distinct transcripts, indicating that these two pathogens program their intracellular niches in a tailored manner. Conversely, parasitized mouse embryonic fibroblasts (MEFs) displayed a divergent transcriptome compared to corresponding YAMC epithelial cells, suggesting that individual host cells mount a fairly discrete response when encountering a particular pathogen. Among several host transcripts similarly altered by T. gondii and E. falciformis, we identified cFos, a master transcription factor, that was consistently induced throughout the infection. Indeed, asexual growth of both parasites was strongly impaired in MEF host cells lacking cFos expression. Last but not the least, our differential transcriptomics of the infected MEFs (parental and cFos-/- mutant) and YAMC epithelial cells disclosed a cFos-centered network, underlying signal cascades, as well as a repertoire of nucleotides- and ion-binding proteins, which presumably act in consort to acclimatize the mammalian cell and thereby facilitate the parasite development.Peer Reviewe

    Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics

    Get PDF
    Second coordination sphere interactions of cyanido complexes with hydrogen-bonding solvents and Lewis acids are known to influence their electronic structures, whereby the non-labile attachment of B(C6F5)3 resulted in several particularly interesting new compounds lately. Here, we investigate the effects of borylation on the properties of two FeII cyanido complexes in a systematic manner by comparing five different compounds and using a range of experimental techniques. Electrochemical measurements indicate that borylation entails a stabilization of the FeII-based t2g-like orbitals by up to 1.65 eV, and this finding was confirmed by Mössbauer spectroscopy. This change in the electronic structure has a profound impact on the UV–vis absorption properties of the borylated complexes compared to the non-borylated ones, shifting their metal-to-ligand charge transfer (MLCT) absorption bands over a wide range. Ultrafast UV–vis transient absorption spectroscopy provides insight into how borylation affects the excited-state dynamics. The lowest metal-centered (MC) excited states become shorter-lived in the borylated complexes compared to their cyanido analogues by a factor of ∼10, possibly due to changes in outer-sphere reorganization energies associated with their decay to the electronic ground state as a result of B(C6F5)3 attachment at the cyanido N lone pair

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis

    Get PDF
    Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)(3) units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 mu s), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry
    corecore