658 research outputs found

    The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding

    Get PDF
    The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity

    Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. COPD patients with cachexia or weight loss have increased risk of death independent of body mass index (BMI) and lung function. We tested the hypothesis genetic variation is associated with weight loss in COPD using a genome-wide association study approach. METHODS: Participants with COPD (N = 4308) from three studies (COPDGene, ECLIPSE, and SPIROMICS) were analysed. Discovery analyses were performed in COPDGene with replication in SPIROMICS and ECLIPSE. In COPDGene, weight loss was defined as self-reported unintentional weight loss > 5% in the past year or low BMI (BMI < 20 kg/m2). In ECLIPSE and SPIROMICS, weight loss was calculated using available longitudinal visits. Stratified analyses were performed among African American (AA) and Non-Hispanic White (NHW) participants with COPD. Single variant and gene-based analyses were performed adjusting for confounders. Fine mapping was performed using a Bayesian approach integrating genetic association results with linkage disequilibrium and functional annotation. Significant gene networks were identified by integrating genetic regions associated with weight loss with skeletal muscle protein–protein interaction (PPI) data. RESULTS: At the single variant level, only the rs35368512 variant, intergenic to GRXCR1 and LINC02383, was associated with weight loss (odds ratio = 3.6, 95% confidence interval = 2.3–5.6, P = 3.2 × 10−8) among AA COPD participants in COPDGene. At the gene level in COPDGene, EFNA2 and BAIAP2 were significantly associated with weight loss in AA and NHW COPD participants, respectively. The EFNA2 association replicated among AA from SPIROMICS (P = 0.0014), whereas the BAIAP2 association replicated in NHW from ECLIPSE (P = 0.025). The EFNA2 gene encodes the membrane-bound protein ephrin-A2 involved in the regulation of developmental processes and adult tissue homeostasis such as skeletal muscle. The BAIAP2 gene encodes the insulin-responsive protein of mass 53 kD (IRSp53), a negative regulator of myogenic differentiation. Integration of the gene-based findings participants with PPI data revealed networks of genes involved in pathways such as Rho and synapse signalling. CONCLUSIONS: The EFNA2 and BAIAP2 genes were significantly associated with weight loss in COPD participants. Collectively, the integrative network analyses indicated genetic variation associated with weight loss in COPD may influence skeletal muscle regeneration and tissue remodelling

    Potent Cardioprotective Effect of the 4-Anilinoquinazoline Derivative PD153035: Involvement of Mitochondrial KATP Channel Activation

    Get PDF
    Background: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+) induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+) transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP) activation. Conclusions/Significance: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP) activation

    Phylodynamics of HIV-1 Circulating Recombinant Forms 12_BF and 38_BF in Argentina and Uruguay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although HIV-1 CRF12_BF and CRF38_BF are two epidemiologically important recombinant lineages circulating in Argentina and Uruguay, little is known about their population dynamics.</p> <p>Methods</p> <p>A total of 120 "CRF12_BF-like" and 20 "CRF38_BF-like" <it>pol </it>recombinant sequences collected in Argentina and Uruguay from 1997 to 2009 were subjected to phylogenetic and Bayesian coalescent-based analyses to estimate evolutionary and demographic parameters.</p> <p>Results</p> <p>Phylogenetic analyses revealed that CRF12_BF viruses from Argentina and Uruguay constitute a single epidemic with multiple genetic exchanges among countries; whereas circulation of the CRF38_BF seems to be confined to Uruguay. The mean estimated substitution rate of CRF12_BF at <it>pol </it>gene (2.5 × 10-3 substitutions/site/year) was similar to that previously described for subtype B. According to our estimates, CRF12_BF and CRF38_BF originated at 1983 (1978-1988) and 1986 (1981-1990), respectively. After their emergence, the CRF12_BF and CRF38_BF epidemics seem to have experienced a period of rapid expansion with initial growth rates of around 1.2 year<sup>-1 </sup>and 0.9 year<sup>-1</sup>, respectively. Later, the rate of spread of these CRFs_BF seems to have slowed down since the mid-1990s.</p> <p>Conclusions</p> <p>Our results suggest that CRF12_BF and CRF38_BF viruses were generated during the 1980s, shortly after the estimated introduction of subtype F1 in South America (~1975-1980). After an initial phase of fast exponential expansion, the rate of spread of both CRFs_BF epidemics seems to have slowed down, thereby following a demographic pattern that resembles those previously reported for the HIV-1 epidemics in Brazil, USA, and Western Europe.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Epidemiology, Species Distribution, Antifungal Susceptibility and Outcome of Nosocomial Candidemia in a Tertiary Care Hospital in Italy

    Get PDF
    Candida is an important cause of bloodstream infections (BSI), causing significant mortality and morbidity in health care settings. From January 2008 to December 2010 all consecutive patients who developed candidemia at San Martino University Hospital, Italy were enrolled in the study. A total of 348 episodes of candidaemia were identified during the study period (January 2008–December 2010), with an incidence of 1,73 episodes/1000 admissions. Globally, albicans and non-albicans species caused around 50% of the cases each. Non-albicans included Candida parapsilosis (28.4%), Candida glabrata (9.5%), Candida tropicalis (6.6%), and Candida krusei (2.6%). Out of 324 evaluable patients, 141 (43.5%) died within 30 days from the onset of candidemia. C. parapsilosis candidemia was associated with the lowest mortality rate (36.2%). In contrast, patients with C. krusei BSI had the highest mortality rate (55.5%) in this cohort. Regarding the crude mortality in the different units, patients in Internal Medicine wards had the highest mortality rate (54.1%), followed by patients in ICU and Hemato-Oncology wards (47.6%)

    Intratumor genetic heterogeneity in squamous cell carcinoma of the oral cavity

    Full text link
    BackgroundWe sought to evaluate intratumor heterogeneity in squamous cell carcinoma of the oral cavity (OCC) and specifically determine the effect of physical separation and histologic differentiation within the same tumor.MethodsWe performed whole exome sequencing on five biopsy sites—two from well‐differentiated, two from poorly differentiated regions, and one from normal parenchyma—from five primary OCC specimens.ResultsWe found high levels of intratumor heterogeneity and, in four primary tumors, identified only 0 to 2 identical mutations in all subsites. We found that the heterogeneity inversely correlated with physical separation and that pairs of well‐differentiated samples were more similar to each other than analogous poorly differentiated specimens. Only TP53 mutations, but not other purported “driver mutations” in head and neck squamous cell carcinoma, were found in multiple biopsy sites.ConclusionThese data highlight the challenges to characterization of the mutational landscape of OCC with single site biopsy and have implications for personalized medicine.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150549/1/hed25719.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150549/2/hed25719_am.pd

    ERG Deregulation Induces PIM1 Over-Expression and Aneuploidy in Prostate Epithelial Cells

    Get PDF
    The ERG gene belongs to the ETS family of transcription factors and has been found to be involved in atypical chromosomal rearrangements in several cancers. To gain insight into the oncogenic activity of ERG, we compared the gene expression profile of NIH-3T3 cells stably expressing the coding regions of the three main ERG oncogenic fusions: TMPRSS2/ERG (tERG), EWS/ERG and FUS/ERG. We found that all three ERG fusions significantly up-regulate PIM1 expression in the NIH-3T3 cell line. PIM1 is a serine/threonine kinase frequently over-expressed in cancers of haematological and epithelial origin. We show here that tERG expression induces PIM1 in the non-malignant prostate cell line RWPE-1, strengthening the relation between tERG and PIM1 up-regulation in the initial stages of prostate carcinogenesis. Silencing of tERG reversed PIM1 induction. A significant association between ERG and PIM1 expression in clinical prostate carcinoma specimens was found, suggesting that such a mechanism may be relevant in vivo. Chromatin Immunoprecipitation experiments showed that tERG directly binds to PIM1 promoter in the RWPE-1 prostate cell line, suggesting that tERG could be a direct regulator of PIM1 expression. The up-regulation of PIM1 induced by tERG over-expression significantly modified Cyclin B1 levels and increased the percentage of aneuploid cells in the RWPE-1 cell line after taxane-based treatment. Here we provide the first evidence for an ERG-mediated PIM1 up-regulation in prostate cells in vitro and in vivo, suggesting a direct effect of ERG transcriptional activity in the alteration of genetic stability

    Robotic-assisted laparoscopic prostatectomy

    Get PDF
    Prostate cancer remains a significant health problem worldwide and is the second highest cause of cancer-related death in men. While there is uncertainty over which men will benefit from radical treatment, considerable efforts are being made to reduce treatment related side-effects and in optimising outcomes. This article reviews the development and introduction of robotic-assisted laparoscopic radical prostatectomy (RALP), the results to date, and the possible future directions of RALP

    c-Abl phosphorylation of ΔNp63α is critical for cell viability

    Get PDF
    The p53 family member p63 has been shown to be critical for growth, proliferation and chemosensitivity. Here we demonstrate that the c-Abl tyrosine kinase phosphorylates the widely expressed ΔNp63α isoform and identify multiple sites by mass spectrometry in vitro and in vivo. Phopshorylation by c-Abl results in greater protein stability of both ectopically expressed and endogenous ΔNp63α. c-Abl phosphorylation of ΔNp63α induces its binding to Yes-associated protein (YAP) and silencing of YAP by siRNA reduces the c-Abl-induced increase of ΔNp63α levels. We further show that cisplatin induces c-Abl phosphorylation of ΔNp63α and its binding to YAP. Overexpression of ΔNp63α, but not the c-Abl phosphosites mutant, protects cells from cisplatin treatment. Finally, we demonstrate the rescue of p63 siRNA-mediated loss of viability with p63siRNA insensitive construct of ΔNp63α but not the phosphosites mutant. These results demonstrate that c-Abl phosphorylation of ΔNp63α regulates its protein stability, by inducing binding of YAP, and is critical for cell viability
    corecore