303 research outputs found

    A Multi-Configuration Mixing Approach with Symmetry-Projected Complex Hartree-Fock-Bogoliubov Determinants

    Full text link
    A multi-configuration mixing approach built on essentially complex, symmetry-projected Hartree-Fock-Bogoliubov (HFB) mean fields is introduced. The mean fields are obtained by variation after projection. The configuration space consists out of the symmetry-projected HFB vacuum and the symmetry-projected two-quasiparticle excitations for even, and the symmetry-projected one-quasiparticle excitations for odd A systems. The underlying complex HFB transformations are assumed to be time-reversal invariant and axially symmetric. The model allows nuclear structure calculations in large model spaces with arbitrary two-body interactions. The approach has been applied to 20^{20}Ne and 22^{22}Ne. Good agreement with the exact shell model results and considerable improvement with respect to older calculations, in which only real HFB transformations were admitted, is obtained.Comment: 30 pages LaTeX file, 4 Postscript figure

    Translationally invariant calculations of form factors, nucleon densities and momentum distributions for finite nuclei with short-range correlations included

    Full text link
    Relying upon our previous treatment of the density matrices for nuclei (in general, nonrelativistic self-bound finite systems) we are studying a combined effect of center-of-mass motion and short-range nucleon-nucleon correlations on the nucleon density and momentum distributions in light nuclei (4He^{4}He and 16O^{16}O). Their intrinsic ground-state wave functions are constructed in the so-called fixed center-of-mass approximation, starting with mean-field Slater determinants modified by some correlator (e.g., after Jastrow or Villars). We develop the formalism based upon the Cartesian or boson representation, in which the coordinate and momentum operators are linear combinations of the creation and annihilation operators for oscillatory quanta in the three different space directions, and get the own "Tassie-Barker" factors for each distribution and point out other model-independent results. After this separation of the center-of-mass motion effects we propose additional analytic means in order to simplify the subsequent calculations (e.g., within the Jastrow approach or the unitary correlation operator method). The charge form factors, densities and momentum distributions of 4He^{4}He and 16O^{16}O evaluated by using the well known cluster expansions are compared with data, our exact (numerical) results and microscopic calculations.Comment: 19 pages, 6 figure

    Anomalous Crossing Frequency in Odd Proton Nuclei

    Full text link
    A generic explanation for the recently observed anomalous crossing frequencies in odd proton rare earth nuclei is given. As an example, the proton 12[541]{1\over 2} [541] band in 175^{175}Ta is discussed in detail by using the angular momentum projection theory. It is shown that the quadrupole pairing interaction is decisive in delaying the crossing point and the changes in crossing frequency along the isotope chain are due to the different neutron shell fillings

    Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    Get PDF
    We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of 16^{16}O and 40^{40}Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.Comment:

    Projection and ground state correlations made simple

    Get PDF
    We develop and test efficient approximations to estimate ground state correlations associated with low- and zero-energy modes. The scheme is an extension of the generator-coordinate-method (GCM) within Gaussian overlap approximation (GOA). We show that GOA fails in non-Cartesian topologies and present a topologically correct generalization of GOA (topGOA). An RPA-like correction is derived as the small amplitude limit of topGOA, called topRPA. Using exactly solvable models, the topGOA and topRPA schemes are compared with conventional approaches (GCM-GOA, RPA, Lipkin-Nogami projection) for rotational-vibrational motion and for particle number projection. The results shows that the new schemes perform very well in all regimes of coupling.Comment: RevTex, 12 pages, 7 eps figure

    Ab-initio calculation of the 6Li{}^6Li binding energy with the Hybrid Multideterminant scheme

    Full text link
    We perform an ab-initio calculation for the binding energy of 6Li{}^6Li using the CD-Bonn 2000 NN potential renormalized with the Lee-Suzuki method. The many-body approach to the problem is the Hybrid Multideterminant method. The results indicate a binding energy of about 31MeV31 MeV, within a few hundreds KeV uncertainty. The center of mass diagnostics are also discussed.Comment: 18 pages with 3 figures. More calculations added, to be published in EPJ

    Momentum and Energy Distributions of Nucleons in Finite Nuclei due to Short-Range Correlations

    Full text link
    The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16^{16}O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e,eâ€Čp)(e,e'p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.Comment: 12 pages RevTeX, 7 figures postscript files appende

    Neuroendocrine Tumors of the Bronchopulmonary System (Typical and Atypical Carcinoid Tumors): Current Strategies in Diagnosis and Treatment. Conclusions of an Expert Meeting February 2011 in Weimar, Germany

    Get PDF
    Neuroendocrine tumors (NETs; syn. carcinoid tumors) are highly or moderately differentiated neoplasms. They comprise a large variety of rare and heterogeneous tumors with an estimated incidence of 3-5/100,000/year. They can arise in virtually every internal organ, but mainly occur in the gastroenteropancreatic and bronchopulmonary systems. Around 25% of the NETs are localized in the bronchopulmonary system. Approximately 2% of all lung tumors are NETs. According to the World Health Organization (WHO) classification of lung tumors, bronchopulmonary NETs are subdivided into typical carcinoids (TCs) and atypical carcinoids (ACs). The parameter with the highest impact on NET behavior and prognosis is the histological classification and staging according to the tumor/node/metastasis (TNM) system. The diagnosis of NETs is established by histological examination and the immunohistochemical detection of general neuroendocrine markers, such as chromogranin A (CgA) and synaptophysin. Serum markers and the use of functional imaging techniques are important additive tools to establish the diagnosis of a NET. The only curative option for lung NETs is complete surgical resection. Beyond that, the currently available interdisciplinary therapeutic options are local ablation, biotherapy (somatostatin analogues), or chemotherapy. New therapeutic options such as peptide receptor radionuclide therapy (PRRT) and molecularly targeted therapies achieve promising results and are under further evaluation. This report is a consensus summary of the interdisciplinary symposium ‘Neuroendocrine Tumors of the Lung and of the Gastroenteropancreatic System (GEP NET) - Expert Dialogue' held on February 25-26, 2011 in Weimar, Germany. At this conference, a panel of 23 German experts shared their knowledge and exchanged their thoughts about research, diagnosis, and clinical management of NETs, whereby special attention was paid to NETs of the respiratory trac

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore