160 research outputs found
Characterization of Solution-Phase Drug-Protein Interactions by Ultrafast Affinity Extraction
A number of tools based on high-performance affinity separations have been developed for studying drug-protein interactions. An example of one recent approach is ultrafast affinity extraction. This method has been employed to examine the free (or non-bound) fractions of drugs and other solutes in simple or complex samples that contain soluble binding agents. These free fractions have also been used to determine the binding constants and rate constants for the interactions of drugs with these soluble agents. This report describes the general principles of ultrafast affinity extraction and the experimental conditions under which it can be used to characterize such interactions. This method will be illustrated by utilizing data that have been obtained when using this approach to measure the binding and dissociation of various drugs with the serum transport proteins human serum albumin and alpha1-acid glycoprotein. A number of practical factors will be discussed that should be considered in the design and optimization of this approach for use with single-column or multi-column systems. Techniques will also be described for analyzing the resulting data for the determination of free fractions, rate constants and binding constants. In addition, the extension of this method to complex samples, such as clinical specimens, will be considered
Optimization of callus induction and callus multiplication in rice (Oryza sativa L.) landraces
In vitro selection for abiotic stress tolerance in rice is one of the most common and reliable way for improvement of selection efficiency, but this requires standardized protocols
Broad targeting of resistance to apoptosis in cancer
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
B-RAF and N-RAS Mutations Are Preserved during Short Time In Vitro Propagation and Differentially Impact Prognosis
In melanoma, the RAS/RAF/MEK/ERK signalling pathway is an area of great interest, because it regulates tumor cell proliferation and survival. A varying mutation rate has been reported for B-RAF and N-RAS, which has been largely attributed to the differential source of tumor DNA analyzed, e.g., fixed tumor tissues or in vitro propagated melanoma cells. Notably, this variation also interfered with interpreting the impact of these mutations on the clinical course of the disease. Consequently, we investigated the mutational profile of B-RAF and N-RAS in biopsies and corresponding cell lines from metastatic tumor lesions of 109 melanoma patients (AJCC stage III/IV), and its respective impact on survival. 97 tissue biopsies and 105 biopsy-derived cell lines were screened for B-RAF and N-RAS mutations by PCR single strand conformation polymorphism and DNA sequencing. Mutations were correlated with patient survival data obtained within a median follow-up time of 31 months. B-RAF mutations were detected in 55% tissues and 51% cell lines, N-RAS mutations in 23% tissues and 25% cell lines, respectively. There was strong concordance between the mutational status of tissues and corresponding cell lines, showing a differing status for B-RAF in only 5% and N-RAS in only 6%, respectively. Patients with tumors carrying mutated B-RAF showed an impaired median survival (8.0 versus 11.8 months, p = 0.055, tissues; 7.1 versus 9.3 months, p = 0.068, cell lines), whereas patients with N-RAS-mutated tumors presented with a favorable prognosis (median survival 12.5 versus 7.9 months, p = 0.084, tissues; 15.4 versus 6.8 months, p = 0.0008, cell lines), each in comparison with wildtype gene status. Multivariate analysis qualified N-RAS (p = 0.006) but not B-RAF mutation status as an independent prognostic factor of overall survival. Our findings demonstrate that B-RAF and N-RAS mutations are well preserved during short term in vitro propagation and, most importantly, differentially impact the outcome of melanoma patients
Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial
BACKGROUND: Advanced biliary tract carcinoma has a very poor prognosis, with chemotherapy being the mainstay of treatment. Sorafenib, a multikinase inhibitor of VEGFR-2/-3, PDGFR-beta, B-Raf, and C-Raf, has shown to be active in preclinical models of cholangiocarcinoma. METHODS: We conducted a phase II trial of single-agent sorafenib in patients with advanced biliary tract carcinoma. Sorafenib was administered at a dose of 400 mg twice a day. The primary end point was the disease control rate at 12 weeks. RESULTS: A total of 46 patients were treated. In all, 26 (56%) had received chemotherapy earlier, and 36 patients completed at least 45 days of treatment. In intention-to-treat analysis, the objective response was 2% and the disease control rate at 12 weeks was 32.6%. Progression-free survival (PFS) was 2.3 months (range: 0-12 months), and the median overall survival was 4.4 months (range: 0-22 months). Performance status was significantly related to PFS: median PFS values for ECOG 0 and 1 were 5.7 and 2.1 months, respectively (P=0.0002). The most common toxicities were skin rash (35%) and fatigue (33%), requiring a dose reduction in 22% of patients. CONCLUSIONS: Sorafenib as a single agent has a low activity in cholangiocarcinoma. Patients having a good performance status have a better PFS. The toxicity profile is manageable
Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation
<p>Abstract</p> <p>Background</p> <p>The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent.</p> <p>Methods</p> <p>The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell lines (BT4C, BT4Cn, U87MG, N2a, PC12-E2, CSML0, CSML100, HeLa, L929, Swiss 3T3).</p> <p>Results</p> <p>VPA induced significant histone deacetylase (HDAC) inhibition in most of the cell lines, but the degree of inhibition was highly cell type-specific. Moreover, cell growth, motility and the degree of Erk1/2 phosphorylation were inhibited, activated, or unaffected by VPA in a cell type-specific manner. Importantly, no relationship was found between the effects of VPA on HDAC inhibition and changes in the degree of Erk1/2 phosphorylation, cell growth, or motility. In contrast, VPA-induced modulation of the MAPK pathway downstream of Ras but upstream of MEK (i.e., at the level of Raf) was important for changes in cell speed.</p> <p>Conclusions</p> <p>These results suggest that VPA can modulate the degree of Erk1/2 phosphorylation in a manner unrelated to HDAC inhibition and emphasize that changes in the degree of Erk1/2 phosphorylation are also important for the anti-cancer properties of VPA.</p
Metal nanoparticles for microscopy and spectroscopy
Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications
Novel therapies in breast cancer: what is new from ASCO 2008
<p>Abstract</p> <p>Introduction</p> <p>Breast cancer is the most common female cancer and the second most common cause of female cancer-related deaths in the United States. World-wide, more than one million women will be diagnosed with breast cancer annually. In 2007, more than 175,000 women were diagnosed with breast cancer in the United States. However, deaths due to breast cancer have decreased in the recent years in part because of improved screening techniques, surgical interventions, understanding of the pathogenesis of the disease, and utilization of traditional chemotherapies in a more efficacious manner. One of the more exciting areas of improvement in the treatment of breast cancer is the entrance of novel therapies now available to oncologists. In the field of cancer therapeutics, the area of targeted and biologic therapies has been progressing at a rapid rate, particularly in the treatment of breast cancer.</p> <p>Since the advent of imatinib for the successful treatment of chronic myelogenous leukemia in the 2001, clinicians have been searching for comparable therapies that could be as efficacious and as tolerable. In order for targeted therapies to be effective, the agent must be able to inhibit critical regulatory pathways which promote tumor cell growth and proliferation. The targets must be identifiable, quantifiable and capable of being interrupted.</p> <p>In the field of breast cancer, two advances in targeted therapy have led to great strides in the understanding and treatment of breast cancer, namely hormonal therapy for estrogen positive receptor breast cancer and antibodies directed towards the inhibition of human epidermal growth factor receptor (HER)2. These advances have revolutionized the understanding and the treatment strategies for breast cancer. Building upon these successes, a host of novel agents are currently being investigated and used in clinical trials that will hopefully prove to be as fruitful. This review will focus on novel therapies in the field of breast cancer with a focus on metastatic breast cancer (MBC) and updates from the recent annual ASCO meeting and contains a summary of the results.</p
- …