10 research outputs found

    Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders

    Get PDF
    This is the author's final draft. Copyright 2014 ElsevierThe main enzyme for serotonin degradation, monoamine oxidase (MAO) A, has recently emerged as a key biological factor in the predisposition to impulsive aggression. Male carriers of low-activity variants of the main functional polymorphism of the MAOA gene (MAOA-uVNTR) have been shown to exhibit a greater proclivity to engage in violent acts. Thus, we hypothesized that low-activity MAOA-uVNTR alleles may be associated with a higher risk for criminal violence among male offenders. To test this possibility, we analyzed the MAOA-uVNTR variants of violent (n = 49) and non-violent (n = 40) male Caucasian and African-American convicts in a correctional facility. All participants were also tested with the Childhood Trauma Questionnaire (CTQ), Barratt Impulsivity Scale (BIS-11) and Buss-Perry Aggression Questionnaire (BPAQ) to assess their levels of childhood trauma exposure, impulsivity and aggression, respectively. Our results revealed a robust (P < 0.0001) association between low-activity MAOA-uVNTR alleles and violent crime. This association was replicated in the group of Caucasian violent offenders (P < 0.01), but reached only a marginal trend (P = 0.08) in their African American counterparts. While violent crime charges were not associated with CTQ, BIS-11 and BPAQ scores, carriers of low-activity alleles exhibited a mild, yet significant (P < 0.05) increase in BIS-11 total and attentional-impulsiveness scores. In summary, these findings support the role of MAOA gene as a prominent genetic determinant for criminal violence. Further studies are required to confirm these results in larger samples of inmates and evaluate potential interactions between MAOA alleles and environmental vulnerability factors

    Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine)

    No full text
    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700Um(-2) was achieved for the nanoporous film of PS-b-P2VP.Fil: Bhakta, Samir A.. University Of Texas At San Antonio; Estados UnidosFil: Benavidez, Tomás Enrique. University Of Texas At San Antonio; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia, Carlos D.. University Of Texas At San Antonio; Estados Unido

    Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review

    Get PDF
    An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow.Fil: Bhakta, Samir A.. University of Texas; Estados UnidosFil: Evans, Elizabeth. University of Texas; Estados UnidosFil: Benavidez, Tomás Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of Texas; Estados UnidosFil: Garcia, Carlos D. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of Texas; Estados Unido

    Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review

    No full text

    Time-dependent analysis of extra length of stay and mortality due to ventilator-associated pneumonia in intensive-care units of ten limited-resources countries: findings of the International Nosocomial Infection Control Consortium (INICC)

    Get PDF
    Ventilator-associated pneumonias (VAPs) are a worldwide problem that significantly increases patient morbidity, mortality, and length of stay (LoS), and their effects should be estimated to account for the timing of infection. The purpose of the study was to estimate extra LoS and mortality in an intensive-care unit (ICU) due to a VAP in a cohort of 69 248 admissions followed for 283 069 days in ICUs from 10 countries. Data were arranged according to the multi-state format. Extra LoS and increased risk of death were estimated independently in each country, and their results were combined using a random-effects meta-analysis. VAP prolonged LoS by an average of 2.03 days (95% CI 1.52-2.54 days), and increased the risk of death by 14% (95% CI 2-27). The increased risk of death due to VAP was explained by confounding with patient morbidity

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore