1,649 research outputs found

    Raman-free, noble-gas-filled PCF source for ultrafast, very bright twin-beam squeezed vacuum

    Full text link
    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagom\'e-style photonic-crystal fibre. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ~2500 photons per mode. The ultra-broadband (~50 THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes

    From Current to Constituent Quarks: a Renormalization Group Improved Hamiltonian-based Description of Hadrons

    Get PDF
    A model which combines the perturbative behavior of QCD with low energy phenomenology in a unified framework is developed. This is achieved by applying a similarity transformation to the QCD Hamiltonian which removes interactions between the ultraviolet cutoff and an arbitrary lower scale. Iteration then yields a renormalization group improved effective Hamiltonian at the hadronic energy scale. The procedure preserves the standard ultraviolet behavior of QCD. Furthermore, the Hamiltonian evolves smoothly to a phenomenological low energy behavior below the hadronic scale. This method has the benefit of allowing radiative corrections to be directly incorporated into nonperturbative many-body techniques. It is applied to Coulomb gauge QCD supplemented with a low energy linear confinement interaction. A nontrivial vacuum is included in the analysis via a Bogoliubov-Valatin transformation. Finally, the formalism is applied to the vacuum gap equation, the quark condensate, and the dynamical quark mass.Comment: 36 pages, RevTeX, 5 ps figures include

    The functional and structural associations of aberrant microglial activity in major depressive disorder

    Get PDF
    Background: Major depressive disorder (MDD) is a debilitating mental illness that has been linked to increases in markers of inflammation, as well as to changes in brain functional and structural connectivity, particularly between the insula and the subgenual anterior cingulate cortex (sgACC). In this study, we directly related inflammation and dysconnectivity in treatment-resistant MDD by concurrently measuring the following: microglial activity with [18F]N-2-(fluoroethoxyl)benzyl-N-(4phenoxypyridin-3-yl)acetamide ([18F]FEPPA) positron emission tomography (PET); the severity of MDD; and functional or structural connectivity among insula or sgACC nodes. Methods: Twelve patients with treatment-resistant MDD (8 female, 4 male; mean age Âą standard deviation 54.9 Âą 4.5 years and 23 healthy controls (11 female, 12 male; 60.3 Âą 8.5 years) completed a hybrid [18F]FEPPA PET and MRI acquisition. From these, we extracted relative standardized uptake values for [18F]FEPPA activity and Pearson r-to-z scores representing functional connectivity from our regions of interest. We extracted diffusion tensor imaging metrics from the cingulum bundle, a key white matter bundle in MDD. We performed regressions to relate microglial activity with functional connectivity, structural connectivity and scores on the 17-item Hamilton Depression Rating Scale. Results: We found significantly increased [18F]FEPPA uptake in the left sgACC in patients with treatment-resistant MDD compared to healthy controls. Patients with MDD also had a reduction in connectivity between the sgACC and the insula. The [18F]FEPPA uptake in the left sgACC was significantly related to functional connectivity with the insula, and to the structural connectivity of the cingulum bundle. [18F]FEPPA uptake also predicted scores on the Hamilton Depression Rating Scale. Limitations: A relatively small sample size, lack of functional task data and concomitant medication use may have affected our findings. Conclusion: We present preliminary evidence linking a network-level dysfunction relevant to the pathophysiology of depression and related to increased microglial activity in MDD

    Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    Get PDF
    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein– substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed

    Developmental time course of peripheral cross‐modal sensory interaction of the trigeminal and gustatory systems

    Get PDF
    Few sensory modalities appear to engage in cross‐modal interactions within the peripheral nervous system, making the integrated relationship between the peripheral gustatory and trigeminal systems an ideal model for investigating cross‐sensory support. The present study examined taste system anatomy following unilateral transection of the trigeminal lingual nerve (LX) while leaving the gustatory chorda tympani intact. At 10, 25, or 65 days of age, rats underwent LX with outcomes assessed following various survival times. Fungiform papillae were classified by morphological feature using surface analysis. Taste bud volumes were calculated from histological sections of the anterior tongue. Differences in papillae morphology were evident by 2 days post‐transection of P10 rats and by 8 days post in P25 rats. When transected at P65, animals never exhibited statistically significant morphological changes. After LX at P10, fewer taste buds were present on the transected side following 16 and 24 days survival time and remaining taste buds were smaller than on the intact side. In P25 and P65 animals, taste bud volumes were reduced on the denervated side by 8 and 16 days postsurgery, respectively. By 50 days post‐transection, taste buds of P10 animals had not recovered in size; however, all observed changes in papillae morphology and taste buds subsided in P25 and P65 rats. Results indicate that LX impacts taste receptor cells and alters epithelial morphology of fungiform papillae, particularly during early development. These findings highlight dual roles for the lingual nerve in the maintenance of both gustatory and non‐gustatory tissues on the anterior tongue. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 626–641, 201

    Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node

    Get PDF
    Lymph nodes (LNs) contain innate-like lymphocytes that survey the subcapsular sinus (SCS) and associated macrophages for pathogen entry. The factors promoting this surveillance behavior have not been defined. Here, we report that IL7R(hi)Ccr6(+) lymphocytes in mouse LNs rapidly produce IL17 upon bacterial and fungal challenge. We show that these innate-like lymphocytes are mostly LN resident. Ccr6 is required for their accumulation near the SCS and for efficient IL17 induction. Migration into the SCS intrinsically requires S1pr1, whereas movement from the sinus into the parenchyma involves the integrin LFA1 and its ligand ICAM1. CD169, a sialic acid-binding lectin, helps retain the cells within the sinus, preventing their loss in lymph flow. These findings establish a role for Ccr6 in augmenting innate-like lymphocyte responses to lymph-borne pathogens, and they define requirements for cell movement between parenchyma and SCS in what we speculate is a program of immune surveillance that helps achieve LN barrier immunity. DOI: http://dx.doi.org/10.7554/eLife.18156.00

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore