98 research outputs found

    SRPT optimally utilizes faster machines to minimize flow time

    Full text link

    Early Ahmed Glaucoma Valve Implantation after Penetrating Keratoplasty Leads to Better Outcomes in an Asian Population with Preexisting Glaucoma

    Get PDF
    To evaluate the efficacy of Ahmed Glaucoma Valve (AGV) surgery and the optimal interval between penetrating keratoplasty (PKP) and AGV implantation in a population of Asian patients with preexisting glaucoma who underwent PKP.In total, 45 eyes of 45 patients were included in this retrospective chart review. The final intraocular pressures (IOPs), graft survival rate, and changes in visual acuity were assessed to evaluate the outcomes of AGV implantations in eyes in which AGV implantation occurred within 1 month of post-PKP IOP elevation (Group 1) and in eyes in which AGV implantation took place more than 1 month after the post-PKP IOP evaluation (Group 2). Factors that were associated with graft failure were analyzed, and the overall patterns of complications were reviewed. By their final follow-up visits, 58% of the patients had been successfully treated for glaucoma. After the operation, there were no statistically significant differences between the groups with respect to graft survival (p = 0.98), but significant differences for IOP control (p = 0.049) and the maintenance of visual acuity (VA) (p<0.05) were observed. One year after surgery, the success rates of IOP control in Group 1 and Group 2 were 80% and 46.7%, respectively, and these rates fell to 70% and 37.3%, respectively, by 2 years. Factors that were associated with a high risk of AGV failure were a diagnosis of preexisting angle-closure glaucoma, a history of previous PKP, and a preoperative IOP that was >21 mm Hg. The most common surgical complication, aside from graft failure, was hyphema.Early AGV implantation results in a higher probability of AGV survival and a better VA outcome without increasing the risk of corneal graft failure as a result of post-PKP glaucoma drainage tube implantation

    Conditionally Replicating Adenovirus Expressing TIMP2 Increases Survival in a Mouse Model of Disseminated Ovarian Cancer

    Get PDF
    Ovarian cancer remains difficult to treat mainly due to presentation of the disease at an advanced stage. Conditionally-replicating adenoviruses (CRAds) are promising anti-cancer agents that selectively kill the tumor cells. The present study evaluated the efficacy of a novel CRAd (Ad5/3-CXCR4-TIMP2) containing the CXCR4 promoter for selective viral replication in cancer cells together with TIMP2 as a therapeutic transgene, targeting the matrix metalloproteases (MMPs) in a murine orthotopic model of disseminated ovarian cancer. An orthotopic model of ovarian cancer was established in athymic nude mice by intraperitonal injection of the human ovarian cancer cell line, SKOV3-Luc, expressing luciferase. Upon confirmation of peritoneal dissemination of the cells by non-invasive imaging, mice were randomly divided into four treatment groups: PBS, Ad-ΔE1-TIMP2, Ad5/3-CXCR4, and Ad5/3-CXCR4-TIMP2. All mice were imaged weekly to monitor tumor growth and were sacrificed upon reaching any of the predefined endpoints, including high tumor burden and significant weight loss along with clinical evidence of pain and distress. Survival analysis was performed using the Log-rank test. The median survival for the PBS cohort was 33 days; for Ad-ΔE1-TIMP2, 39 days; for Ad5/3-CXCR4, 52.5 days; and for Ad5/3-CXCR4-TIMP2, 63 days. The TIMP2-armed CRAd delayed tumor growth and significantly increased survival when compared to the unarmed CRAd. This therapeutic effect was confirmed to be mediated through inhibition of MMP9. Results of the in vivo study support the translational potential of Ad5/3-CXCR4-TIMP2 for treatment of human patients with advanced ovarian cancer

    Sema3E/Plexin-D1 Mediated Epithelial-to-Mesenchymal Transition in Ovarian Endometrioid Cancer

    Get PDF
    Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT). Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular invasion/migration

    MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

    Get PDF
    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis

    Guías de práctica clínica para el tratamiento de la hipertensión arterial 2007

    Full text link
    corecore