The symmetric states on a quasi local C*-algebra on the infinite set of
indices J are those invariant under the action of the group of the permutations
moving only a finite, but arbitrary, number of elements of J. The celebrated De
Finetti Theorem describes the structure of the symmetric states (i.e.
exchangeable probability measures) in classical probability. In the present
paper we extend De Finetti Theorem to the case of the CAR algebra, that is for
physical systems describing Fermions. Namely, after showing that a symmetric
state is automatically even under the natural action of the parity
automorphism, we prove that the compact convex set of such states is a Choquet
simplex, whose extremal (i.e. ergodic w.r.t. the action of the group of
permutations previously described) are precisely the product states in the
sense of Araki-Moriya. In order to do that, we also prove some ergodic
properties naturally enjoyed by the symmetric states which have a
self--containing interest.Comment: 23 pages, juornal reference: Communications in Mathematical Physics,
to appea