122 research outputs found

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| &lt;0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 &lt; pT &lt; 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Tratamento de águas residuárias de suinocultura em reator UASB e filtro anaeróbio em série seguidos de filtro biológico percolador Treatment of swine wastewater in UASB reactor and anaerobic filter in series followed of trickling filter

    Get PDF
    Avaliou-se o desempenho de um reator anaeróbio de fluxo ascendente com manta de lodo (UASB) seguido de um filtro anaeróbio, instalados em série, com volume total de 300 L e 190 L, respectivamente, no tratamento de águas residuárias de suinocultura. As cargas orgânicas volumétricas aplicadas no reator UASB foram de 12,4;15,5; 23,2 e 26,3 g DQOtotal (L d)-1. Para o pós-tratamento do efluente do sistema anaeróbio em dois estágios utilizou-se um filtro biológico percolador com volume total de 250 L. O meio suporte utilizado nos filtros anaeróbio e biológico percolador foi composto por anéis de bambu. No sistema de tratamento anaeróbio e de pós-tratamento foram observadas eficiências médias de remoção de demanda química de oxigênio total (DQOtotal), sólidos suspensos totais (SST), nitrogênio total (NT), fósforo total (P-total), Cu e Zn de até 98, 99, 78, 84, 99 e 98%, respectivamente.<br>The performance of an upflow anaerobic sludge blanket (UASB) followed by the anaerobic filter, installed in series, was evaluated for the treatment of swine wastewater. The total volume of UASB and anaerobic filter were of 300 L and 190 L, respectively. The organic load rate applied on the reactor UASB were of 12.4, 15.5, 23.2 and 26.3 g total COD (L d)-1. For the post-treatment of effluent the anaerobic system was used a trickling filter with total volume of 250 L. The supports used in the anaerobic filter and trickling filter were composed by bamboo rings. The efficiencies of removal the chemical oxygen demand, total solids suspended, nitrogen, total phosphorus, Cu and Zn were of up to 98, 99, 78, 84, 99 and 98%, respectively, for the anaerobic and aerobic treatment system

    Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV

    No full text
    The first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK+, ΛK−, and ΛK0S) are presented. The results are achieved through a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at √sNN=2.76 TeV recorded by ALICE at the Large Hadron Collider. The femtoscopic correlations result from strong final-state interactions and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the nonfemtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK+ interaction and attractive in the ΛK− interaction. The data hint that the ΛK0S interaction is attractive; however, the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs (s¯s in ΛK+ and u¯u in ΛK−) or from different net strangeness for each system (S=0 for ΛK+, and S=−2 for ΛK−). Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions

    ΛK femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV

    No full text
    The first measurements of the scattering parameters of K pairs in all three charge combinations (K+, K−, and K0 S ) are presented. The results are achieved through a femtoscopic analysis of K correlations in Pb-Pb collisions at √sNN = 2.76 TeV recorded by ALICE at the Large Hadron Collider. The femtoscopic correlations result from strong final-state interactions and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the nonfemtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the K+ interaction and attractive in the K− interaction. The data hint that the K0 S interaction is attractive; however, the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs (ss in K+ and uu in K−) or from different net strangeness for each system (S = 0 for K+, and S = −2 for K−). Finally, the K systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle and K source distributions

    Production of light-flavor hadrons in pp collisions at √s = 7 and √s = 13 TeV

    No full text
    The production of π±, K±, K0S, K∗(892)0, p, ϕ(1020), Λ, Ξ−, Ω−, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s√ = 13 TeV at midrapidity (|y|<0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of K0 S, , and in inelastic pp collisions at √s = 7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≤ pT ≤ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower √s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT ≡ 2pT/ √s scaling properties of hadron production are also studied. As the collision energy increases from √s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of √s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K± and p (p) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p) at high pT

    Soft-Dielectron Excess in Proton-Proton Collisions at s =13 TeV

    No full text
    A measurement of dielectron production in proton-proton (pp) collisions at √s=13 TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron (ee) invariant mass mee and pair transverse momentum pT,ee that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of mee, pT,ee, and event multiplicity dNch/dη. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured η/π0 ratio in pp and proton-nucleus collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at 0.15 < mee < 0.6 GeV/c2 and for pT,ee < 0.4 GeV/c indicates an enhancement of soft dielectrons, reminiscent of the “anomalous” soft-photon and soft-dilepton excess in hadron-hadron collisions reported by several experiments under different experimental conditions. The enhancement factor over the hadronic cocktail amounts to 1.61 ± 0.13(stat) ± 0.17(syst, data) ± 0.34(syst, cocktail) in the ALICE acceptance. Acceptance-corrected excess spectra in mee and pT,ee are extracted and compared with calculations of dielectron production from hadronic bremsstrahlung and thermal radiation within a hadronic many-body approach

    Soft-Dielectron Excess in Proton-Proton Collisions at √s=13 TeV

    No full text
    A measurement of dielectron production in proton-proton (pp) collisions at √s=13 TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron (ee) invariant mass mee and pair transverse momentum pT,ee that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of mee, pT,ee, and event multiplicity dNch/dη. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured η/π0 ratio in pp and proton-nucleus collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at 0.15<mee<0.6 GeV/c2 and for pT,ee<0.4 GeV/c indicates an enhancement of soft dielectrons, reminiscent of the “anomalous” soft-photon and soft-dilepton excess in hadron-hadron collisions reported by several experiments under different experimental conditions. The enhancement factor over the hadronic cocktail amounts to 1.61±0.13(stat)±0.17(syst,data)±0.34(syst,cocktail) in the ALICE acceptance. Acceptance-corrected excess spectra in mee and pT,ee are extracted and compared with calculations of dielectron production from hadronic bremsstrahlung and thermal radiation within a hadronic many-body approach

    First measurement of quarkonium polarization in nuclear collisions at the LHC

    No full text
    The polarization of inclusive J/ψ and Υ(1S) produced in Pb–Pb collisions at √sNN = 5.02 TeV at the LHC is measured with the ALICE detector. The study is carried out by reconstructing the quarkonium through its decay to muon pairs in the rapidity region 2.5 < y < 4 and measuring the polar and azimuthal angular distributions of the muons. The polarization parameters λθ , λφ and λθ φ are measured in the helicity and Collins-Soper reference frames, in the transverse momentum interval 2 < pT < 10 GeV/c and pT < 15 GeV/c for the J/ψ and Υ(1S), respectively. The polarization parameters for the J/ψ are found to be compatible with zero, within a maximum of about two standard deviations at low pT, for both reference frames and over the whole pT range. The values are compared with the corresponding results obtained for pp collisions at √s = 7 and 8 TeV in a similar kinematic region by the ALICE and LHCb experiments. Although with much larger uncertainties, the polarization parameters for Υ(1S) production in Pb–Pb collisions are also consistent with zero

    Elliptic Flow of Electrons from Beauty-Hadron Decays in Pb-Pb Collisions at sNN =5.02 TeV

    No full text
    The elliptic flow of electrons from beauty hadron decays at midrapidity ( | y | < 0.8 ) is measured in Pb-Pb collisions at √ s N N = 5.02     TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parametrized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, v 2 . The v 2 coefficient of electrons from beauty hadron decays is measured for the first time in the transverse momentum ( p T ) range 1.3 – 6     GeV / c in the centrality class 30%–50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length c τ ≈ 500     μ m compared to that of charm hadrons and most of the other background sources. The v 2 of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75     σ . The results provide insights into the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavored by the measurement at high p T , but is in agreement with the results at low p T . Transport models including substantial interactions of beauty quarks with an expanding strongly interacting medium describe the measurement within uncertainties
    corecore