9 research outputs found

    The Dilemma of Influenza Vaccine Recommendations when Applied to the Tropics: The Brazilian Case Examined Under Alternative Scenarios

    Get PDF
    Since 1999 the World Health Organization issues annually an additional influenza vaccine composition recommendation. This initiative aimed to extend to the Southern Hemisphere (SH) the benefits—previously enjoyed only by the Northern Hemisphere (NH)—of a vaccine recommendation issued as close as possible to the moment just before the onset of the influenza epidemic season. A short time between the issue of the recommendation and vaccine delivery is needed to maximize the chances of correct matching between putative circulating strains and one of the three strains present in the vaccine composition. Here we compare the effectiveness of the SH influenza vaccination adopted in Brazil with hypothetical alternative scenarios defined by different timings of vaccine delivery and/or composition. Scores were based on the temporal overlap between vaccine-induced protection and circulating strains. Viral data were obtained between 1999 and 2007 from constant surveillance and strain characterization in two Brazilian cities: Belém, located at the Equatorial region, and São Paulo, at the limit between the tropical and subtropical regions. Our results show that, among currently feasible options, the best strategy for Brazil would be to adopt the NH composition and timing, as in such case protection would increase from 30% to 65% (p<.01) if past data can be used as a prediction of the future. The influenza season starts in Brazil (and in the equator virtually ends) well before the SH winter, making the current delivery of the SH vaccination in April too late to be effective. Since Brazil encompasses a large area of the Southern Hemisphere, our results point to the possibility of these conclusions being similarly valid for other tropical regions

    Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb−1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling gR are also set from model-independent measurements.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resoinfo:eu-repo/semantics/publishedVersio

    Meteorological Aspects of Dust Storms

    No full text
    corecore