101 research outputs found

    Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Get PDF
    Background: In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results: In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions: This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue. In Aedes aegypti, the dsx gene is sex-specifically regulated and encodes two female-specific and one male-specific isoforms, all sharing a doublesex/mab 3 (DM) domain-containing N-terminus and different C-termini. The sex-specific regulation is based on a combination of exon skipping, 5' alternative splice site choice and, most likely, alternative polyadenylation. Interestingly, when the Aeadsx gene is compared to the Anopheles dsx ortholog, there are differences in the in silico predicted default and regulated sex-specific splicing events, which suggests that the upstream regulators either are different or act in a slightly different manner. Furthermore, this study is a premise for the future development of transgenic sexing strains in mosquitoes useful for sterile insect technique (SIT) programs

    Perinatal depression during the fourth wave of the COVID-19 outbreak in a single prenatal clinic in Southern Italy: The role of loneliness, anxiety, and maternal support

    Get PDF
    Background: The current study aimed at assessing the levels of perinatal depression (i.e., both antenatal and postnatal) during the fourth wave of the COVID-19 outbreak in a group of Italian women, as well as to evaluate the role of loneliness, anxiety, and lack of maternal support in cumulatively predicting perinatal depression. Methods: A cross-sectional study was conducted with 200 Italian women recruited during a peak of the COVID-19 pandemic in Italy (i.e., from September to December 2021) from a single prenatal clinic in Southern Italy. A non-parametric binomial test was conducted to assess whether the perinatal depression frequencies of the current sample differed from those found in a pre-Covid reference group. Additionally, hierarchical multiple linear regression analyses assessing whether loneliness, anxiety, and maternal support affected women's perinatal depression were also conducted. Results: The general prevalence of perinatal depression was significantly higher in participants recruited during the fourth wave of the COVID-19 pandemic compared to the pre-Covid reference group (29% vs. 9.2%). However, results showed that, contrary to postnatal depression (18.2% vs. 19.9%), only the prevalence of antenatal depression was significantly higher compared to the pre-Covid reference group (39.6% vs. 6.4%). Furthermore, loneliness and anxiety, but not maternal support, were associated with higher levels of PD. Limitations: Limitations concerned the cross-sectional nature of the study and the relatively small sample size. Conclusions: This study sheds light on the need to address perinatal mental health of women during major stressful events, such as the COVID-19 pandemic

    Evaluation of antigens stability of tobacco seeds as edible vaccine against VTEC strains

    Get PDF
    Plants have represent a promising alternative for biopharmaceutical proteins (Ma et al., 2003; Rossi et al., 2014). Many plant based edible vaccines have been shown to be effective in inducing local immune responses (Rossi et al., 2013). Edible vaccines can activate both mucosal and systemic immunity, as they come in contact with the digestive tract lining. This dual effect would provide first-line defense against pathogens invading through the mucosa. The antigens are released in the intestines are taken up by M cells that are present over the Payer’s patches (in the ileum) and the gut associated lymphoid tissue (GALT). Edible vaccines represent an important worldwide goal for the prevention of the enteric diseases, also in livestock. In particular, the enteric infections are a significant clinical problem in pigs. Verocytotoxic Escherichia (E.) coli strains are responsible for serious enterotoxaemia that causes important economic losses in the pig industry. The production of a vaccine for oral administration of transgenic seeds could be a practical and efficient system to prevent the infection and to reduce the antibiotic use. This study was focused on tobacco plants, previously transformed by agroinfection for the seed-specific expression of antigenic proteins (F18 adhesive fimbriae and the B subunit of the Vt2e toxin) as model of edible vaccines against verocytotoxic E. coli strains. The dietary administration of transgenic tobacco seeds promotes a significant increase in the number of mucosal IgA-producing cells of the tunica propria in both small and large intestine in mice (Rossi et al., 2013). A protective effect of oral administration of transgenic tobacco seeds was also observed against verocytotoxic Escherichia coli infection in piglets (Rossi et al., 2014). The aim of this study was to assess the seed-expression stability, that is a important requirement in the vaccine production, of F 18 and Vt2e-B heterologous genes into the progeny of transformed tobacco plants

    Parameters for estimating the time of death at perinatal autopsy of stillborn fetuses: a systematic review

    Get PDF
    Background: Stillbirth is defined by the WHO as birth of a fetus with no vital signs, at or over 28 weeks of pregnancy age. The estimation of time of death in stillbirth appears crucial in forensic pathology. However, there are no validated methods for this purpose. Objective: To perform a systematic review of the available literature regarding the estimation of the time of death in stillborn fetuses, in terms of hours or days. Methods: Electronic databases were searched from their inception to August 2018 for relevant articles. Macroscopic, histologic, and radiologic parameters were evaluated. Results: Nine studies with 664 stillborns were included. The evaluation of extent and location of fetal maceration signs showed good accuracy in estimating the time of death; by contrast, a dichotomous assessment of maceration (present vs absent) was found to be unreliable in a subsequent study. Histologic assessment of the loss of nuclear basophilia in fetal and placental tissues showed excellent accuracy; an “autolysis equation” was proposed to achieve an even higher accuracy in fetuses who had been dead for < 24 h. Magnetic resonance imaging of the lung parenchyma, pleural fluids, and brain parenchyma could estimate the death-to-autopsy time, but the results appeared weak and conflicting. Conclusion: Pathologic examination, based on the assessment of maceration, and even more of the loss of nuclear basophilia, may be a reliable method to estimate the time of death in stillborn fetuses. Further studies should be encouraged to validate these results. Imaging techniques have not yet found application in this field

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    A Qualitative Exploration of the Use of Contraband Cell Phones in Secured Facilities

    Get PDF
    Offenders accepting contraband cell phones in secured facilities violate state corrections law, and the possession of these cell phones is a form of risk taking behavior. When offenders continue this risky behavior, it affects their decision making in other domains where they are challenging authorities; and may impact the length of their incarceration. This qualitative phenomenological study examined the lived experience of ex-offenders who had contraband cell phones in secured correctional facilities in order to better understand their reasons for taking risks with contraband cell phones. The theoretical foundation for this study was Trimpop\u27s risk-homeostasis and risk-motivation theories that suggest an individual\u27s behaviors adapt to negotiate between perceived risk and desired risk in order to achieve satisfaction. The research question explored beliefs and perceptions of ex-offenders who chose to accept the risk of using contraband cell phones during their time in secured facilities. Data were collected anonymously through recorded telephone interviews with 8 male adult ex-offenders and analyzed using thematic content analysis. Findings indicated participants felt empowered by possession of cell phones in prison, and it was an acceptable risk to stay connected to family out of concern for loved ones. The study contributes to social change by providing those justice system administrators, and prison managers responsible for prison cell phone policies with more detailed information about the motivations and perspectives of offenders in respect to using contraband cell phones while imprisoned in secured facilities

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore