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Abstract

There have been recent advances in solving the finite extension field
discrete logarithm problem as it arises in the context of pairing-friendly
elliptic curves. This has lead to the abandonment of approaches based
on supersingular curves of small characteristic, and to the reconsid-
eration of the field sizes required for implementation based on non-
supersingular curves of large characteristic. This has resulted in a re-
vision of recommendations for suitable curves, particularly at a higher
level of security. Indeed for a security level of 256 bits, the BLS48
curves have been suggested, and demonstrated to be superior to other
candidates. These curves have an embedding degree of 48. The well
known taxonomy of Freeman, Scott and Teske only considered curves
with embedding degrees up to 50. Given some uncertainty around the
constants that apply to the best discrete logarithm algorithm, it would
seem to be prudent to push a little beyond 50. In this note we announce
the discovery of a new family of pairing friendly elliptic curves which
includes a new construction for a curve with an embedding degree of
54.
Keywords: Elliptic Curves, Pairing-based Cryptography, Aurifeuil-
lean factorization

1 Introduction

One of great break-throughs in pairing-based cryptography was the discov-
ery of the BN curves [3]. A group size of 256 bits (to match the 128-bit
security level) can be supported by an elliptic curve over a field also of 256
bits, and since the embedding degree is 12, the size of the discrete logarithm
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(DL) problem over the extension field is 3072 bits. Which was a serendipi-
tous direct hit on the size of DL problem believed to correspond to 128-bit
security level. The fit was perfect.

Recall that protocols based on bilinear pairings typically consist of oper-
ations on three groups, denoted as G1, G2 and GT , and the calculation of the
pairing itself, usually denoted as w = e(P,Q), where the pairing takes two
elliptic curve point parameters P ∈ G1 and Q ∈ G2 respectively, and evalu-
ates to an element in the finite extension field w ∈ GT . Here G1 is contained
in the elliptic curve E(Fp), G2 is contained in E′(Fpk/d), and GT is contained
in the finite extension field Fpk , where k is the embedding degree associated
with the pairing-friendly curve, and d is a divisor of k corresponding to a
supported twisted curve E′. Note that G2 points can be manipulated on
the smaller twisted curve, and transformed to a point on E(Fpk) only when
needed.

The pairing calculation consists of two parts, a Miller loop followed by a
final exponentiation. In real-world protocols much of the action takes place
in the smallest group G1, although implementors have tended to concentrate
more on the pairing itself. In more complex protocols products of pairings
are required, and here a single final exponentiation can be applied to an
amalgamation of Miller loops [20].

A BN curve is an example of a parameterised pairing-friendly curve, that
is, fixed polynomial formulæ exist for the prime modulus p and the group
order r in terms of an integer parameter u, which is chosen such that both
p and r are prime. Such parameterised curves have become very popular
for many reasons. First the ratio between the group and field size can be as
low as one, and secondly multiple optimizations become possible. The most
significant of these would be the development of the optimal ate pairing
[23], for which the number of iterations of the Miller loop is reduced from
the number of bits in r (as required for the original Tate pairing) to the
number of bits in u. Since the degrees of the defining polynomial formulæ
increase with the embedding degree, rather paradoxically this implies that
the number of iterations required in the Miller loop actually tends to decrease
as the security level increases. Also a simpler form of final exponentiation
applies [21].

However almost immediately after BN curves were introduced, Schi-
rokauer [19] in a paper introducing the Number Field Sieve (NFS), warned
us that: “Without discussing the evident difficulty of implementing the
NFS for degree 12 fields, we observe that the special form of p may reduce
the difficulty of computing logarithms in Fp12”. In the absence of any con-
crete evidence to support this concern, the BN curve was nonetheless widely
adopted. However Schirokauer’s warning has proven to be prescient and the
field of pairing-based cryptography has been disrupted by the recent, but
not entirely surprising, discovery of a faster algorithm for solving the dis-
crete logarithm problem in the finite extension field that arises when using
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DL Algorithm complexity 2128 2192 2256

NFS (Lpk [1/3, 1.923]) 3072 7680 15360

(ex)TowerNFS medium (Lpk [1/3, 1.747]) 3618 9241 18480

Special(ex)TowerNFS medium (Lpk [1/3, 1.526]) 5004 12871 27410

Table 1: Recommended extension field sizes

these types of pairings, see [13, 1, 15].
A pairing-friendly curve can be characterised by the defining triplet

{ρ, k, d}, where ρ is the ratio between the number of bits in p and the
number of bits in r. Given a group size of g bits, the field size of G1 is
f1 = ρg, the extension field size of GT is fT = ρkg, and the field size of G2

is f2 = fT /d, where d is from the set of possible twists {1, 2, 3, 4, 6}, and is
usually the maximum from this set that divides k.

When choosing a suitable curve, the starting point is the security level
in bits, typically 128, 192 or 256. The group size should ideally be exactly
twice this, and the other field sizes are then immediately fixed as shown
above by the defining triplet.

For example for 128 bits of security of a BN curve, the defining triplet
is 1, 12, 6, and given g = 256, then f1 = 256, fT = 3072, and f2 = 512. For
a BLS12 curve (by which we mean a BLS curve with embedding degree of
12, see below), the triplet is 3/2, 12, 6, and given g = 256, then f1 = 384,
fT = 4608, and f2 = 768.

The main problem is to satisfy the security requirement for GT , so that
it matches that for G1. See Table 1. Note that these numbers are rather
imprecise as exact analysis is difficult. We have mainly followed the analysis
of Barbulescu and Duquesne [1], extrapolating in places, rather than the
less conservative estimates of Menezes, Sarkar and Singh [17]. However the
estimates they provide depend on certain constants, in which one can have
diminishing confidence as the security level increases.

Basically, according to current knowledge, only the NFS and TNFS es-
timates apply to finite fields of prime extension degree. The exTNFS es-
timates apply to composite order extensions, and the SexTNFS estimates
to parameterised prime, composite order extensions, like the BN curves. It
is now clear that BN curves are not quite as perfect as originally thought.
As Barbulescu and Duquesne put it: “Variants of NFS where p is parame-
terized are considered to be the dream situation for an attacker”, although
they do go on to offer some reassurance that they do not expect any further
improvements in the SexTNFS algorithm.

We should say a word about G2. Since this is of a size an integer multiple
of G1, we can be confident that if G1 is secure then so is G2. However in the
optimal ate pairing [23], each iteration of the Miller loop typically involves
at least a point doubling in G2. Therefore we would like G2 to be as small as
possible, and therefore the twist d to be as large as possible. The maximum
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attainable on an elliptic curve is d = 6, and this can only happen if 6|k.
But inevitably as the embedding degree k increases, so must G2. Ideally
we would not want G2 growing too large, as elliptic curve cryptography
over large extension fields will be very slow (and probably best implemented
using affine coordinates).

From an implementation point of view the ideal solution is one that keeps
f1 as small as possible, while meeting all of the security constraints. This
assumes that the value of ρ is small, that the embedding degree is such that
we serendipitously hit the appropriate target in Table 1, and that a sextic
twist applies and so the embedding degree is a multiple of 6.

An alternative response might be to revert to the Cocks-Pinch construc-
tion [8], avoiding parameterized curves, while continuing to use composite
order extensions. It is not difficult to generate such curves for k = 0 mod 6
such that sextic twists can be supported, although only for ρ ≥ 2. The idea
would be to revert to the original Tate pairing and adopt the lower exTNFS
estimates. However this is unlikely to prove competitive in practice.

2 BLS and KSS curves

BLS curves are the original small discriminant parameterised family of fami-
lies of pairing-friendly elliptic curves [2]. For any positive embedding degree
k = 0 mod 6 (unless 18|k), they provide simple formulæ from which can be
derived pairing friendly curves which support the maximal twist of d = 6,
and have a relatively small ρ value given by ρ = (2+k/3)/ϕ(k) [10]. Observe
that the value of ρ decreases with increasing values of k. Having a range of
embedding degrees to choose from makes it easier to hit the optimal values
in Table 1 for any security level.

For example Barbulescu and Duquesne [1] have demonstrated that the
BLS12 curve is a good fit for the 128-bit level of security, and the BLS24
curve is the best choice for 192 bits of security. In another recent paper
Kiyomura et al. [16], reacting to the new understanding, demonstrated that
a BLS48 curve is also the best choice of pairing-friendly curve to meet the
new estimates for the 256-bit level of security. In this case the security
requirement could be met with a group size of 512 bits, a modulus of 576
bits (as ρ = 9/8), and a finite field extension size of 48 · 576 = 27648.

However the BLS curves do not exist for 18|k, as in these cases the
polynomial formula for p is not irreducible, and therefore cannot generate
primes [10]. Serendipitously for the cases of k = 18 and k = 36 there do
exist the alternative KSS curves [14], which, as luck would have it, provide
curves with the same ρ values as determined by the above formula for the
missing BLS curves. However since the taxonomy of Freeman, Scott and
Teske does not explore beyond k = 50, the situation for k = 54 is currently
unknown. But if a BLS curve did exist for k = 54, then from the formula
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given above, it would have a ρ value of 10/9.

3 The new discovery

The new curve was discovered using the KSS method as described in [14]. It
was immediately observed that the new curve found with embedding degree
54 is not of the form of a typical KSS curve, where integer solutions exist
only in a restricted set of residue classes. Recall that the KSS method also
rediscovers the BN curves [3]. It appeared possible that the new family of
curves was, like the BN curves, a “sporadic”, and not related to any existing
family. On the other hand it has a certain symmetry, which suggested that
it might be a member of an as-yet undiscovered family of families.

We found that −ζ54 − ζ10
54 as a suitable element ∈ Q(ζ54), and following

the KSS method [14] from there we obtained the solution

p = 1 + 3u+ 3u2 + 35u9 + 35u10 + 36u10 + 36u11 + 39u18 + 310u19 + 310u20

r = 1 + 35u9 + 39u18

t = 1 + 35u10

c = 1 + 3u+ 3u2

(1)

where p is the prime modulus, r is the prime order of the pairing-friendly
group, t is the trace of the Frobenius, and c is a cofactor. It can be verified
that the Complex Multiplication (CM) discriminant is D = 3 because 4p−
t2 = 3f2, for some polynomial f . This implies that the curve has twists of
degree 6 which, as with the BN and BLS curves, facilitates an important
optimization. Observe that the prime p can be any of 1, 3, 5 or 7 mod 8
depending on the choice of u. The total number of points on the curve will
be #E = cr.

Recall that the embedding degree is the smallest value of k such that
r|(pk − 1) [8]. In this case it is easily confirmed that k = 54. The value of
ρ = deg(p)/ deg(r) = 10/9, which is close to the ideal value of 1.

4 Aurifeuillean construction of pairing-friendly
curves

The method of discovery does not explain the particular form of the new
curve, or whether or not it is a member of a larger “family of families”. To
answer these questions we take a different approach.

The Aurifeuillean factorization of cyclotomic polynomials is a well-known
tool used in the Cunningham project1 [7] to factor large integers of the form

1http://www.cerias.purdue.edu/homes/ssw/cun/index.html
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bn ± 1, where b is a square-free basis, b ∈ {2, 3, 5, 6, 7, 10, 11, 12}. Some of
the factors can be obtained with the algebraic factorisation: since un − 1 =∏
d|n Φd(u), where Φd is the d-th cyclotomic polynomial, then bn − 1 =∏
d|n Φd(b). For some combinations of bases and powers, more factors can be

obtained with the Aurifeuillean factorization of the cyclotomic polynomials
[18, 22, 5]:

Lemma 4.1. Let k > 1 be an integer and let Φk(u) denote the k-th cyclo-
tomic polynomial. Let a be a square-free integer and s an integer. Then
Φk(as

2) will factor if

• a ≡ 1 (mod 4) and a ≡ k (mod 2a)

• or a ≡ 2, 3 (mod 4) and 2a ≡ k (mod 4a).

This fact is already known for pairing-friendly curves: it was used to
compute the order of the supersingular elliptic curves in characteristic 3
of embedding degree 6 (see for instance [9, Table 1]). Let E/F3` be a su-
persingular elliptic curve defined over F3` for an odd `. If the curve has
embedding degree 6, then the order of E(F3`) is a divisor of Φ6(3`), where
Φ6(u) = u2 − u+ 1. Assuming that ` = 2m+ 1, the Aurifeuillean factoriza-
tion is Φ6(3u2) = (3u2 + 3u+ 1)(3u2 − 3u+ 1). Replacing u by 3m so that
3u2 = 3·32m = 3`, we get Φ6(32m+1) = (32m+1+3m+1+1)(32m+1−3m+1+1),
and #E(F3`) = 3` − 3(`+1)/2 + 1. We will apply this tool to find new fami-
lies of pairing-friendly ordinary curves in large characteristic for k = 3j and
k = 2 · 3j . Moreover this factorization pattern provides a larger framework
for pairing-friendly curve construction, and a general point of view for the
construction of MNT curves, BN curves and Freeman’s curves.

4.1 Aurifeuillean construction

We combine the Brezing-Weng method [6], providing cyclotomic families,
with Lemma 4.1, to obtain Algorithm 1. The idea is to look for an integer
a where −2k ≤ a ≤ 2k, and satisfying Lemma 4.1 so that Φk(au

2) =
r(u)r(−u), and we continue as for the Brezing-Weng method, with r(u) a
factor of Φk(au

2), and ζk = au2. The number field K = Q[u]/(r(u)) contains
a square root of a. When a is positive, we can choose D = a, or a multiple
of a.

We ran Algorithm 1 for 7 ≤ k ≤ 100, and small D (1 ≤ D ≤ 100).
We checked that the polynomials r(x) and p(x) can give prime inte-
gers (there exist several x0 such that p(x0) and r(x0) are prime at the
same time). For k = 7 and k = 35, p(x) does not represent primes
(p is always even for k = 7 and 21 | p for k = 35). We obtained
new families of pairing-friendly curves of ρ value as good as [10] for
k ∈ {9, 15, 21, 30, 33, 39, 42, 45, 51, 54, 57, 66, 69, 75, 78, 81, 87, 90, 93}. Each
time the best ρ was obtained for a = 3 or a = −3, and D = 3. For k = 12
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Algorithm 1: Aurifeuillean construction of pairing-friendly curves

Input: embedding degree k, small discriminant D
Output: family (r, t, y, p) of a pairing-friendly elliptic curve of

embedding degree k, or ⊥
1 ρmin ← 2
2 for a ∈ {−2k, . . . ,−3,−2, 2, 3, . . . , 2k} do
3 if IsSquareFree(a) and ((a = 1 mod 4 and k = a mod 2a) or

(a = 2, 3 mod 4 and k = 2a mod 4a)) then
4 r(u) = an irreducible factor of Φk(au

2), s.t.
Φk(au

2) = r(u)r(−u)
5 K = Q(ω) = Q[u]/(r(u))
6 if −D is a square in K then

7 S = 1/
√
−D ∈ K

8 write S as a polynomial s(u) s.t. S = s(ω) in K
9 for e = 1 . . . k − 1, gcd(e, k) = 1 do

10 t(u) = (au2)e + 1 mod r(u)
11 y(u) = (t(u)− 2)s(u) mod r(u)
12 p(u) = (t2(u) +Dy2(u))/4
13 if p(u) represents primes (cf. [10, Def. 2.5]) and

deg p/deg r < ρmin then
14 ρmin ← deg p/deg r
15 Fmin ← (r, t, y, p)

16 if ρmin = 2 then
17 return ⊥
18 else
19 return Fmin
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and a = ±6, the output is the BN curve family. As an example, we give the
parameters obtained for k = 15. The family for k = 9 (Example 4.5) falls
in our new construction that we present in the next section.

Example 4.2. Aurifeuillean construction for k = 15. We obtain a family
with D = 3, deg r(u) = 8 and ρ = 4/3 as in [10]. Φ15(−3u2) = r(u)r(−u)
where r(u) = 81u8 + 81u7 + 54u6 + 27u5 + 9u4 + 9u3 + 6u2 + 3u+ 1. There
are two choices for t(u), producing two families with ρ = 4/3:

t1(u) = 54u6 + 3u+ 1 = (−3u2)8 + 1 mod r(u)

y1(u) = −18u5 − u− 1

p1(u) = 729u12 + 243u10 + 81u7 + 54u6 + 27u5 + 3u2 + 3u+ 1

t2(u) = −27u6 − 3u+ 1 = (−3u2)13 + 1 mod r(u)

y2(u) = −27u6 − 18u5 − u− 1

p2(u) = 729u12 + 729u11 + 243u10 + 81u7 + 54u6 + 27u5 + 3u2 + 1

4.2 Aurifeuillean family for k = 3j

We now explain the generalization of the k = 54 family to any k = 3j using
an Aurifeuillean factorization of Φ3j (u). We start by the general expression:

Φ3j (u) = Φ3(u3j−1
) = um + um/2 + 1 , where m = ϕ(3j) = 2 · 3j−1 . (2)

If k = 3j , then to obtain an Aurifeuillean factorization, we take a = −3 ≡
1 mod 4, we need k = a mod 2a ⇔ 3j = 3 mod 6, and indeed this is always
the case. The degree of Φk(u) is m = 2 · 3j−1, in particular m is even and
m/2 is odd. We obtain the Aurifeuillean factorization:

Φ3j (−3u2) = 3mu2m − 3m/2um + 1

= (3m/2um + 3(m+2)/4um/2 + 1)(3m/2um − 3(m+2)/4um/2 + 1)

= r(u)r(−u)

where
r(u) = 3m/2um + 3(m+2)/4um/2 + 1 .

We choose D = 3, we compute
√
−3 and its inverse modulo r(u):

√
−3 = −2 · 3(m+2)/4um/2 − 3

1/
√
−3 = −

√
−3/3 = 2 · 3(m−2)/4um/2 + 1 .

We know that −3u2 is a primitive k-th root of unity in K = Q(u)/(r(u)).
All the (−3u2)e for 3 - e are primitive k-th roots of unity modulo r(u), i.e.,
e 6= 0 mod 3. We have

t(u) = (−3u2)e + 1 mod r(u)

y(u) = (t(u)− 2)/
√
−D mod r(u)

= ((−3u2)e − 1)(2 · 3(m−2)/4um/2 + 1) mod r(u) .
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To get ρ = deg p/ deg r as small as possible, we want to minimize

max(deg t(u), deg y(u)) .

The possible degrees e to get the smallest possible degree of p(u) are listed
in Table 2, with the values of t(u), y(u) mod r(u), and p(u).

even j
e (m+ 2)/4 deg ρ

t(u) mod r(u) 3(m+2)/4um/2+1 + 1 m/2 + 1

y(u) mod r(u) −3(m+2)/4um/2+1 − 2 · 3(m−2)/4um/2 − 2u− 1 m/2 + 1
p(u) (3u2 + 3u+ 1)r(u) + t(u)− 1 m+ 2 (m+ 2)/m
e (m+ 2)/4 +m/2

t(u) mod r(u) −2 · 3(m+2)/4um/2+1 − 3u+ 1 m/2 + 1

y(u) mod r(u) −2 · 3(m−2)/4um/2 + u− 1 m/2
p(u) (3u2 + 1)r(u) + t(u)− 1 m+ 2 (m+ 2)/m
e (m+ 2)/4 +m

t(u) mod r(u) 3(m+2)/4um/2+1 + 3u+ 1 m/2 + 1

y(u) mod r(u) 3(m+2)/4um/2+1 − 2 · 3(m−2)/4um/2 + u− 1 m/2 + 1
p(u) (3u2 − 3u+ 1)r(u) + t(u)− 1 m+ 2 (m+ 2/m)

even and odd j
e 1
t(u) mod r(u) −3u2 + 1 2

y(u) mod r(u) −2 · 3(m+2)/4um/2+2 − 2 · 3(m−2)/4um/2 − 3u2 − 1 m/2 + 2
p(u) (9u4 + 6u2 + 1)r(u) + t(u)− 1 m+ 4 (m+ 4)/m
e 1 +m/2

t(u) mod r(u) −3(m+6)/4um/2+2 − 3u2 + 1 m/2 + 2

y(u) mod r(u) 3(m+2)/4um/2+2 − 2 · 3(m−2)/4um/2 + 3u2 − 1 m/2 + 2
p(u) (9u4 − 3u2 + 1)r(u) + t(u)− 1 m+ 4 (m+ 4)/m
e 1 +m

t(u) mod r(u) 3(m+6)/4um/2+2 + 2 · 3u2 + 1 m/2 + 2

y(u) mod r(u) 3(m+2)/4um/2+2 − 2 · 3(m−2)/4um/2 − 1 m/2 + 2
p(u) (9u4 − 3u2 + 1)r(u) + t(u)− 1 m+ 4 (m+ 4)/m

Table 2: For k = 3j , values of e such that gcd(e, k) = 1, t(u) = (−3u2)e +
1 mod r(u), p(u) is irreducible, and deg p(u) is minimal. For even j, ρ =
(m + 2)/m. For odd j, p(u) is not irreducible for the first three values
e = (m+ 2)/4, 3(m− 2)/4 + 2,m+ (m+ 2)/4, only the last three ones with
ρ = (m+ 4)/m are possible.

4.3 Aurifeuillean family for k = 2 · 3j

We proceed the same way as in Section 4.2. The general expression for
Φ2·3j (u) is

Φ2·3j (u) = Φ3j (−u) = um− um/2 + 1 , where m = ϕ(2 · 3j) = 2 · 3j−1 . (3)

To obtain an Aurifeuillean factorization of Φ2·3j (u), we choose a = 3 (so
a = 3 mod 4) and the condition k = 2a (mod 4a) ⇔ k = 2 · 3j = 6 mod 12
is always satisfied since 6 | k but 4 - k. We obtain

Φ2·3j (3u
2) = Φ3j (−3u2) = 3mu2m − 3m/2um + 1

= r(u)r(−u)
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where again
r(u) = 3m/2um + 3(m+2)/4um/2 + 1 .

We take D = 3, and we know that 3u2 is a primitive k-th root (a primitive
2 · 3j-th root) of unity in K = Q(ω) where ω is a root of r(u). In the same
way as previously we obtain Table 3. The polynomial r(u) is the same but
the trace differs and the embedding degree of the family is doubled.

j odd
e (m+ 2)/4, e = 5 mod 6 deg ρ

t(u) mod r(u) 3(m+2)/4um/2+1 + 1 m/2 + 1

y(u) mod r(u) −3(m+2)/4um/2+1 − 2 · 3(m−2)/4um/2 − 2u− 1 m/2 + 1
p(u) (3u2 + 3u+ 1)r(u) + t(u)− 1 m+ 2 (m+ 2)/m
e m+ (m+ 2)/4, e = 5 mod 6

t(u) mod r(u) 3(m+2)/4um/2+1 + 3u+ 1 m/2 + 1

y(u) mod r(u) 3(m+2)/4um/2+1 − 2 · 3(m−2)/4um/2 + u− 1 m/2 + 1
p(u) (3u2 − 3u+ 1)r(u) + t(u)− 1 m+ 2 (m+ 2)/m
e 2m+ (m+ 2)/4, e = 5 mod 6

t(u) mod r(u) −2 · 3(m+2)/4um/2+1 − 3u+ 1 m/2 + 1

y(u) mod r(u) −2 · 3(m−2)/4um/2 + u− 1 m/2
p(u) (3u2 + 1)r(u) + t(u)− 1 m+ 2 (m+ 2)/m

j odd and even
e 1
t(u) mod r(u) 3u2 + 1 2

y(u) mod r(u) 2 · 3(m+2)/4um/2+2 − 2 · 3(m−2)/4um/2 + 3u2 − 1 m/2 + 2
p(u) (9u4 − 6u2 + 1)r(u) + t(u)− 1 m+ 4 (m+ 4)/m
e m+ 1, e = 1 mod 6

t(u) mod r(u) −3(m+6)/4um/2+2 − 2 · 3u2 + 1 m/2 + 2

y(u) mod r(u) −3(m+2)/4um/2+2 − 2 · 3(m−2)/4um/2 − 1 m/2 + 2
p(u) (9u4 + 3u2 + 1)r(u) + t(u)− 1 m+ 4 (m+ 4)/m
e 2m+ 1, e = 1 mod 6

t(u) mod r(u) 3(m+6)/4um/2+2 + 3u2 + 1 m/2 + 2

y(u) mod r(u) −3(m+2)/4um/2+2 − 2 · 3(m−2)/4um/2 − 3u2 − 1 m/2 + 2
p(u) (9u4 + 3u2 + 1)r(u) + t(u)− 1 m+ 4 (m+ 4)/m

Table 3: For k = 2 · 3j , values of e such that gcd(e, k) = 1, t(u) = (3u2)e +
1 mod r(u), p(u) is irreducible, and deg p(u) is minimal. For odd j, ρ =
(m + 2)/m. For even j, p(u) is not irreducible for the first three values
e = (m+ 2)/4,m+ (m+ 2)/4, 2m+ (m+ 2)/4, only the last three ones with
ρ = (m+ 4)/m are possible.

As speculated in Section 3, the k = 54 family found with the KSS method
is indeed a member of a larger “family of families”.

Construction 4.3. For n = 3j and m = ϕ(n), then a pairing-friendly curve
with embedding degree of k = 2n if j is odd, and k = n if j is even, with
discriminant D = 3, and with a ρ value of (m+ 2)/m, can be found as

r(u) = 1 + 3(m+2)/4um/2 + 3m/2um

t(u) = 1− 3u− 2 · 3(m+2)/4u1+m/2

c(u) = 1 + 3u2

p(u) = c(u) · r(u) + t(u)− 1

(4)
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Construction 4.4. For n = 3j and m = ϕ(n), then a pairing-friendly curve
with embedding degree of k = n or k = 2n, with discriminant D = 3, and
with a ρ value of (m+ 4)/m, can be found as

r(u) = 1 + 3(m+2)/4um/2 + 3m/2um

t(u) = 1 + 3εu2

c(u) = 9u4 − 6εu2 + 1

p(u) = c(u) · r(u) + t(u)− 1

ε = (−1)k mod 2

(5)

This hypothesis has been tested for all applicable embedding degrees
less than 1000. However it is not particularly useful for cases other than
k = 54. For the embedding degrees that arise from these formulæ which are
less than 54 (6 and 9), there already exist curves with the same or better
ρ value. The higher values of embedding degree (81, 486) are probably not
useful in practice.

4.4 Applications

Our Aurifeuillean constructions 4.3 and 4.4 for k = 3j and k = 2 · 3j can be
applied when the Brezing–Weng construction and the construction 6.6 of [10]
do not provide a satisfying result. The Brezing-Weng fails for k = 54 (p(u)
is never irreducible) and k = 90: p is not irreducible, or does not generate
primes. The construction 6.6 of [10] fails for 18 | k (k = 18, 36, 54, 72, 90).
We can alternatively use the Aurifeuillean construction when 18 | k and
8 - k, that is k ∈ {18, 54, 90}. Unfortunately for k = 18 the Aurifeuillean
construction gives ρ = 5/3, larger than ρ = 4/3 achieved by [14] (referenced
as construction 6.12 in [10]). The construction provides a new family for
k = 54 with ρ = 10/9. For k = 90 however, the coefficients of p(u) are very
large and such a large embedding degree is unlikely to be used in pairing-
based cryptography.

Our family also covers k = 9 and as a conclusion we provide our alter-
native choice for k = 9 and D = 3.

Example 4.5. Aurifeuillean construction for k = 9. Φ9(−3u2) = r(u)r(−u)
where r(u) = 27u6 + 9u3 + 1. Three are three choices for the trace t(u).
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With D = 3, we obtain ρ = 4/3.

t1(u) = −18u4 − 3u+ 1 = (−3u2)5 + 1 mod r(u)

y1(u) = −6u3 + u− 1

p1(u) = 81u8 + 27u6 + 27u5 − 18u4 + 9u3 + 3u2 − 3u+ 1

t2(u) = 9u4 + 3u+ 1 = (−3u2)8 + 1 mod r(u)

y2(u) = 9u4 − 6u3 + s− 1

p2(u) = 81u8 − 81u7 + 27u6 + 27u5 − 18u4 + 9u3 + 3u2 + 1

t3(u) = 9u4 + 1 = (−3u2)2 + 1 mod r(u)

y3(u) = −9u4 − 6u3 − 2u− 1

p3(u) = 81u8 + 81u7 + 27u6 + 27u5 + 36u4 + 9u3 + 3u2 + 3u+ 1

MNT curves as Aurifeuillean curves for k = 3. The MNT construc-
tion provides three families of curves of embedding degree 3, 4 and 6 respec-
tively. The curve for k = 3 can be obtained with the Aurifeuillean factoriza-
tion of Φ3(u), and the two curves for k = 4, 6 with the cyclotomic construc-
tion. We start with Φ3(−3u2) = (3u2 + 3u+ 1)(3u2 − 3u+ 1) = r(u)r(−u).
The two choices for the trace are −3u2 + 1 mod r(u) = −3u + 2 = t1 and
(−3u2)2 +1 mod r(u) = 3u−1 = t2. Since t1 = t2(−u+1), we continue with
t = 3u − 1, and compute p(u) = r(u) + t(u) − 1 = 3u2 − 1. We obtain the
first MNT curve (see Table 4.4), with the change of variable l = 2u (indeed,
p = 3u2− 1 is always even for odd u, so the MNT family takes l = 2u). The
CM equation is 4p− t2 = 3u2 + 6u− 5, and requires to solve a Pell equation
as in the original paper. The MNT curve families for k = 4 and k = 6
do not correspond to the Aurifeuillean construction, but to a cyclotomic
construction (r(u) = Φk(u)). The two Aurifeuillean constructions (without
choosing −D as a square in Q(ζk)) for k = 4, 6 produce supersingular curves
of characteristic 2 and 3 respectively. We summarise this in Table 4.4.

k MNT cyclotomic Aurifeuillean
t(u) −1± 6l u+ 1,−u (ζ3 = u,−u− 1) −3u+ 2, 3u− 1

3 r(u) 12l2 ∓ 6l + 1 Φ3(u) = u2 + u+ 1 3u2 − 3u+ 1, Φ3(−3u2) = r(u)r(−u)
p(u) 12l2 − 1 (u+ 1)2, u2 3u2 − 6u+ 2, 3u2 − 1
Dy2 12l2 ± 12l − 5 3(u+ 1)2, 3u2 3u2 − 12u+ 4, 3u2 + 6u− 5

supersingular, q = p2 MNT with l = 2u
4 t(u) −l, l + 1 ±u+ 1 (ζ4 = ±u) 2u,−2(u− 1)
r(u) l2 + 2l + 2, l2 + 1 Φ4(u) = u2 + 1 2u2 − 2u+ 1, Φ4(±2u2) = r(u)r(−u)
p(u) l2 + l + 1 u2 ± u+ 1 2u2, 2(u− 1)2

Dy2 3l2 + 4l + 4 3u2 ± 2u+ 3 4u2, 4(u− 1)2

MNT with l = u, u− 1 supersingular, q = 2`

6 t(u) 1± 2l u+ 1,−u+ 2(ζ6 = u,−u+ 1) 3u,−3(u− 1)
r(u) 4l2 ∓ 2l + 1 Φ6(u) = u2 − u+ 1 3u2 − 3u+ 1, Φ6(3u2) = r(u)r(−u)
p(u) 4l2 + 1 u2 + 1, u2 − 2u+ 2 3u2, 3(u− 1)2

Dy2 12l2 − 4l + 3 3u2 − 2u+ 3, 3u2 − 4u+ 4 3u2, 3(u− 1)2

MNT with l = 2u supersingular, q = 3`

Table 4: Correspondence between MNT families, cyclotomic construction
and Aurifeuillean factorization
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Galbraith, McKee and Valença factorisation patterns. Galbraith,
McKee and Valença already investigated the strategy of finding q(l) such
that Φk(q(l)) splits into two quadratic factors for k = 3, 4, 6 or two quartic
factors for k = 5, 8, 10, 12 in [11]. They obtained Aurifeuillean factorisation
patterns for k = 3, 4, 5, 6, 10, 12. Their work allowed Freeman to obtain
k = 10 curves and Barreto and Naehrig to obtain k = 12 curves, both with
ρ = 1.

4.5 Further investigations

Granville and Pleasants [12] investigated the possibility that there are other
identities still to be discovered. Wagstaff [24] used the Cunningham tables to
try unsuccessfully to discover new identities. His results tend to confirm the
theoretical results of [12] that under reasonable definitions, Schinzel found
the last Aurifeuillean-like factorizations.

It seems very unlikely that a new mysterious pairing-friendly family as
the Barreto-Naehrig curves with ρ = 1 will be discovered with similar tech-
niques: we ran Algorithm 1 for k ≤ 100 without success.

New discoveries are still possible, but will more probably arise with large
computer search for factorization of Φk(g(u)) for polynomials g(u) of degree
strictly larger than 2, as for k = 8.

5 An example construction

An actual curve can be generated using the seed value u = C40404216, which
has a low Hamming weight of 6. Then the curve

y2 = x3 + 12

is a pairing-friendly elliptic curve with a group order r of 512 bits, and a
modulus p of 569 bits. Given the embedding degree of 54, the finite extension
field is of size 30726 bits, comfortably, but not excessively, above the size
recommended for an overall security equivalent to 256 bits (from table 1).
The embedding degree k = 54 is obviously of the desirable form k = 2i3j ,
which simplifies implementation [16].

To derive an optimal pairing, following [23] we find the shortest vector
in a lattice and observe that u+ up9 + p10 = 0 mod r. Then an optimal ate
pairing is defined as

t(Q,P ) = (fp
9+1
u,Q (P ).lp9uQ+p10Q,uQ(P ).lp10Q,p9uQ(P ))(p54−1)/r

The Miller loop (of just 28 iterations, given the bit length of u) provides
fu,Q(P ) and the value of uQ, after which two line function evaluations, some
cheap applications of the Frobenius operator, and a final exponentiation
complete the calculation.
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Implementation will require the construction of a tower of extensions.
Since G2 is over E′(Fp9) it would make sense to use a 1-3-9-18-54 towering,
similar to that recommended for the k = 18 case [4]. It is apparent from the
defining equation that p = 1 mod 3. It is also clear that u must be even to
generate primes. So we make the substitution u = 2v and from there it is
straightforward if tedious to coerce Fermat’s identity p = a2 + 3b2 where

a = 1 + 3v + 2835v9 + 21035v10

b = v + 2834v9
(6)

As demonstrated by Benger and Scott [4] this implies by Euler’s conjec-
ture that x54 − 2 is irreducible over Fp as long as 3 - b, which is equivalent
to the simple condition that 3 - u.

6 Conclusion

We present a new family of pairing friendly curves with an embedding degree
of k = 54, which fills a gap that might be useful in the event of a deeper un-
derstanding emerging of the true difficulty of the discrete logarithm problem
as it applies to high-security pairing-based cryptography. Motivated by this
discovery we place it into a wider context, and identify it as just one member
of a larger family of curves. The k = 54 solution may have been previously
overlooked as the limit of practical interest was at one time conservatively
estimated as being 50 [10]. We also strived to find a solution for the next
“missing” case of k = 72 (by which we mean an embedding degree which
is a multiple of six, and which is not covered by the BLS construction) but
failed despite an extensive computer search. Nevertheless clearly the KSS
method is a powerful tool for discovering families of pairing-friendly curves.
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