116 research outputs found

    De Finetti theorem on the CAR algebra

    Full text link
    The symmetric states on a quasi local C*-algebra on the infinite set of indices J are those invariant under the action of the group of the permutations moving only a finite, but arbitrary, number of elements of J. The celebrated De Finetti Theorem describes the structure of the symmetric states (i.e. exchangeable probability measures) in classical probability. In the present paper we extend De Finetti Theorem to the case of the CAR algebra, that is for physical systems describing Fermions. Namely, after showing that a symmetric state is automatically even under the natural action of the parity automorphism, we prove that the compact convex set of such states is a Choquet simplex, whose extremal (i.e. ergodic w.r.t. the action of the group of permutations previously described) are precisely the product states in the sense of Araki-Moriya. In order to do that, we also prove some ergodic properties naturally enjoyed by the symmetric states which have a self--containing interest.Comment: 23 pages, juornal reference: Communications in Mathematical Physics, to appea

    Space-time inhomogeneity, anisotropy and gravitational collapse

    Full text link
    We investigate the evolution of non-adiabatic collapse of a shear-free spherically symmetric stellar configuration with anisotropic stresses accompanied with radial heat flux. The collapse begins from a curvature singularity with infinite mass and size on an inhomogeneous space-time background. The collapse is found to proceed without formation of an even horizon to singularity when the collapsing configuration radiates all its mass energy. The impact of inhomogeneity on various parameters of the collapsing stellar configuration is examined in some specific space-time backgrounds.Comment: To appear in Gen. Relativ. Gra

    A New Family of Pairing-Friendly elliptic curves

    Get PDF
    International audienceThere have been recent advances in solving the finite extension field discrete logarithm problem as it arises in the context of pairing-friendly elliptic curves. This has lead to the abandonment of approaches based on supersingular curves of small characteristic, and to the reconsideration of the field sizes required for implementation based on non-supersingular curves of large characteristic. This has resulted in a revision of recommendations for suitable curves, particularly at a higher level of security. Indeed for a security level of 256 bits, the BLS48 curves have been suggested, and demonstrated to be superior to other candidates. These curves have an embedding degree of 48. The well known taxonomy of Freeman, Scott and Teske only considered curves with embedding degrees up to 50. Given some uncertainty around the constants that apply to the best discrete logarithm algorithm, it would seem to be prudent to push a little beyond 50. In this note we announce the discovery of a new family of pairing friendly elliptic curves which includes a new construction for a curve with an embedding degree of 54

    Breaking ‘128-bit Secure’ Supersingular Binary Curves

    Get PDF
    In late 2012 and early 2013 the discrete logarithm problem (DLP) in finite fields of small characteristic underwent a dramatic series of breakthroughs, culminating in a heuristic quasi-polynomial time algorithm, due to Barbulescu, Gaudry, Joux and Thomé. Using these developments, Adj, Menezes, Oliveira and Rodríguez-Henríquez analysed the concrete security of the DLP, as it arises from pairings on (the Jacobians of) various genus one and two supersingular curves in the literature, which were originally thought to be 128-bit secure. In particular, they suggested that the new algorithms have no impact on the security of a genus one curve over F21223 , and reduce the security of a genus two curve over F2367 to 94.6 bits. In this paper we propose a new field representation and efficient general descent principles which together make the new techniques far more practical. Indeed, at the ‘128-bit security level’ our analysis shows that the aforementioned genus one curve has approximately 59 bits of security, and we report a total break of the genus two curv

    On the Joint Security of Encryption and Signature, Revisited

    Get PDF
    Abstract. We revisit the topic of joint security for combined public key schemes, wherein a single keypair is used for both encryption and signature primitives in a secure manner. While breaking the principle of key separation, such schemes have attractive properties and are sometimes used in practice. We give a general construction for a combined public key scheme having joint security that uses IBE as a component and that works in the standard model. We provide a more efficient direct construction, also in the standard model. We then consider the problem of how to build signcryption schemes from jointly secure combined public key schemes. We provide a construction that uses any such scheme to produce a triple of schemes – signature, encryption, and signcryption – that are jointly secure in an appropriate and strong security model.

    Elliptic and Hyperelliptic Curves: A Practical Security Analysis

    Get PDF
    Motivated by the advantages of using elliptic curves for discrete logarithm-based public-key cryptography, there is an active research area investigating the potential of using hyperelliptic curves of genus 2. For both types of curves, the best known algorithms to solve the discrete logarithm problem are generic attacks such as Pollard rho, for which it is well-known that the algorithm can be sped up when the target curve comes equipped with an efficiently computable automorphism. In this paper we incorporate all of the known optimizations (including those relating to the automorphism group) in order to perform a systematic security assessment of two elliptic curves and two hyperelliptic curves of genus 2. We use our software framework to give concrete estimates on the number of core years required to solve the discrete logarithm problem on four curves that target the 128-bit security level: on the standardized NIST CurveP-256, on a popular curve from the Barreto-Naehrig family, and on their respective analogues in genus 2. © 2014 Springer-Verlag Berlin Heidelberg

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    corecore