328 research outputs found

    “Beauty is how you feel inside”: Aesthetic judgements are related to emotional responses to contemporary music

    Get PDF
    While it has extensively been argued that aesthetic categories such as beauty have a direct relationship to emotion, there has only been limited psychological research on the relationship between aesthetic judgements and emotional responses to art. Music is recognised to be an art form that elicits strong emotional responses in listeners and it is therefore pertinent to study empirically how aesthetic judgements relate to emotional responses to music listening. The aim of the presented study is to test for the impact of aesthetic judgement on various psychophysiological response measures of emotion that were assessed in parallel in two contemporary music concerts, each with a different audience and programme. In order to induce different levels of aesthetic judgements in participants, we assigned them randomly to one of two groups in a between-subjects design in both concerts: One group attended a talk on the music presented, illustrating its aesthetic value, while the other group attended an unrelated talk on a non-musical topic. During the concerts, we assessed, from 41 participants in Concert 1 (10 males; mean age 23 years) and 53 in Concert 2 (14 males; mean age 24 years), different emotional response components: a) retrospective rating of emotion; b) activation of the peripheral nervous system (skin conductance and heart rate); c) the activity of two facial muscles associated with emotional valence (only Concert 1). Participants listened to live performances of a selection of contemporary music pieces. After each piece, participants rated the music according to a list of commonly discussed aesthetic judgement criteria, all thought to contribute to the perceived aesthetic value of art. While preconcert talks did not significantly impact value judgement ratings, through factor analyses it was found that aesthetic judgements could be grouped into several underlying dimensions representing analytical, semantic, traditional aesthetic, and typicality values. All dimensions where then subsequently shown to be related to subjective and physiological responses to music. The findings reported in this study contribute to understanding the relationship between aesthetic judgement processes and emotional responses to music. The results give further evidence that cognitive-affective interactions have a significant role in processing music stimuli

    Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity

    Get PDF
    Listening to music often evokes intense emotions [1, 2]. Recent research suggests that musical pleasure comes from positive reward prediction errors, which arise when what is heard proves to be better than expected [3]. Central to this view is the engagement of the nucleus accumbens—a brain region that processes reward expectations—to pleasurable music and surprising musical events [4, 5, 6, 7, 8]. However, expectancy violations along multiple musical dimensions (e.g., harmony and melody) have failed to implicate the nucleus accumbens [9, 10, 11], and it is unknown how music reward value is assigned [12]. Whether changes in musical expectancy elicit pleasure has thus remained elusive [11]. Here, we demonstrate that pleasure varies nonlinearly as a function of the listener’s uncertainty when anticipating a musical event, and the surprise it evokes when it deviates from expectations. Taking Western tonal harmony as a model of musical syntax, we used a machine-learning model [13] to mathematically quantify the uncertainty and surprise of 80,000 chords in US Billboard pop songs. Behaviorally, we found that chords elicited high pleasure ratings when they deviated substantially from what the listener had expected (low uncertainty, high surprise) or, conversely, when they conformed to expectations in an uninformative context (high uncertainty, low surprise). Neurally, we found using fMRI that activity in the amygdala, hippocampus, and auditory cortex reflected this interaction, while the nucleus accumbens only reflected uncertainty. These findings challenge current neurocognitive models of music-evoked pleasure and highlight the synergistic interplay between prospective and retrospective states of expectation in the musical experience

    Music models aberrant rule decoding and reward valuation in dementia.

    Get PDF
    Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias

    Effects of relaxing and arousing music during imagery training on dart-throwing performance, physiological arousal indices, and competitive state anxiety

    Get PDF
    © 2018 Kuan, Morris, Kueh and Terry. Music that is carefully selected to match the requirements of activities and the characteristics of individuals has been shown to produce significant impacts on performance enhancement (Priest et al., 2004). There is also evidence that music can enhance imagery (Grocke and Wigram, 2007), although few studies have investigated the effects of music on imagery in the context of sport skills. In the present study, the effects of relaxing and arousing music during imagery on dart-throwing performance, physiological arousal indices, and competitive state anxiety, were investigated among 63 novice dart throwers. Participants had moderate-to-high imagery ability and were randomly assigned to unfamiliar relaxing music (URM), unfamiliar arousing music (UAM), or no music (NM) groups. Performance was assessed by 40 dart throws at a concentric circles dartboard before and after 12 imagery sessions over 4 weeks. Measures of galvanic skin response (GSR), peripheral temperature (PT), and heart rate (HR) were taken during imagery sessions 1 and 12, and the Competitive State Anxiety Inventory-2 Revised (CSAI-2R) was administered prior to the pre- and post-intervention performance task. Dart-throwing gain scores were significantly higher for URM than for UAM and NM, with no significant difference between UAM and NM (URM = 37.24 ± 5.66, UAM = 17.57 ± 5.30, and NM = 13.19 ± 6.14, F2,62 = 5.03, p = 0.01, η2 = 0.14). GSR, PT, and HR reflected lower arousal for URM than for UAM or NM. Significant decreases in somatic anxiety were evident for URM and UAM but not NM. Significant decreases in cognitive anxiety were evident for URM and NM but not UAM. Significant increases in self-confidence were evident for URM but not UAM or NM. Performance improved in all three conditions but URM was associated with the largest performance gain, the lowest physiological indices of arousal, and the most positive CSAI-2R profiles. Listening to relaxing music during imagery may have benefits for performance in other fine motor skills.The present study was supported by the Fundamental Research Grant Scheme of the Ministry of Higher Education, Malaysia and Research University’s Individual Grant (USM-RUI) from Universiti Sains Malaysia (1001/PPSP/812149)

    Effects of Aesthetic Chills on a Cardiac Signature of Emotionality

    Get PDF
    Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG), predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion. The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection. These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values). The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder
    corecore