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Chapter 3
Metal Nanoparticles for Microscopy
and Spectroscopy

Peter Zijlstra, Michel Orrit and A. Femius Koenderink

Abstract Metal nanoparticles interact strongly with light due to a resonant
response of their free electrons. These ‘plasmon’ resonances appear as very strong
extinction and scattering for particular wavelengths, and result in high enhance-
ments of the local field compared to the incident electric field. In this chapter we
introduce the reader to the optical properties of single plasmon particles as well as
finite clusters and periodic lattices, and discuss several applications.

3.1 Introduction

In the last two decades, nanostructured metals in the form of structured thin films and
nanoparticles (NPs) have attracted attention from physicists and chemists alike as
interesting materials for optics and spectroscopy. Metals do not intuitively stand out
as particularly interesting materials for optics. Indeed, textbook physics tells that a
perfect conductor simply expels any electric field, so that the only function of a metal
should be to block light and act as a perfect reflector. Microscopically, this shielding
of the bulk from any penetrating field is attributable to free electrons that provide
a surface charge density on the metal surface to counteract any incident field.
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This interpretation holds over a wide range of frequencies, from DC to well above
the GHz range of current electronics. However, the free electrons intrinsically have a
finite response time, above which they will not be fast enough to shield the bulk
metal from incident fields. For typical metals the inverse of this response time, which
is known as the ‘plasma frequency’, is around 500–1,000 THz. These frequencies
correspond to electromagnetic waves in the visible and UV range.

Above the plasma frequency, a metal is not strongly reflective, but changes into
a transparent material because the electrons cannot respond fast enough to screen
the field. In most metals, the plasma frequency is in the ultraviolet, making them
reflective in the visible range. Some metals, such as copper and gold, have inter-
band transitions in the visible range, whereby specific wavelengths are absorbed
yielding their distinct color. In the regime around and just below the plasma fre-
quency metals are ‘plasmonic’. As a consequence, small metal objects will support
resonances of the free electron gas that strongly interact with light. For metal
surfaces and metal sheets of submicron thickness, the free electron gas gives rise to
resonances referred to as ‘surface plasmon polaritons’: surface waves at optical
frequencies that are part photon (electromagnetic energy stored in electric field just
above the surface) and part surface charge density wave. In this chapter we focus on
a different type of plasmon resonance, namely localized plasmon resonances in
nanoscale metal particles.

Gustav Mie [1] was the first to discuss in detail the peculiar optical properties of
solutions of colloidal gold NPs, which have a ruby appearance. This color is tunable
by particle size and shape (see Fig. 1.1 in Chap. 1), and is due to the resonant
response of the 103–104 free electrons that a metal NP typically contains. Due to
this resonant response, metal NPs are among the most strongly scattering solid state
objects (when the scattering strength is normalized to the objects geometric cross
section). In this Chapter we explain how this strong scattering comes about through
the metal’s dielectric function (Sect. 3.2) and how it can be tuned and optimized
(Sect. 3.3). Owing to the strong electromagnetic fields that the ultra-tightly confined
resonances support, the plasmon response is useful for a variety of spectroscopic
applications ranging from sensing and label-free microscopy to enhancement of
photophysical processes such as fluorescence and Raman scattering (Sect. 3.4).
These properties that occur on the single particle level can be further manipulated
and controlled by building small clusters or periodic lattices of plasmon particles
using either lithographic methods or colloidal self-assembly techniques. In partic-
ular, coherences in scattering by multiple excited plasmon particles in clusters and
lattices give further control over field enhancement and resonance linewidths of
plasmonic structures, as well as a handle on directionality. This directionality
expresses itself in the form of a strong dependence of a structure's local response on
the direction from which the structure is illuminated, and conversely a strong
anisotropy in light that is scattered or radiated by the structure. We discuss the
physics of such plasmonic antennas in Sect. 3.5.
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3.2 The Optical Response of Bulk Metals

The optical response of metal nanostructures is primarily determined by the metal’s
conduction electrons, which react collectively to external perturbations such as the
applied electric field of a light wave. In this chapter, we are concerned with small
particles and structures that are, however, large enough that the metal’s response can
be described by its bulk dielectric response. Deviations from the bulk response due
to the small size of the nanoparticle are usually not observed above sizes of about
10 nm [2] (see Chap. 2, Sect. 2.4.2.1, for more details). Furthermore, it is assumed
that the properties of the material close to the surface are identical to the bulk
properties, and the lattice discreteness is disregarded. With these assumptions, and
further neglecting quantum mechanical effects such as the spill-out of the electronic
wave functions beyond the particle’s surfaces, the metal can be represented by a
continuous medium in classical electromagnetic theory. The metal is thus fully
characterized by its complex dielectric permittivity eðxÞ. In many cases, in particular
for metals with a cubic lattice and for isotropic polycrystals, the permittivity tensor is
isotropic and is therefore represented by a single function. It is important to realize
that electromagnetism is a nonlocal theory involving long-range Coulomb forces,
and that the response of free electrons in a metal particle is collective, i.e., it inte-
grates all perturbations and boundary conditions imposed on the electronic system as
a whole. This is in contrast to molecular systems or many semiconductor materials
where each electron responds locally, independent from the boundary conditions at
large distances.

3.2.1 The Drude Model for a Free Electron Plasma

Let us first consider the ideal case of a plasma of free electrons, i.e., a free electron
gas whose electronic neutrality is ensured by a uniform and fixed distribution of
positive charges. Those are carried by the heavy counter-ions, which can be taken
as immobile in most cases. The free electron gas in a uniform positive charge
density is called the jellium model [3]. Coulomb forces arise from the charge
imbalance between the electron gas and the fixed jellium. They apply to the free
electrons and tend to restore electric neutrality. For small displacements on large
scales, the combination of restoring forces with electron inertia gives rise to har-
monic oscillations around electric neutrality at the plasma frequency xP. As an easy
argument to derive this characteristic frequency, consider a rod of metal with an
volume electron density N. Suppose we displace all the free electrons by an amount
x along the rod normal relative to the ionic backbone. As a consequence, on one end
of the rod an excess layer of electrons arises, which represents a surface charge
r ¼ �Nex, while on the other end of the rod the ionic backbone represents a
positive but equally large surface charge. The surface charge sets up a homoge-
neous electric field E ¼ r=e0er that tends to pull the electron gas back to zero

3 Metal Nanoparticles for Microscopy and Spectroscopy 55

http://dx.doi.org/10.1007/978-3-662-44823-6_2


displacement. According to Newton’s equation, the motion of an electron will be
governed by

me€x ¼ �eE ¼ �Ne2

e0er
x; ð3:1Þ

which is an equation of motion for a harmonic oscillator resonant at xP, given by

xP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne2

mee0er

s
; ð3:2Þ

where e and me are the charge and effective mass of conduction electrons, N is their
volume density, and e0er is the permittivity due to all other charges of the medium.

For noble metals such as gold and silver, with one conduction electron per atom,
the electronic density is typically around 5� 1028 m�3, which leads to a plasma
frequency in the UV range. The plasma oscillation is damped by electron scattering
off impurities, phonons, and surfaces. It is described phenomenologically by a
viscous friction constant c, whose inverse τ is called the Drude relaxation time and
is of the order of some tens of fs in noble metals. This time is related through the
Fermi velocity to a mean free path for electrons, which is of the order of a few tens
of nanometers at room temperature.

By including only the free electrons’ contribution to the polarization of a metal at
frequency x, we can derive the complex electronic permittivity eðxÞ. To this end,
suppose that we have an infinite block of metal and we consider the motion of a free
electron when we drive the electrons with an oscillating electric field. The motion is
governed by

€xþ c_x ¼ � eE
me

e�ixt: ð3:3Þ

If we solve for the conductivity rðxÞ of the metal which is defined through the
relation between applied field E and induced volume current density j

j ¼ �Ne _x ¼ rðxÞE ð3:4Þ

we obtain the so-called ‘Drude model’ for the AC conductivity of a metal

r xð Þ ¼ r0
1� ixs

with r0 ¼ Ne2s
me

; ð3:5Þ

where s is the Drude relaxation time. The Drude model describes the conductivity
of metals such as gold, copper, and silver well over a very large frequency range,
from DC (conductivity r0, with units of inverse Ohm-meters) to beyond the range
of AC electronics, i.e., to optical frequencies.
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In optics, the conductivity is an inconvenient parameter, as one usually deals
with the permittivity e0e xð Þ; and its square root, the refractive index n ¼ ffiffiffiffiffiffiffiffiffiffi

e xð Þp
.

Using Maxwell’s equation, in particular Ampère’s circuit law in its microscopic and
its macroscopic form, we can convert conductivity to permittivity, arriving at

e xð Þ ¼ 1þ irðxÞ
e0x

¼ 1� x2
P

x xþ icð Þ : ð3:6Þ

This description for permittivity is known as the ‘Drude model’. Solving
Maxwell’s equations with this permittivity automatically takes all electromagnetic
interactions between electrons into account. Therefore, whereas each electron
responds individually to the local field it experiences, this field itself is determined
by the collective response of all electrons. The Drude model captures the salient
optical features of metals. For x � xP the dielectric constant is strongly negative.
The limit of zero frequency and no loss (c ¼ 0Þ, in fact corresponds to a ‘perfect
conductor’, i.e., a medium that is completely impenetrable for electric fields. As the
frequency approaches xP, the free electrons are less able to screen the incident field,
and the field penetrates further into the metal. When x[xP the dielectric constant
becomes positive and the metal becomes transparent.

3.2.2 The Dielectric Function of Ag and Au in Reality

Although the Drude model accounts for the main qualitative features of metal
optics, modeling real metals requires including the response of the other, bound
electrons. For example, the yellow color of gold in the visible range arises from the
so-called interband transitions, which bring electrons from the filled d-bands to the
open (sp) conduction band, above the Fermi level.

As shown in Fig. 3.1 for gold, interband transitions give rise to considerable
deviations from the Drude model for wavelengths shorter than 600 nm by intro-
ducing strong losses for green and blue light. We must therefore consider the
contribution of bound d-electrons to the optical properties to properly model the
dielectric function of gold. Gold behaves as an excellent metal with very high
conductivity only for wavelengths longer than 600 nm. For silver (Fig. 3.1), in-
terband transitions peak for wavelengths around 310 nm and are negligible in the
visible range. Silver presents a white shine and a flat and nearly total reflection
throughout the visible and is well described by a Drude model. More accurate
models of the optical properties of noble metal nanostructures and nanoparticles are
often based on the measurements of optical constants by Johnson and Christy [4],
for gold and silver, shown as data points in Fig. 3.1. Alternatively, one uses the
values listed in the handbook by Palik [5].
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3.2.3 Comparison of Metals

The interesting optical phenomena that we describe in the remainder of this chapter
take place for visible and infrared wavelengths provided two conditions are met.
Firstly, the plasma frequency has to be in the blue/UV part of the spectrum, since
plasmonic resonances of nanoobjects usually occur just to the red of the plasma
frequency. Secondly, damping must be low. The first requirement is met by most
metals, including gold, silver, copper and aluminium. The second requirement, i.e.,
the low-loss requirement is met by only a few metals (see the handbook by Palik
[5]). Indeed, DC resistivities of metals already show that damping is high except for
the noble metals silver and gold, and possibly a few materials that are very difficult
to handle, such as alkali metals. A further promising candidate is aluminium, which
is suited for plasmonics in the UV. It has a plasma frequency at about 15 eV with a
damping factor γ * 0.02ωp. It should be noted that the physics we describe below
in principle scales to any frequency range provided one can shift the plasma fre-
quency. For instance, many chemical compounds have a unique fingerprint in the
mid IR and at THz frequencies. Since these frequencies are a factor 100 lower than
optical frequencies, they require materials with 10,000 lower electron density in
order to lower the plasma frequency. Such concentrations are achievable in doped
semiconductors such as doped Si or materials such as InSb, which are being
investigated for use in THz plasmonics.

Fig. 3.1 Real and imaginary parts of the dielectric function of a, b gold, and c, d silver. Solid lines
are deduced from the Drude model including only conduction electrons; the symbols represent
measurements by Johnson and Christy [4] and include interband transitions. Drude parameters
gold ωp = 1.4 × 1016 s−1 (or *9 eV) and γ * 0.01 ωp. Silver ωp = 1.4 × 1016 s−1 (or *9 eV) and
γ * 0.003ωp

58 P. Zijlstra et al.



3.3 Scattering by Small Particles

Because of the large negative value of the real part of the dielectric constant of noble
metals, small particles present a large dielectric contrast with their surroundings,
which usually have positive dielectric permittivity. This large contrast leads to strong
scattering of light, which is often used for the detection and study of metal NPs.
Scattering increases when the particles are dispersed in media with higher refractive
indices, a phenomenon known as the immersion effect (pp. 37–40 in [2]). In the
following, we discuss the scattering of a small sphere in the electrostatic dipole
approximation. Section 3.3.1 deals with the polarizability of nanospheres, while
Sect. 3.3.2 describes observables in scattering experiments. Section 3.3.3 discusses
non-spherical particles, in particular spheroids.

3.3.1 Polarizability of a Small Sphere

Mie’s theory [1] of scattering by a sphere in a homogeneous and isotropic medium
with a different dielectric permittivity provides exact solutions for the scattered and
transmitted fields [6]. These solutions simplify considerably if the sphere is much
smaller than the wavelength of light in the materials involved. In that case, it is
possible to neglect the variations of the electromagnetic field over the sphere’s
dimensions and to replace the exact electric field by a static one, giving rise to an
effectively dipolar response. To evidence that this is indeed the case, let us consider
the classical problem of a sphere of radius a in a static homogeneous incident
electric field of strength E oriented along z. In electrostatics, the field is minus the
gradient of a potential Φ that satisfies the Poisson equation. We are looking for
solutions of the following equations:

DUin;outðrÞ ¼ 0 everywhere with

Uin r ¼ að Þ ¼ Uout r ¼ að Þ; and

ein
dUin r ¼ að Þ

dr
¼ eout

dUout r ¼ að Þ
dr

;while

lim
r!1Uout rð Þ ¼ �Er cos h:

ð3:7Þ

These equations assume (1) there is no free charge, (2) the potential is contin-
uous across the sphere boundary, but (3) its slope jumps, while finally the potential
far away from the sphere is simply that of the incident homogeneous field oriented
along z = rcos θ. The jump comes from Maxwell’s boundary condition
rD ¼ �r erUð Þ ¼ 0, and has as interpretation that the response of the free
electrons in the sphere effectively form a surface charge layer at the sphere
boundary. It is easy to check that:
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Uin ¼ �Er cos hþ ein � eout
ein þ 2eout

� �
Er cos h ¼ � �3eout

ein þ 2eout

� �
Er cos h ð3:8Þ

and

Uout ¼ �Er cos hþ a3
ein � eout
ein þ 2eout

� �
E
cos h
r2

¼ �Er cos hþ p cos h
4pe0r2

ð3:9Þ

solve the problem exactly. The solution shows two facts. Firstly, inside the sphere,
the induced field is homogeneous, and exactly along the applied incident field, but
with a different strength 3εin/(εin + 2εout). Secondly, outside the sphere the field is
the sum of the incident field, plus a term that is exactly equal to the field of a dipole
of strength p located at the origin. The electrostatic response of a sphere is hence
identified with an induced dipole moment p, the magnitude of which is proportional
to the incident field E. The constant of proportionality is termed polarizability,
defined through p ¼ a0E:

Returning to Mie’s solution for scattering by a sphere, we note that in case of
spheres much smaller than the wavelength λ, the electrostatic result essentially
carries over. As the scattering object grows in size, the Mie solution deviates from
the electrostatic solution. So-called radiative corrections, which are small, can be
added to the polarizability of the sphere to simulate scattering, assimilating the
sphere to a dipole. For noble metals, the dipole approximation is usually very good
for diameters less than 50 nm. For larger sizes, contributions from higher multipoles
can be included, but electromagnetic calculations soon become indispensable when
the particle or structure sizes become comparable to a quarter-wavelength. Metal
NPs that are used in optics experiments typically have diameters smaller than
100 nm, implying that the electrostatic approximation is reasonable for most
experiments.

To obtain the scattered fields in the dipole approximation, one can start from
Mie’s result and expand it for small volumes, neglecting all terms of order 2 or
higher in volume. The scattered field is that of a dipole oriented along the polari-
zation of the exciting light. Where the scattered field overlaps with the incident
exciting field, it leads to an attenuation of the latter in the transmitted direction,
called extinction. Extinction includes losses to the incident wave either because of
scattering to other modes or because of true dissipation leading to heat production
or to the generation of other wavelengths. The polarizability a0ðxÞ of a small
sphere with volume V in the dipole approximation is given by:

a0 xð Þ ¼ 3e0V
e xð Þ � em
e xð Þ þ 2em

� �
; ð3:10Þ

in agreement with the electrostatic analysis in Eqs. (3.8) and (3.9). Here we use
e xð Þ to refer to the dielectric permittivity of the metal that we already discussed,
while em refers to the dielectric permittivity of the embedding medium.
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The polarizability shows a resonance at the surface plasmon resonance (SPR, or
hereafter plasmon for short) frequency xSPR, when the real part of its denominator
cancels, i.e., for Re ½e xSPRð Þ� ¼ �2em. If we assume a Drude model for the metal,
and assume a particle in air, the polarizability simplifies to a Lorentzian resonance

a0 xð Þ ¼ 3e0Vx2
SPR

x2
SPR � x2 � ixc

; ð3:11Þ

with the resonance frequency at xSPR ¼ xP=
ffiffiffi
3

p
, i.e., at frequencies significantly

red-shifted from the plasma frequency. For silver and gold, this estimate results in
plasmon resonances in the UV/blue part of the spectrum. The relation
Re ½e xSPRð Þ� ¼ �2em further also explains the sensitivity of the plasmon resonance
to the surrounding index of refraction. Generally, the resonance red-shifts upon
immersion in higher index media.

The electrostatic analysis of the field nearby a small sphere can be used also to
estimate how strongly the incident electric field strength E can be enhanced due to
the plasmon resonance. If we evaluate the dipole field exactly at the sphere
boundary, where it is highest, we find

Edipole r ¼ að Þ ¼ p cos h
4pe0a3

¼ 3e0V
4pe0a3

e xð Þ � em
e xð Þ þ 2em

� �
E ¼ e xð Þ � em

e xð Þ þ 2em

� �
E: ð3:12Þ

To first order, the field enhancement is hence independent of the size of the
sphere. On resonance Re ½e xSPRð Þ� ¼ �2em, then the ratio of dipole field to inci-
dent field reduces to

Edipole r ¼ að Þ
E

����
���� ¼ 3jRe e xSPRð Þ½ �j

Im e xSPRð Þ½ � : ð3:13Þ

Evidently, the lower the Drude damping rate of the metal, the higher the quality
factor of the plasmon resonance as gauged from the resonance width in Eq. (3.11),
and consequently, the higher the field enhancement. For a Drude metal, the field at
the metal approximately reduces to xSPR=c, i.e., to a factor 30 or so. Turning to a
real metal, the field enhancement by a silver particle indeed approaches the Drude
limit, whereas in gold the additional damping due to the interband transitions limits
the enhancement to a factor *5.

3.3.2 Extinction and Scattering Cross Sections

The polarizability that we introduced above in principle describes the response of a
metal sphere to incident light. However, in actual experiments, the induced dipole
moment, or polarizability, is not usually the actual observable. Instead, in a typical
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experiment one would irradiate a particle with a known intensity (units W/m2), and
measure how much power (units W) the object takes out of the incident beam [6].
The ratio between power and intensity has units of area, and is hence coined ‘cross-
section’. The so-called ‘extinction cross-section’ quantifies how much light a par-
ticle takes out of a beam, while the ‘scattering cross-section’ quantifies how much
light a particle reradiates as scattered light. It should be noted that the units of area
for cross-sections lend itself to a very graphical interpretation: if, for instance, the
extinction cross-section exceeds the geometrical cross-section, this means that the
particle is more efficient at casting a shadow than would be expected from its
geometric size. On plasmon resonance, this ‘efficiency’ (cross-section divided by
geometrical area) can reach values up to 10 for spheres and even more for elongated
particles. Extinction and scattering cross-sections in the dipole approximation can
be expressed in terms of the polarizability by

rext ¼ k
e0

Im a xð Þ; and ð3:14Þ

rscatt ¼ k4

6pe0
a xð Þj j2; ð3:15Þ

where k ¼ 2p
ffiffiffiffiffi
em

p
=k is the wavevector of light outside the scattering sphere.

Equation (3.15) is essentially the famous Rayleigh scattering law: for a small
particle scattering scales inversely with the fourth power of wavelength, and with
the square of the volume (sixth power of diameter). On the other hand, the
extinction cross-section, which is related to the scattered field by the optical the-
orem [6], scales with volume only. Since the difference between extinction and
scattering must be due to absorption, the scaling implies that for very small particles
(i.e., smaller than 1/10 of the wavelength of light), the extinction is mainly deter-
mined by absorption, as is well known for colored molecular solutions. Scattering
becomes more and more important for larger and larger particles. Therefore, to
detect small particles, absorption or extinction is much more interesting than dark-
field scattering, which is weak and easily obscured by experimental imperfections.
Once particles are above approximately 100 nm in diameter, the extinction of a
metal particle is mainly due to scattering instead of absorption.

By way of example, Fig. 3.2 shows absorption, extinction and scattering spectra
of a 25 nm gold sphere placed in vacuum, and in water (n = 1.33). All lines show
spectra calculated using a full Mie calculation, except for the dashed spectrum in
the left panel, which is calculated using Eqs. (3.14) and (3.15). Agreement between
the approximate model and the full calculation is good. For both approaches we
have taken the measured dielectric constant of gold according to Johnson and
Christy [4] instead of the Drude function. The calculated spectra are in good
agreement with the experimental ones (see, e.g., Fig. 2.22, Chap. 2). Spheres of
diameter between 10 and 50 nm show a resonance at a plasmon frequency of
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around 520 nm. This resonance is broadened by losses due to the interband tran-
sitions. For 25 nm diameter spheres the absorption cross-section at the maximum is
about 300 nm2. We note that this explains the colors observed for colloidal sus-
pensions of spherical gold NPs and their extinction spectra, which are nearly size
independent for NPs smaller than 50 nm (Fig. 1.1, Chap. 1, and Fig. 2.22, Chap. 2).
The color change between 50 and 20 nm (from red to orange, Fig. 1.1) is caused by
a very small shift in the maximum of the extinction peaks (a few nm, see Fig. 2.22).
For sizes larger than 50 nm, this spectral shift becomes increasingly larger, since the
extinction cross-section grows less than linearly with volume and the absorption
maximum shifts to lower frequencies (Fig. 2.22) because of corrections induced by
retardation. This red-shift of the extinction peak leads to changes in the perceived
color of the transmitted light, which gradually shifts from red to blue (Fig. 1.1).

The polarizability of a small NP can be corrected to include the effects of
radiation by introducing an additional radiative damping channel, leading to a new
polarizability [7]:

a xð Þ ¼ a0 xð Þ
1� i k

3a0 xð Þ
6pe0

: ð3:16Þ

A convenient shorthand for his relation is 1=a xð Þ ¼ 1=a0 xð Þ � ik3=6pe0. The
expression for the extinction and scattering cross-section in terms of the polariz-
ability retain their validity with this revised polarizability, even for NPs with
diameters up to 100–150 nm.

Fig. 3.2 Left cross section for extinction (solid line) and scattering (grey line) for a 25 nm
diameter Au NP in vacuum, according to a Mie calculation. The dipole resonance at 507 nm is
well captured by the dipole approximation. The on-resonance extinction cross section of
*300 nm2 is almost entirely due to absorption (the grey curve ‘Scattering’ was multiplied by a
factor 10). Right Mie cross sections for extinction (solid lines) and scattering (dashed) for 40, 80,
and 120 nm Au NPs in water. The water shifts the plasmon resonance to 520 nm for the smallest
particles. The resonance further redshifts with increasing NP size, due to retardation effects not
contained in the simple electrostatic model. For larger NPs the extinction is mostly due to
scattering (dashed line close to solid line), and not to absorption (difference between solid and
dashed line). For silver NPs as much as 95 % of the extinction can be due to scattering
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3.3.3 Spheroids

The analysis of spherical scatterers already contains all the generic physics of a
plasmon resonance, the associated cross-sections, and the prediction of electric field
enhancement. Yet, variations in particle shape offer significant control over these
properties. For elongated particles such as nanorods, the particle is often approxi-
mated as an ellipsoid because there are analytical solutions for the polarizability of
very small ellipsoidal nanoparticles. For ellipsoidal particles the depolarization field
in the particle is uniform but not necessarily collinear with the applied field, which
can be accounted for by incorporating a geometrical depolarization factor L in the
dipole approximation [8]. The polarizability of an ellipsoid with volume
V embedded in a homogeneous medium with dielectric constant em can then be
expressed as [2, 6]

ap ¼ e0V
e xð Þ � em

em � Lpðe xð Þ � emÞ ; ð3:17Þ

where p = (1, 2, 3) denotes the polarization of the incoming field along one of the
principal axes of the particle. The dielectric function of the metal e xð Þ is given in
Fig. 3.1 for different metals. The depolarization factors Lp depend on the elongation
of the particle, and can be expressed as (for prolate spheroids) [2, 6]

L1 ¼ 1� e2

e2
1þ 1

2e
ln
1þ e
1� e

� �
; ð3:18Þ

and

L2;3 ¼ 1
2

1� L1ð Þ; ð3:19Þ

where L1 (L2,3) is the depolarization factor along the long (short) axis, and
e2 ¼ 1� b2=a2 is the eccentricity of a prolate (cigar shaped) ellipsoid with semi-
major axis length a and semiminor axis length b. For a sphere the depolarization
factors are 1/3 and Eq. (3.17) reduces to Eq. (3.10). Typical values for elongated
particles are (L1, L2,3) = (0.11, 0.45) for a prolate spheroid with an aspect ratio of 3.
The optical cross sections of the particle are then given by Eqs. (3.14) and (3.15).
The above equations give the optical properties of a single particle. For randomly
oriented particles in a suspension, the optical cross-sections are simply given by the
orientational average of the single-particle cross-sections.

Figure 3.3 shows examples of calculated absorption spectra for gold spheroids
with different aspect ratios. An increasing aspect ratio results in a red-shifted lon-
gitudinal plasmon resonance due to a reduced restoring force on the oscillating
electron cloud. This red-shift is also seen experimentally, as shown in Fig. 3.4. The
transmitted light exhibits pronounced color differences due to the red-shift of the
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Fig. 3.3 a Calculated absorption cross sections of gold spheroidal NPs excited along their long
axis. The NPs have a fixed semi-minor axis length (b = 7.5 nm) and varying semi-major axis
length a. The dielectric constant of gold e xð Þ was taken from Ref. [4]. Note that the absorption
cross section increases steeply because the volume of the NPs is different. b Longitudinal plasmon
wavelength in the absorption spectrum of silver and gold prolate spheroids

Fig. 3.4 a Photographs of colloidal suspensions of gold NPs with an ensemble average aspect
ratio ranging from 1 (nanospheres, extreme left) to 4.5 (extreme right). The average diameter of the
particles is*20 nm and varies between the individual samples. b Normalized extinction spectra of
colloidal suspensions of gold NPs with an ensemble average aspect ratio of 1 (nanospheres, red
dotted line), 2.5 (green solid line), 3.5 (brown dashed line) and 4.5 (blue dash-dotted line). A clear
red-shift of the absorption band is observed as the aspect ratio increases, which is responsible for
the color changes observed in a
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longitudinal plasmon absorption with increasing aspect ratio. As discussed above,
for spherical Au NPs smaller than 50 nm the plasmon absorption occurs in the blue-
green, hence the solutions appear red. For increasing aspect ratios the longitudinal
plasmon resonance moves through the visible region to near-infrared wavelengths.
For the largest aspect ratios the solutions appear brownish due to a featureless
absorption profile in the visible with a small peak around the transverse plasmon
resonance in the blue. Representative extinction spectra are shown under the
photograph and confirm this interpretation (Fig. 3.4). Note that the linewidths in
Fig. 3.4 are significantly broader than the calculated ones (Fig. 3.3). This is caused
by inhomogeneous broadening due to the size distribution of the Au NPs.

The same effect is seen in silver nanorods (Fig. 3.3b), only here the plasmon
occurs at a shorter wavelength due to the higher plasma frequency of silver. The
transverse plasmon occurs at 520 nm for gold and at *400 nm for silver nanorods
but is little affected by particle aspect ratio in the range of lengths we consider here.
In the dipole approximation, nanospheres with diameters between 10 and 50 nm
present a plasmon mode at about 520 nm (2.4 eV) for gold and about 400 nm
(3.1 eV) for silver. We see from Fig. 3.1 that dissipation is weak for nanosphere
plasmons in silver but not in gold. Gold exhibits intraband absorption at wave-
lengths between 200 nm and 550 nm, leading to additional losses for the plasmon.
For gold nanorods of aspect ratios a=b[ 2, however, the plasmon is shifted to
wavelengths longer than 600 nm (2.08 eV), for which dissipation is weak. The
plasmon dephasing time for gold nanorods is therefore longer than for gold nan-
ospheres, resulting in a narrow plasmon linewidth [9]. This narrow plasmon of gold
nanorods is useful for many applications that exploit the optical properties of a
single particle, as we will discuss in the next section.

3.4 Applications of Single Metal Nanoparticles

Since the first far-field detection of single metal NPs in 1998, different applications
have arisen that specifically rely on the optical detection of single particles [10].
Applications range from physical to biochemical and biological contexts. After a
short introduction to the optical detection of single metal NPs we will highlight
some of these applications, with the intention to give the reader insight into the
current state-of-the-art. In Sect. 3.4.1 we firstly describe the basic principles of
optically detecting a single metal particle. Then we discuss several applications
including optical labeling and tracking (Sect. 3.4.2), optical trapping of single
particles (Sect. 3.4.3), biosensing (Sect. 3.4.4) and the use of a single particle as a
nano-antenna to enhance fluorescence (Sect. 3.4.5).
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3.4.1 Optical Detection of a Single Particle

It is important to motivate why single particles bring new information, comple-
mentary to the more conventional measurements on ensembles. Although single-
particle experiments are more difficult and provide a lower signal-to-noise ratio than
ensemble measurements, they have distinct advantages:

(i) Even the best synthesis methods available produce a distribution of sizes
and shapes (see Chap. 6 for details). Figure 3.5 shows the inhomogeneity of
a colloidal sample of gold nanorods prepared by wet-chemical synthesis
observed in an electron microscope and optically on an ensemble. By
measuring the properties of individual particles, one recovers the full dis-
tribution of a variable in the heterogeneous ensemble.

(ii) The effect of small perturbations or changes in particle size, shape and
composition, or in local surroundings can be measured with enhanced
sensitivity due to the elimination of inhomogeneous broadening.

(iii) Single-particle experiments enable studies of rare but interesting objects,
which would be difficult or impossible to extract or purify from an
ensemble. Examples are the small assemblies of particles that are often used
as antennas (see Sect. 3.5 below).

The most important component of a setup that is capable of detecting a single
metal NP is the microscope objective lens. A high quality objective can focus the
light to a diffraction limited spot, which is typically several hundreds of nanometers
in diameter for visible light focused with a numerical aperture of about one. When
combined with a stable light-source (either a laser source or a non-coherent

Fig. 3.5 a Extinction spectrum of an aqueous solution of as-prepared gold nanorods. The inset
shows a scanning electron microscope image of a small volume of the sample that was drop cast
on a silicon substrate. Scale bar 50 nm. To illustrate the inhomogeneous broadening of the optical
spectrum we show the calculated spectrum of a single particle of 9 nm × 40 nm [Eq (3.17) inserted
in (3.14)] as a red dashed curve. b Size distribution of the sample obtained from electron
microscopy images as shown in a. Reprinted with permission from [10], Copyright (2011) Institute
of Physics (IOP)
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broadband source such as a halogen lamp) and a sensitive detector, single particles
can be studied in a variety of configurations, as will be discussed below.

Dark-field scattering: The most commonly employed configuration detects the
light scattered by the metal particle on a dark background by using a commercially
available dark-field condenser. This approach was first demonstrated in 1998 [11, 12]
and has since been used to characterize the spectral and polarization properties of
individual NPs. A powerful approach to correlate the morphology of the NP with its
optical response is to deposit the particles on a conducting substrate (e.g. indium-tin-
oxide coated glass). By imaging the same area on the sample in both an optical and an
electron microscope the shape and size of the particle can be correlated to its plasmon
spectrum [13] (see Fig. 3.6). This technique yields valuable information on the effects
of minute differences in particle morphology (e.g. the endcap shape of a gold
nanorod, the truncation of a triangular plate or cube, or the sphericity of a particle) on
the plasmon resonance. Moreover, this correlation can definitively separate single
particles from small clusters, something that is often difficult from the optical
spectrum alone.

Bright-field detection: The scattered intensity scales as the squared volume of the
particle (Eq. 3.15), making it difficult to image NPs smaller than 30 nm with dark-
field scattering microscopy. In that case the scattered intensity is drowned by the
noise level of a typical detector. Spectra of these small NPs are therefore better
collected interferometrically in a bright-field setup [14]. Herein the scattered wave is
overlapped with a reference wave, causing interference between the two. For con-
venience the reference wave is most often the reflection off the glass sample sub-
strate, but it can also be a secondary beam. For small NPs the interference between

Fig. 3.6 Scattering spectrum and transmission electron microscopy image of the same gold
nanocube. The electron microscopy image yields information about the morphology of the particle
such as the edge-length and tip curvature, information that cannot be obtained from the spectrum
alone. Scale bar 40 nm. Reprinted with permission from [13], Copyright (2009) American
Chemical Society

68 P. Zijlstra et al.



the reference and scattered wave results in a detected intensity that scales as the NP
volume instead of the volume squared. This technique is capable of detecting NPs as
small as 5 nm with a reasonable signal-to-noise ratio. Bright-field microscopy
detects the NPs against a high background (the reference field) so it is important to
use a stable light source to prevent fluctuations in the background intensity.

Photothermal microscopy: A complementary method that detects particles down
to 1.4 nm and even single absorbing molecules is photothermal detection [15]. In
photothermal microscopy a pump beam is absorbed by the particle, which subse-
quently heats up due to the efficient non-radiative decay of the excited electron-hole
pairs. The thermal energy is dissipated into the environment, which causes a change
in the index of refraction around the particle due to thermal expansion of the
solvent. This so-called thermal lens is then detected by a secondary probe beam
either in transmission or reflection. Because the probe beam wavelength is chosen
far away from the plasmon resonance it is not absorbed by the NP, and much higher
probe intensity can be used to reduce photon noise. The heating beam is time-
modulated at a high frequency in the MHz range, and the resulting variations in the
detected probe laser intensity are extracted with a lock-in amplifier. The photo-
thermal signal thus detects a weak effect (the refractive index change) but by
accumulating the contribution of many photons it can still achieve an excellent
signal-to-noise ratio.

Photoluminescence: Photoluminescence (PL) microscopy is also capable of
detecting a single metal NP. Luminescence detection is gaining popularity because
the technique is analogous to fluorescence microscopy to image single organic
fluorophores, and because highly sensitive setups are already available in many
laboratories. The advantage of PL microscopy is that, since the luminescence
wavelength is different from the excitation wavelength, it is in principle easy to
separate signal from scattered background, simply using optical filters. The first
observation of PL of gold dates back to 1969 [16], when Mooradian studied bulk
gold and observed a broad PL spectrum with a quantum yield (number of emitted
photons per absorbed photon) of about 10−10. PL from bulk gold originates from
radiative transitions of conduction electrons toward empty electron states, which
can be either holes in the d-band (electron–hole interband recombination), or empty
electron states or holes within the sp-conduction band (intraband transitions). Later
studies showed that this low quantum yield can be enhanced by several orders of
magnitude in the presence of surface roughness (lightning-rod effect) and localized
surface plasmons. Recent studies have reported that the photoluminescence quan-
tum yield of a single plasmonic particle only weakly depends on its size and shape
and typically lies in the range of 10−5–10−6. Despite this low quantum yield single
particles are easily detectable in a standard microscope due to their large absorption
cross section. Under single-photon excitation, the luminescence brightness of a
single metal NP of several tens of nanometers in diameter is comparable to that of a
single fluorophore.
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3.4.2 A Metal Particle as an Optical Label

Contrary to single organic fluorophores or semiconductor quantum dots the signal
of metal NPs does not blink or bleach due to the large number of conduction
electrons per particle (typically 103–105, compared to a single electron involved in
fluorescence for an organic fluorophore). This gives metal NPs a considerable
advantage over fluorophores when used as optical labels. The stable signals
(scattering, luminescence, harmonic emission, photothermal) of metal NPs are
hardly affected by their environment and allow for observation times only limited
by diffusion out of the field-of-view of the microscope. Moreover, the high signal-
to-noise ratio enables tracking of single metal NPs with microsecond time resolu-
tion. By tracking the particle in space and time one gains valuable information
about the location and transport of proteins in living cells.

Once a metal NP is taken up by a cell either actively or passively, its strong
scattering or luminescence can be used to track biomolecules attached to it. As an
example, Fig. 3.7 shows the trajectory of a single 40 nm gold NP attached to a
phospholipid [17]. The diffusion of the phospholipid in the plasma membrane of
epithelial cells was monitored using differential interference contrast microscopy
with a time resolution of 25 µs. Remarkably, the conjugate undergoes hopping
diffusion between compartments in the membrane. To resolve the hop movement,
the temporal resolution must be considerably better than the average residency time
within a compartment (a few ms). The dwell time was thus not observable with the
time resolution typical for imaging with organic fluorophores (viz., 33 ms).

In the crowded environment of a cell, the label size should be minimized
to prevent effects of viscous drag on the process. Metal NPs of 10 nm and smaller

Fig. 3.7 Trajectories of two lipids in the cell membrane of an epithelial cell. The lipid was tracked
by imaging a 40 nm gold NP attached to it with a time resolution of 25 µs. The different colors
indicate the compartments through which the lipid diffused. Copyright 2002 Rockefeller
University Press. Originally published in Ref. [17]
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(no bigger than a large protein) cannot be detected with a conventional scattering-
based setup and require a more selective method, such as photothermal microscopy
(see Sect. 3.4.1 for details). In 2006 Lasne et al. [18] used this technique to track
single gold NPs as small as 5 nm in a living cell. Even though the metal NP is small
it still absorbs significantly more than the cellular background, enabling back-
ground-free detection inside the cell. Trajectories of a single particle can be
recorded at video rate by employing a triangulation procedure yielding a locali-
zation accuracy of *10 nm, comparable to state-of-the art super resolution
microscopy techniques. With anisotropic NPs, one may not only track and measure
translational motions of biomolecules, but also extract information on their orien-
tation and rotation by exploiting the dipolar character of the plasmon resonance.
Gold nanorods are often employed for two-dimensional orientation tracking due to
their ease of synthesis and strong and anisotropic optical response. Assemblies of
spherical NPs such as dimers also exhibit a dipolar optical response (Sect. 3.5), and
have been used to track rotations.

As is evident from the above description, the ability to detect single metal NPs
has led to exciting new insights in biophysical questions which are difficult to
address with single organic fluorophores or semiconductor NPs. Passive tracking of
single Au NPs has already yielded exciting results, but the active manipulation of
particles for single-molecule force spectroscopy would immediately open a whole
new realm of experimental possibilities. Recent developments in the optical trap-
ping of single metal NPs have brought this prospect closer than ever, as will be
described in the next section.

3.4.3 Optical Trapping

Optical trapping of a single metal NP can be accomplished by strongly focusing a
near-infrared laser beam using a high numerical-aperture objective lens. The force
exerted by the laser beam onto the NP consists of three components: the gradient
force, the scattering force and the absorption force. The scattering and absorption
forces scale as their respective optical cross-sections and act in the propagation
direction of the laser beam. These forces therefore displace the particle along the
optical axis and tend to push it out of the laser focus. The gradient force on the other
hand stabilizes the position of the NP in the trap and can be expressed as

~Fgrad ¼ 1
2
a0 xð Þrh~E2i; ð3:20Þ

with a0 the real part of the polarizability of the particle (see Sect. 3.3 for expressions
for a in the dipole approximation) and ~E the electric field vector in the focus. Stable
trapping can thus only be achieved when the axial gradient force exceeds the sum of
the scattering and absorption forces. Maximizing the gradient force is often done by
employing microscope objectives with a high numerical aperture. These objectives
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focus the trap laser to the smallest possible spot-size (limited by diffraction),
thereby maximizing the field gradient rh~E2i in Eq. (3.20). Note that trapping
cannot be achieved with a laser wavelength on the blue side of the plasmon res-
onance because the polarizability, and thus the gradient force, is negative. The
particles will then be propelled out of the laser focus.

It is immediately obvious that metal NPs can be trapped down to smaller sizes
than dielectric particles. For example, a (in the dipole approximation, at 1,064 nm)
is *10 times larger for a 40 nm diameter gold bead than for a polystyrene one. For
an ellipsoidal particle of 70 nm × 20 nm this difference is as much as *50 times in
the dipole approximation. As a result, single-beam optical tweezers allow for the
stable optical trapping of single Au spheres and nanorods, and Ag NPs. For par-
ticles >100 nm forces in the pN range can be exerted with a laser power of several
tens of milliwatts. This range of forces is promising for applications in single-
molecule force spectroscopy, for example to stretch a single DNA molecule or to
stall a molecular motor. Non-spherical metal NPs also experience a torque in an
optical trap because of the anisotropy of their polarizability tensor. Au and Ag
nanorods therefore align with the trapping laser polarization. The optical torque that
can be exerted on a single Au nanorod was recently quantified to be *100 pN nm
for 80 mW of trapping laser power [19], enough to twist biomolecules such as
DNA. Although the absorption cross-section of the NP at the trap laser wavelength
is small, it is non-negligible, and causes the NP to heat and eventually melt if the
trapping power is sufficiently high. Typical heating rates of metal NPs in an optical
trap are 0.1–1 K/mW, depending on the shape and size of the NP [19–21].

Force spectroscopy has now mainly been performed outside the cell, in a well-
controlled environment. The main reason is that the dielectric particles often
employed for these studies have diameters in the range of 500 nm–5 µm. These
large particles are much bigger than typical organelles in the cell, and significantly
distort cell function. Due to their large volume polarizability compared to dielec-
trics, the trapping of metal NPs seems a promising avenue to take single-molecule
force-spectroscopy into the cell.

3.4.4 Biosensing

The frequency of the plasmon resonance is not only sensitive to the morphology
and the composition of the particle, but also to the refractive index of its local
environment. This sensitivity arises from the electric field associated to the plas-
mon, which extends beyond the particle’s surface. The evanescent near-field pen-
etrates the medium around the particle, making the plasmon resonance frequency
sensitive to the refractive index in its immediate vicinity (Eq. 3.10). This index
sensitivity opens up possibilities to optically detect molecules without the need to
label them by using plasmon shifts as reporters for molecular binding. Remarkable
progress has been made in the past two decades in the development of plasmonic
biosensors. The commercial sensors do not contain metal NPs, but use thin metal
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films that support propagating plasmon polaritons, optical excitations bound as a
guided mode to the metal due to the free electron response. Propagating plasmonic
biosensors are now commercially available to perform label-free interaction anal-
ysis with a high throughput and sub-nM sensitivity. However, large quantities of
analyte are required to cover the surface of the sensor (on the order of a mm2),
which is problematic when expensive reagents are to be tested. The detection of
only a few or even a single molecule is not possible because the response of the
sensor is integrated over a large surface area. Plasmonic sensors based on single
metal NPs are promising alternatives that do not suffer from these drawbacks.

Plasmon sensing can refer to one of two variations, namely (bulk) refractive
index sensing and the sensing of molecular binding. In the former, only the bulk
index sensitivity and linewidth of the plasmon determine the sensitivity. The sen-
sitivity of a single particle sensor is often expressed in terms of its figure-of-merit
(FOM), which can be expressed as

FOM ¼ DxRIU

C
; ð3:21Þ

with DxRIU the frequency shift of the plasmon for unit refractive index change, and
C is the linewidth. The FOM is higher for narrower resonances because it is easier
to determine peak-shifts. The FOM of different shapes of NPs has been widely
investigated, and varies from*0.5–1 for a single Au sphere to*10 for a single Au
nanorod. Gold nanorods are therefore widely used for sensing not only because of
their high sensitivity but also due to the availability of straightforward protocols to
synthesize (single crystalline) particles with a high yield. Bulk index changes of
10−2 cause a plasmon shift of several nanometers and are straightforward to detect
using a single metal particle.

In the second case, when the binding of a (bio-)molecule is measured, the size of
the NP is also of concern because it determines the spatial overlap between the local
electric field and the analyte molecule. The local electric field decays approximately
exponentially from the particle surface with a characteristic decay length that scales
as the particle radius. The optimum NP size therefore depends on the volume of the
molecule to detect, and generally smaller molecules require a smaller NP to achieve
the highest sensitivity. Recently, such a single-particle plasmon sensor in the form
of a single nanorod has allowed for the detection of binding events caused by a
single molecule. Plasmon shifts can be monitored in time using for example
photothermal microscopy [22] or dark-field scattering spectroscopy [23]. A typical
time trace of the plasmon wavelength exhibits step-wise shifts caused by the
binding and unbinding of single proteins to receptors on the surface of the NP
(Fig. 3.8). Currently, label-free single-molecule detection is limited to proteins with
a molecular weight > 50 kDa. These smaller proteins typically induce a plasmon
shift of less than a nanometer, which is close to the noise level in a standard optical
setup. Smaller molecules can still be detected by enhancing the plasmon shift [24].
The analyte can be coupled to a label with a high refractive index, for example
another (small) metal NP (Fig. 3.8). Although the sensing is then not label-free
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anymore, the shift of the plasmon upon binding of the molecule can now be easily
determined because coupling between the sensor NP and labeled analyte causes a
dramatic plasmon resonance shift due to the hybridization of the plasmons in the
NPs (see Sect. 3.5 for details on plasmon hybridization).

The proper functionalization of a metal NP allows for the specific detection of
proteins, which is an important aspect of the development of functional biosensors.
It is well-known that the highest sensitivity is reached at the edges of NPs (e.g. the
tips of a nanorod), where the electric field strength is the highest. The functional-
ization of specific facets is therefore an effective avenue to improve the sensitivity
of single-particle sensors. Protocols already exist to specifically functionalize the
tips of nanorods [25] by introducing a surfactant in solution during the NP func-
tionalization (Fig. 3.9). Surfactants assemble into dense bilayers on flat surfaces, but
these bilayers are more open near asperities or on surfaces with a high curvature
radius (such as the tips of a nanorod). Due to the reduced steric hindrance, thiolated
receptors diffuse more effectively to the tips of the nanorod, where the field is
highest. Also the edges and vertex sites of Au nanoplates can be selectively
functionalized by a thiol-exchange reaction, which occurs preferentially at the edges
of the Au NP again because of the reduced steric hindrance [26]. The above
described optimization of the sensitivity is an active area of research that will
eventually enable researchers to routinely detect individual molecules without the
need for labeling.

Fig. 3.8 Schematic showing current detection limits of biomolecular detection techniques that
exploit the plasmon of a single NP. (left) The detection of large proteins (in this case streptavidin)
can be accomplished by monitoring the plasmon of single gold nanorod, without the need to label
the protein. (right) For smaller molecules such as DNA, the analyte (displayed in green) is usually
labeled with a highly polarizable reporter particle to amplify the red-shift. The reporter particle in
this example is a secondary gold nanosphere
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3.4.5 Emission Enhancements

Analogous to radio-frequency (RF) antennas, optical antennas efficiently convert
free propagating optical radiation into localized energy, and vice versa. When an
emitter, such as an organic dye or a semiconductor nanocrystal, is placed at the
proper location in this high local field, the coupling between antenna and the emitter
leads to enhanced single-fluorophore emission (Fig. 3.10). This enhancement near a
plasmonic NP may arise from two factors:

(i) The lightning-rod effect (a non-resonant field-enhancement due to increased
surface charge and crowding of electric field lines around sharp features) in
combination with the presence of a surface plasmon leads to a high field
enhancement in the vicinity of the NP. The excitation rate of the emitter can
be enhanced by this high local field.

(ii) The antenna can also enhance the emission rate of a fluorophore. This Purcell
effect arises from an enhanced density of optical states accessible for decay
for a dipole, or, equivalently, from the enhancement of the dipole moment by
electric currents in the NP antenna. The Purcell effect may not only change
the intensity of the emission, but also its spectral shape, decay rate, and
quantum yield. As metals also enhance non-radiative decay rates, they may
also quench the emission [27] (Fig. 3.10). Quenching typically occurs for
emitters placed within a few nanometers of the NP. The dipole field of the
emitter then exhibits a strong field gradient at the location of the NP, causing
the excitation of higher order plasmon modes. In contrast to the dipolar
plasmon mode, higher order modes are poor radiators in small particles and

Fig. 3.9 Schematic showing the site-specific functionalization of gold nanorods. A dense bilayer of
a surfactant (cetyltrimetheylammonium bromide, in green) provides steric hindrance that prevents
the efficient functionalization of the side faces of a nanorod with thiolated biotin (red). This results
in a particle that is mainly functionalized at its tips, which is also the area where the field-
enhancement and thus the sensitivity to molecular binding is the highest. Note that the difference in
surfactant density between the sides and the tip is exaggerated. Reprinted with permission from
[25], Copyright (2012) Wiley-VCH
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result in quenching of the fluorophores emission, and the energy is simply
dissipated in the metal as heat. The balance between enhancement and
quenching depends on the exact position and orientation of the fluorophore
with respect to the NP, as well as on the NP size [28].

The main parameter that characterizes the emission enhancement is the magni-
tude of the local electric field, i.e. the degree to which the optical field is con-
centrated around the antenna (see also Sect. 3.3.1). For single NPs the field
enhancements are modest: *5 for a 20 nm Au sphere and *50 for a
14 nm × 57 nm Au nanorod [29]. The field enhancement at asperities and metal tips
can be significantly higher than for spherical particles due to the lightning rod effect
(see above). Larger field enhancements are predicted in dimer junctions due to the
hybridization of the plasmons of the two particles (see Sect. 3.5).

When assessing whether an antenna with its large field enhancement will
enhance or reduce the brightness of a fluorophore, it is not enough simply to
analyze the local field at the excitation and emission wavelengths. In addition, one
has to take into account the intrinsic quantum yield (QY) of the isolated fluoro-
phore. For ‘‘good’’ emitters (i.e., QY ≅ 1), any photon that is absorbed leads to
exactly one output photon, and no further increase in QY is possible. Therefore, the
antenna enhances brightness by increasing the effective excitation rate, directly
resulting in a higher emission intensity (at least as long as no quenching of the
emission occurs). In contrast, for ‘‘poor’’ emitters (i.e., QY << 1), the antenna can
enhance both the excitation rate and the QY. A poor QY implies that for the isolated
fluorophore the radiative rate is not competitive with nonradiative decay processes,

Fig. 3.10 a Optical setup used to characterize single-molecule fluorescence in the vicinity of a
single 80 nm gold sphere attached to an optical fiber. b Fluorescence count-rate as a function of
distance (z) between the fluorophore and the metal NP. The ratio between the emission rates in the
presence (γem) and in the absence of the Au NP (c0em) is also given (both enhancement and
quenching are observed depending on z). Reprinted with permission from [27], Copyright (2006)
by The American Physical Society
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which are for instance enabled by the vibrational degrees of freedom in the emitter
(organic fluorophores) or by Auger recombination processes (semiconductor
nanocrystals). Accelerating the radiative decay through Purcell enhancement at
fixed nonradiative decay rates means that radiative decay becomes more competi-
tive, therefore effectively increasing the QY. Fluorescence intensity enhancements
of 1,000 or more are easily reached when a poor emitter is positioned close to a
single gold nanorod or a dimer antenna composed of two triangles in a bowtie-
antenna configuration [30]. Nano-antennas therefore form a promising route to
generalize single-molecule fluorescence imaging to emitters with low QYs.

Emission processes that scale nonlinearly with the local intensity profit enor-
mously from the field enhancement around a nanoantenna. For example, surface
enhanced Raman scattering (SARS) typically employs corrugations on a rough
metal surface to enhance the Raman scattering signal, which scales as E4. Enor-
mous field enhancements of up to 103 are needed to amplify and detect Raman
signals from single molecules. These enhancements are not easily obtained, and
require selected asperities or sharp features on a rough metal film.

The large optical fields near a metal NP are also commonly employed for near-
field imaging [31]. Near-field imaging is an approach to beat the diffraction limit in
optical microscopy. The essential idea is that one of the ways to beat the diffraction
limit of Abbe (resolution λ/2NA) to which far field optics are subject is to place a
local nanoscopic reporter directly inside the sample under inspection. A plasmonic
NP can be used as a near-field probe to interact locally with the sample. In a
scattering based approach the evanescent component of the optical field at the
sample is converted into propagating radiation by the scattering probe. By col-
lecting this scattered radiation and mapping its strength, a spatial image can be
collected by raster scanning the position of the probe. The region where the field is
significantly enhanced is of the order of the size of the antenna, and sub-diffraction
limited resolutions of 10–50 nm can be routinely achieved.

3.5 Clusters and Lattices of Metal Nanoparticles

While single NPs in isolation already provide a wealth of properties and applica-
tions, combining them into clusters or lattices provides even further benefits. When
plasmonic NPs are brought together within distances of well below the wavelength,
the plasmon resonances of the individual building blocks couple to form collective
plasmon modes with novel properties. Following a seminal paper by Prodan et al.
[32] this phenomenon is commonly known as plasmon hybridization. Plasmon
hybridization allows to:

• Control at what wavelength collective plasmon resonances occur. Large shifts
compared to the limited range of wavelengths achievable with just single par-
ticles are possible.

• Control the spectral linewidth of plasmon resonances.
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• Introduce a strongly polarization dependent response.
• Achieve ultrahigh field strength.
• Control the directionality with which scattered light is reradiated.

In this section we first describe the concept of plasmon hybridization, and
explain how spectral resonances can be tuned using hybridization (Sect. 3.5.1).
Next, we validate the intuition of the plasmon hybridization approximation against
exact calculations, and explain the relevance of plasmon hybridization for reso-
nance linewidth (Sect. 3.5.2, applications in Sect. 3.5.3). In Sect. 3.5.4 the use of
plasmonics to achieve ultrahigh field strengths is discussed. Directional antennas
are treated in Sects. 3.5.5, and 3.5.6 finally discusses the extension of insights for
finite clusters to infinite periodic lattices.

3.5.1 Plasmon Hybridization

By way of example, let us consider the physics of a plasmon dimer, a cluster of two
identical plasmon particles with a volume V at a short center-to-center separation
d from each other. In Sect. 3.3 we have established that a single plasmon particle
responds to an incident field of strength Ein as a dipole with a dipole moment p set
by a polarizability α that shows a clear resonance, according to (3.17). At very small
separations d, one can approximate the field that the induced dipole p in a particle
generates by its dominant near field term

Edipole ¼ 3 p � rð Þr̂ � p
4pe0r3

e�ixt: ð3:22Þ

This equation contains the following physics: the scatterer oscillates at the same
driving frequency x as the incident field, falls off monotonically as 1=r3 as a
function of distance r away from the center of the scatterer and has a distinct
orientation dependence. On the axis along p, the field is exactly parallel to p, while
on the axis transverse to p, the field is antiparallel to p and twice weaker in strength.
It is important to realize that this expression is approximate and only valid in the
near field. Indeed, any radiating dipole also has a 1=r2 and 1=r field contribution
that are both weaker at close range, but dominate further from the scatterer. Fur-
thermore, at a distance larger than a fraction of the wavelength one should take into
account that the radiated field is not everywhere in phase, but undergoes a retar-
dation due to the distance it has to travel (replacing e�ixt by eikr�ixtÞ. Suppose now
that we quantify the response of a plasmon dimer where the dimer is illuminated
with an incident field that is polarized along the dimer axis. Both particles will be
driven directly by the incident field, and by each other. The responses of the two
particles 1 and 2 hence follow from
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p1 ¼ a1½Ein r1ð Þ þ 2p2
4pe0d3

�; and

p2 ¼ a2½Ein r2ð Þ þ 2p1
4pe0d3

�:
ð3:23Þ

Since the two particles will be polarized along the axis of the dimer, this cou-
pling scenario is termed longitudinal. The above two equations can be rewritten in a
matrix form as follows

1=a1 �2=4pe0d3

�2=4pe0d3 1=a2

� �
p1
p2

� �
¼ Ein r1ð Þ

Ein r2ð Þ
� �

: ð3:24Þ

Substituting the Lorentzian form of the polarizability for each particle that is
appropriate for a Drude metal (Eq. 3.11), one recognizes

x2
SPR � x2 � ixc �6Vx2

SPR=d
3

�6Vx2
SPR=d

3 x2
SPR � x2 � ixc

� �
p1
p2

� �
¼ 3Vx2

SPR
Ein r1ð Þ
Ein r2ð Þ

� �
: ð3:25Þ

We have now arrived at a linear set of equations that is formally equivalent to the
physics of two pendulums that are coupled via the off diagonal term in the coupling
matrix. In this analogy, the dipole moment p is equivalent to the pendulum
amplitude, the driving force is the electric field Ein due to externally incident
radiation, and the off-diagonal term essentially implies a coupling rate 6V=d3xSPR.
As in the pendulum case, this linear set of equations should be viewed as an
eigenvalue problem, in which the eigenvalues x� correspond to the eigenfre-
quencies of the normal modes in the system. By bringing two identical plasmon
particles close to each other, one expects the degenerate plasmon resonances to split
into two distinct resonances. One of the resonances corresponds to a symmetric
dipole configuration p1 ¼ p2, where the dipole moments are aligned, while the
second resonance corresponds to an antisymmetric configuration of dipole moments
p1 ¼ �p2. In analogy to the theory of hybridization of molecular orbitals, the
symmetric mode is referred to as a bonding resonance, and the antisymmetric mode
is called antibonding. The bonding mode is lower in energy, i.e., red-shifted relative
to the bare plasmon frequency while the antibonding mode is blue-shifted. The
eigenfrequencies (taking damping γ as zero) are

x� ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6

V
d3

;

r
ð3:26Þ

showing that the magnitude of the shift can be easily estimated by the dimen-
sionless ratio V/d3 of particle volume to the inverse separation cubed.

Figure 3.11 summarizes the level splitting in a graphical diagram. That the bonding
combination is shifted to lower energy is intuitively understood simply by consid-
ering electrostatic energy arguments. Evidently, in the symmetric configuration, the
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dipoles are arranged head to tail, in such a fashion that each dipole moment is aligned
with the field of its neighbor. Conversely, for the antisymmetric mode, a blue shift
occurs due to the energy penalty that is associated with the antiparallel alignment of
each dipole with the field of its neighbor. It should be noted in Fig. 3.11 that we have
not drawn the energy splitting as symmetric around the unperturbed level. Firstly, this
serves as a reminder that, different to first order perturbation theory for energy levels
in quantum mechanics, in optics a square root enters (Eq. 3.26), which reduces the
blue shift for large perturbations. Secondly, as the high-energy mode shifts towards
the blue, the approximation that only the dipole mode contributes is increasingly
violated, as the mode enters the range where the particles also have, e.g., a quadrupole
resonance. Analysis including these multipoles indicates that the blue-shift is reduced
compared to dipole intuition. Figure 3.11 also summarizes the level splitting for the
so-called transversely coupled case. Suppose that we start from the same dimer, but
that we illuminate it from a different direction and with a different polarization. If the
incident field is polarized perpendicular to the dimer axis, both particles will obtain a
dipole moment transverse to the dimer axis. The dipoles will again drive each other;
however the interaction term reverses in sign and halves in strength for transverse
coupling. In this case the symmetric eigenmode (dipole aligned) is blue shifted, while
the antisymmetric eigenmode (antiparallel dipoles) is red shifted. In general, for
illumination of a plasmon dimer under arbitrary polarization and incidence, a
superposition of the longitudinal bonding and antibonding, as well as the transverse
bonding and antibonding modes will be excited simultaneously.

This model is by no means rigorous, as it is limited to near field interactions, and a
dipolar approximation. The intuition derived from hybridization will, however,
generally be useful to interpret scattering spectra as well as exact numerical calcu-
lations, as long as we can consider plasmon particles to be small enough (radius
a � k=2p), close enough together for coupling to be via near fields (center-to-center

Fig. 3.11 (Left panel) Level scheme used to understand resonance hybridization in a plasmon
dimer consisting of two identical particles in case of longitudinal polarization. (Center panel)
Same in case of transverse excitation. The general intuition (right panel) is that the electrostatic
interaction energy of a probe dipole in the field of a first dipole sets if a resonance redshifts or blue
shifts. Whether a mode is bright or dark, simply depends on whether the total dipole moment
vanishes, or is twice that of the single entities
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distance d � k=2p), yet far enough apart that mutual driving yields no multipoles
(d[ 2a). Thus, plasmon hybridization has been applied to larger oligomers, clusters
of anisotropic plasmon particles as well as 1D chains of particles at subwavelength
spacing. Several authors have even used plasmon hybridization to understand more
complex systems that do not have an obvious decomposition into dipolar scattering
constituents. A prime example treated in the original work by Prodan et al. [32] is the
core-shell NP that consists of a dielectric core, such as SiO2, surrounded by a thin Au
shell. If one views such a core-shell NP as the subtraction of a solid gold particle and
a hole in a solid block of gold, one can view the shell resonances as a hybridization
of the solid gold particle and the hole.

3.5.2 Validating Plasmon Hybridization Intuition

It is instructive to compare the simple formalism of plasmon hybridization as
outlined above with the actual physics of coupled plasmon systems, as obtained
from experiment or from rigorous calculations. Figure 3.12 shows rigorous cal-
culations of the extinction of a plasmon dimer as a function of wavelength and as a
function of separation, both for transverse and for longitudinal polarization [33].

Fig. 3.12 Exact calculation using a generalized multipole expansion method of the extinction
cross section of a plasmon dimer (NPs of radius a = 15 nm, embedded in a host of index 1.5,
assuming a Drude model with ħωp = 7.5 eV and damping ħγ = 0.05 eV) for two excitation cases.
The extinction cross section is normalized to the geometrical cross section of a single NP and
plotted on a logarithmic color scale. Left excitation by a plane wave incident at almost normal
incidence from the dimer symmetry axis, with polarization along the dimer axis. This polarization
induces longitudinal dipole moments. The left panel hence shows the longitudinal hybridized
resonances. At exact normal incidence the dark mode is not excited at all—at 10° off as in this
calculation it is faintly visible. Right panel: excitation with polarization transverse to the dimer
axis. By choosing an incidence angle at 45° off the dimer axis, both the bright and dark mode are
excited. Note how the longitudinal case shows much larger frequency shift, and how the sign of
the shift is reversed between the longitudinal and transverse (anti) bonding cases. White dashed
lines are a guide to the eye. Calculations follow the method reported in [33]

3 Metal Nanoparticles for Microscopy and Spectroscopy 81



The color scales clearly evidence the presence of two resonances that are degenerate
at large separation, and split as the plasmon NPs approach. This basic result con-
firms the intuition gained by plasmon hybridization theory. For a quantitative
comparison several hurdles need to be overcome.

The plasmon hybridization theory as we outlined above only predicts eigen-
frequencies, and not the actual values of observables such as extinction. None-
theless, the extinction calculated rigorously contains further features that we can
qualitatively explain using the plasmon hybridization model. In particular we note
that the two hybridized resonances are characterized by a highly unequal strength
and a large difference in linewidth. To understand this difference we return to the
arrangement of dipole moments that we identified as underlying the distinct reso-
nances. Turning to the longitudinal resonance, the red-shifted mode corresponds to
the symmetric combination p1 ¼ p2 of dipole moments. This combination has a
very large effective dipole moment P ¼ p1 þ p2 = 2p1. Thereby, this mode radiates
exceptionally well, and is easily excited using outside radiation. In contrast, the
blue-shifted mode is antisymmetric p1 ¼ �p2, and therefore has zero net dipole
moment (P ¼ p1 þ p2 ¼ 0). The antisymmetric mode is hence a poor radiator.
Moreover, it is not easily excited using external radiation, as it requires the incident
field on the two closely spaced NPs to be applied out-of-phase. On basis of the
magnitude of the total dipole moment, the symmetric longitudinal mode is called a
bright plasmon resonance, while the antisymmetric mode is called dark.

In an extinction experiment, the difference between bright and dark plasmon
resonances stands out in two ways. First, the bright resonance is most easily
observed, due to the fact that coupling of the bright plasmon to incident radiation is
strongest. Secondly, the bright and dark resonances have very different linewidths.
The large difference in linewidth is easily understood if we consider the mecha-
nisms by which the two eigenmodes lose energy. In case of the dark plasmon mode,
the plasmon resonance only loses energy due to dissipation as heat as a conse-
quence of the Ohmic damping of the metal. The damping of the dark plasmon can
thereby be even less than the damping of the individual constituent particles:
radiative damping that each NP may have is effectively canceled due to destructive
interference of the radiated fields of the two dipole moments. Thereby the dark
plasmon is referred to as “sub-radiant” (radiative loss lower than that expected for
just one NP) and presents a rather narrow linewidth that is only limited by the
Ohmic damping rate. Conversely, the bright plasmon loses energy both by Ohmic
damping and by radiation damping. Owing to constructive interference of the
radiated fields of the two dipole moments the radiative loss of the bright mode
exceeds that of the individual NPs significantly. This effect is called superradiant
damping and is easily understood as follows. Suppose we have N dipoles each with
identical dipole moment p. The radiated power is proportional to the total dipole
moment squared and hence scales as N2|p|2. The quadratic instead of linear scaling
points to an interference effect that occurs when we coherently add the radiation of
two dipoles. The fact that the loss per dipole increases proportional to N results in a
broadening of the resonance, i.e., an increase in the radiative damping rate. For the
dimer, the radiation damping doubles compared to a single particle.
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3.5.3 Observation and Use of Dark Modes

Narrow linewidths could be especially desirable for spectroscopic and sensing
applications. Firstly, when for instance sensing an analyte via frequency shifts, it is
easiest to sense small shifts if the spectral feature that shifts is narrow. Secondly, by
having lower loss and higher quality factors, dark resonances potentially store
higher field densities in their near field. While dark modes can also be engineered in
single NPs, i.e., by using higher multipole moments, plasmon hybridization pro-
vides a constructive design tool to engineer dark modes.

As a poignant illustration of the importance of dark modes that has been well
studied in the plasmon literature, let us consider plasmon hybridization in a hep-
tamer consisting of 7 plasmon NPs [34, 35]. This structure consists of a hexagon of
NPs, surrounding a central one. Strictly speaking, since each plasmon NP has a 3-
fold degenerate resonance (one for each axis), the heptamer has 21 normal modes.
However, as the heptamer has the same symmetry as a benzene molecule, the 21
modes can be easily classified by symmetry. If we focus on modes that couple to
excitation offered by in-plane polarized plane waves (as would be excited in a
normal incidence optical experiment) only a small subset of eigenmodes participate.
These are the combinations that in the vibrational spectroscopy of benzene would
be coined ‘infrared active’. Figure 3.13 shows the three infrared active eigenmodes
that couple to y-polarized plane waves (in total there are 6 modes that couple to
plane waves). The other 3 are obtained by a 90º rotation of all arrows in Fig. 3.13a).
Due to the coupling between NPs, these three normal modes have both different
eigenfrequencies and very different damping constants. The first mode has all 7
dipole moments approximately aligned and hence has a large damping

Fig. 3.13 Plasmon hybridization in a heptamer. a Arrows indicate the dipole orientation and
strength for the three (out of 21) hybridized plasmon modes of a plasmonic heptamer (calculated
for 100 nm Au NPs, spaced by 150 nm, in the irreducible representation E1u that couples to
normally incident plane waves with polarization oriented from top to bottom in this plot).
b Extinction of the plasmon heptamer versus excitation wavelength. Dotted line indicates the
extinction one would have in absence of the sub-radiant mode. c Amplitudes with which the three
modes are excited (at 1 V/m incident field strength). Figure adapted with permission from [36]
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corresponding to a ‘bright’ or ‘superradiant’ mode. The other two modes in con-
trast, have dipole moments that are not all parallel, and hence have a much smaller
net dipole moment. One of these truly has zero net dipole moment and is hence
‘dark’. The other has a residual net dipole moment that is not zero and is best
described as ‘subradiant’.

Figure 3.13b shows the calculated scattering spectrum of a plasmon heptamer
[36] using a dipole model, which is in excellent agreement with, for instance, the
experiment and full calculations of Hentschel et al. [35]. The scattering has a broad
peak, due to the heavily damped superradiant mode. On top of this peak is a narrow
feature, due to the subradiant mode. The one feature that is remarkable is that,
although on the subradiant mode resonance the incident field causes a strong
excitation of two modes instead of one, the scattering is suppressed and not
enhanced. The physics is that of interference. The incident light drives a coherent
superposition of two modes, which reradiate light out to the far field. The total
scattered intensity is determined by the squared absolute value of the total reradi-
ated field, i.e., the fields reradiated by the superradiant and subradiant mode. In this
particular case, the interference of these fields is destructive, giving rise to an
apparent transparency of the heptamer in scattering around the frequency where the
subradiant mode is efficiently driven. As the phase of the response of the subradiant
mode actually sweeps through 180o as the frequency is swept through resonance,
this interference reverses sign from constructive in the red part of the spectrum, to
destructive in the blue part of the spectrum, as is evident when we compare the
extinction in the presence and absence of the subradiant mode (dashed line in
Fig. 3.13b). Due to the fact that interference between a broad and a narrow con-
tribution is hidden in this scattering spectrum, the transparency window has been
likened to ‘electromagnetically induced transparency’, as well as to the mathematics
of Fano interference. Fano interference is the phenomenon that in any system of
coupled oscillators with a broad and a narrow oscillator, the response to driving
either one of the oscillators can show dispersive non-Lorentzian lineshapes as a
consequence of a change from constructive to destructive interference in interaction
with the second oscillator. The remarkably narrow plasmonic lineshapes of Fano
interference due to plasmonic dark modes are attractive for sensing and spectros-
copy applications, especially given that at transparency a substantial excitation
energy is in the near-field, i.e. in the subradiant resonance.

3.5.4 Narrow Gaps Yield High Fields

For separations larger than a few nanometers, the dimer plasmons are well
described by classical electromagnetic theory and field enhancements depend on the
material, size and spacing of the particles. In the examples for single NPs and NP
clusters that we have discussed so far, the field strength right at the interface of the
metal is not exceedingly large. According to Eq. (3.13) the field strength right at the
interface of a metal NP compared to the incident field strength Einj j, is
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approximately 3Vx0=cr3 � 4px0=c, which at optical frequencies amounts to about
10–50, depending on the choice of metal. Generally, improvements do occur with
elongated NPs, giving rise to somewhat higher field enhancements at the sharpest
ends. According to the simple plasmon hybridization theory outlined in Sect. 3.5.1,
the field that is expected inside the gap of a plasmon dimer may exceed the single
NP value by at most a factor 2 or so. If we examine a rigorous classical electro-
dynamic calculation of the electric field induced in a plasmon dimer when exciting
it on resonance with the bonding mode, we indeed find a field enhancement in the
gap that is larger than that for a single NP. Surprisingly, the enhancement signif-
icantly exceeds that predicted by the simple dipole model: the enhancement in fact
reaches very high values that diverge to infinity for zero gap size in between the
particles.

This observation points at the fact that a dipole approximation fails to describe the
response of plasmon NPs when they are very close to each other. The approximately
dipolar response of metal NPs in Sect. 3.3 was derived on the assumption that the
driving fields are constant over the particle size. When the driving field has a strong
gradient, multipoles are induced as well. For plasmon NPs such multipoles become
increasingly important as the gap between NPs becomes less than their radius. In this
regime, at very small separation, a large field enhancement occurs over a very small
spatial range confined to the gap, corresponding to excitation of very high order
multipoles. While the singular nature of touching geometries and sharp asperities
make a general scaling argument to estimate field enhancements difficult, classical
electrodynamic numerical simulations have shown that field enhancements |E|/|E0|
of 100–1,000 times compared to the incident field strength can be reached in realistic
scenarios, taking into account the radiative and Ohmic losses of metals. For gaps
below 1 nm, quantum mechanical effects such as electron tunneling across the dimer
junction and screening [37] significantly modify the optical response and drastically
reduce the electromagnetic field enhancements relative to classical predictions,
removing the divergence that occurs at zero separation. The high field-enhancements
have been among the main drivers in the plasmon field, as they would allow spec-
troscopies such as Raman spectroscopy, which are characterized by weak signals that
are very often masked by unwanted strong signals (e.g., fluorescence of the speci-
men), to be enhanced by many orders of magnitude. While the actual mechanisms
that underlie so-called Surface Enhanced Raman Spectroscopy (SERS) on plasmon
substrates are still under debate, there is consensus that high electric field enhance-
ment in narrow gaps of up to |E|2/|E0|

2 * 104 or above can be routinely achieved.
By way of illustration, we discuss two examples of the use of plasmon oligo-

mers, both shown in Fig. 3.14. The first concerns the well-known ‘bowtie’ antenna
[38], that consists of two triangular metal particles in a bowtie arrangement, with a
narrow gap in between them. Bowtie antennas combine the electromagnetic
properties of sharp metal tips with those of coupled plasmon resonant NP pairs [30].
A closely related geometry is an antenna consisting of two metal nanorods placed
tip-to-tip [39]. The coupling between the plasmon resonances in these geometries
induces field enhancements in the gap region of up to 1,000. Such bowties can be
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fabricated using state-of-the-art top-down lithography techniques with gaps that can
reproducibly be smaller than 20 nm. Consistent with the ideas of plasmon
hybridization, such antennas have a very strong response to incident light when
excited with light polarized along the bowtie axis. The excitation drives the sym-
metric bright antenna mode, which is resonant typically at around 800 nm for gold
bowties of *300 nm overall size. This resonance is red-shifted from that of the
individual triangles, due to the elongated single particle shape and the longitudinal
dipole moment alignment. The charge separation across the narrow gap implies that
a very strong electric field is generated in the gap region. The high field
enhancement of bowtie antennas has been evidenced in a set of experiments that
include plasmon enhanced Raman scattering, fluorescence lifetime control, and the
usage of bowtie antennas as near field scanning probes.

Instead of top-down lithographic fabrication of nano-antennas, an alternative
approach uses self-assembly of colloidal NPs that have been synthesized in solution.
Amajor advantage of using colloidal NPs for bottom-up fabrication of antennas is the
crystalline nature of the NPs. The (near) absence of crystal defects reduces electron
scattering and minimizes the additional damping of the plasmon oscillation. This can

Fig. 3.14 Antenna geometries. Left SEM image of an array of bowtie antennas. In panel b we
have visualized the field enhancement using a photopolymerizable resist (SU8 in this example).
After exposure and development of the resist, polymer remains at the hot spots, i.e., in the antenna
gaps. Right panels TEM image of a three-NP antenna created by functionalizing three Au NPs
with complementary DNA strands. Hybridization of the strands allows selective formation of
trimers with NPs of 20, 8 and 5 nm size, and 1–2 nm gaps. An electromagnetic simulation of the
field intensity (|E|^2, on a logarithmic color scale covering 4 orders of magnitude) shows a tightly
confined hotspot with 104 times enhancement of |E|^2. Note how inhomogeneous the field is inside
the particles, evidencing that high order multipoles are at play. Panels (a, b) are modified with
permission from [38], Copyright (2011) Optical Society of America. Panels (c, d) are reprinted
with permission from [40], Copyright (2008) American Chemical Society
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result in higher field enhancements compared to lithographically fabricated struc-
tures, which are typically polycrystalline or amorphous. For example, experiments on
an individual single-crystalline Au nanorod have shown fluorescence enhancements
larger than 1,000-fold for single dye molecules (Sect. 3.4.5).

To achieve even higher enhancements, antennas consisting of multiple colloidal
NPs can be assembled in solution and subsequently deposited on a substrate. Using
thiol-linkers, Au NPs can be functionalized with single stranded DNA. By func-
tionalizing NPs with complementary strands, oligomers of controlled composition
can be formed, where the spacing between the NPs is set by the length of the DNA
strand (on the order of 5 nm). For instance, this approach was used by Bidault et al.
[40] to construct plasmon trimers consisting of Au NPs of diameter 20, 8 and 5 nm
attached in a linear string with gaps of just 1–2 nm. The excitation of the large NP is
converted into a strong hot spot in the gap with the next smaller NP. By virtue of
the self-similarity, an even stronger hot spot is found in the opposing gap at the
smallest NP. According to electrodynamic calculations, the field enhancement in
the 1–2 nm gaps can be as high as 100, corresponding to a 104 times enhancement.
Recent measurements of spontaneous emission of dye molecules localized in the
gap [41] confirm the presence of very strongly enhanced fields. The compatibility
of Au with DNA chemistry and the emergence of techniques like DNA origami
means that arbitrary scaffolds for bottom-up fabrication of plasmon structures with
ultrasmall gaps can be created.

3.5.5 Directional Scattering

As discussed above, plasmon oligomers are often called ‘optical antennas’ and
likened to radio antennas. A large benefit of radio antennas is that they provide
directionality to the process of sending and receiving radiowave signals. Plasmonic
antennas can likewise impart directionality to emission and absorption of photons
by single molecules, and other emitters such as semiconductor nanocrystals. To
understand the physics, let us revisit the workings of the archetypical antenna for
radio/TV waves that was designed by Yagi and Uda, which is treated in many
antenna handbooks [42] and depicted in Fig. 3.15. The Yagi-Uda antenna consists
of a set of dipolar scatterers that surround a single active element, i.e. a single
current-carrying wire. The total size of a Yagi-Uda antenna is a few wavelengths,
while the pitch between the elements is approximately λ/3. Scaled to optical fre-
quencies, a Yagi-Uda antenna would hence be approximately 1 micron in size, and
consist of plasmon NPs at pitches of 150 nm or so.

Let us try to assess how directionality comes about in such an array antenna. In
the far zone, the field of N dipoles is the sum of far field dipole radiation of each
scatterer. Let us consider a chain of N dipoles at equidistant separations d along the
x axis, and with dipole moments of equal magnitudes |p| but different phases um

excited along the z-axis. In this case the far field factorizes as a spherical wave eikR
R ,
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multiplied by the radiation pattern specific to z-oriented dipoles, multiplied by a
structure factor

S ¼
XN
m¼1

eikr̂�rmeium ð3:27Þ

that accounts for the coherent addition of radiation of the N dipoles. The coherent
addition contains both geometrical phase differences eikr̂�rm and the phase differ-
ences um. Suppose for instance that one would be able to excite the N plasmon NPs
with phase differences that increase linearly from element to element by an amount
bd such that um ¼ bmd. At a viewing angle θ relative to the x-axis, the structure
factor yields

jSj2 ¼
XN
m¼1

eimd kcos hþb½ �
�����

�����
2

¼ sin N
2 d kcos hþ b½ �

sin 1
2 d½kcos hþ b

" #2

: ð3:28Þ

This structure factor is very strongly peaked in a particular direction, namely the
direction set by kcos hþ b ¼ 0; especially when many elements are present.
Figure 3.16 shows the structure factor for different array lengths. The sharpness of
the structure factor around the peak emission angle increases with the number of
dipoles N in the array, allowing for very narrow beams using long arrays. The
reasoning outlined above for the radiation pattern of coherently radiating dipoles is
commonly used as a design tool in radio antenna engineering. In radio antenna

Fig. 3.15 Left cartoon of a Yagi-Uda antenna. For radio and TV waves such an antenna is meter
sized, and consists of a single active element (red arrow, connected to current receiver/source) and
a set of rods mounted on a linear mechanical support (thin rod). The vertical rods are cut to
approximately λ/4 length, and the antenna pitch is at most λ/3. The longer rod is called ‘reflector’,
while the set of smaller rods are called ‘directors’. When driven (current through red element,
which alone would be an isotropic radiator), the antenna radiates strongly along the axis of the
antenna while no radiation emerges on the reflector side. Right scanning electron micrograph of a
Yagi-Uda antenna with a response at optical wavelengths. The total length of the structure is just
1 micron. The five gold NPs (reflector on lower side of antenna) are fabricated using electron beam
lithography on top of an optical waveguide, which is a 500 nm wide silicon nitride strip on a quartz
surface. The antenna can interface nanoscale sources and detectors to guided modes that propagate
in the dielectric strip
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engineering, very often one can actually realize driving electronics that rigorously
imposes a phase and amplitude on each of N dipoles in an array by controlling the
magnitude and relative phase of currents driving each radiating wire in the radio
antenna. No such luxury is available in plasmonics, as optics only allows a few
distinct forms of driving, namely either by a local point source in the form of a
fluorescent emitter, or in the form of an externally supplied incident beam. Con-
trolling the phase of individual elements directly is hence impossible, since multiple
fluorescent sources would not be coherent. However, the essence of plasmon
antennas is that metal NPs that are near each other couple via dipole-dipole cou-
pling. If we embed a single fluorophore in an array of NPs, it drives not only the
metal NP that it is closest to, but the whole NP chain is excited. The field from the
molecule, plus radiation from all the plasmon NPs finally need to be added together,
and a directional radiation pattern ensues. In such a scenario the control parameters
are firstly the choice of distances between NPs, and secondly a suitable choice of
NP size and shape to engineer the magnitude and phase of the complex polariz-
ability of each plasmon NP.

As discussed above, a particularly powerful example of the physics of such array
antennas is the Yagi-Uda antenna [43–46]. Scaled to optical frequencies, it consists
of a single emitter surrounded by a NP array. If the pitch of the array is chosen to be
around a third of the operation wavelength, and the NPs are chosen to be just blue-
shifted in resonance compared to the emitter, the molecule sets up a travelling wave
in the NP array that has wave vector β almost equal to the free space wavelength.
As a consequence, the antenna has a structure factor that is very highly peaked in

Fig. 3.16 (Left panel) Polar plot of the structure factor in Eq. (3.28) for a phased array in which
the phase advance βd (with d the array pitch) from one dipole to the next is chosen exactly such
that βd = kd = 2πd/λ. A single source is an isotropic emitter that radiates equally into all angles. A
strong forward lobe develops for growing number of dipoles N. The angle θ is measured relative to
the antenna axis. (Center panel) Electromagnetic field generated by a single emitter (radiating
point dipole representing a single molecule) inside a plasmon antenna consisting of Au NPs
embedded in a glass matrix, assuming a NP size of 100 nm and pitch of 150 nm. The field clearly
shows that all NPs in the array are excited and carry large dipole moments, with a phase difference
from NP to NP commensurate with the free space wavelength. The radiation of all these dipole
moments plus that of the molecule itself add together in the far field to give a directional radiation
pattern. (Right panel) Polar plot of the radiated intensity versus angle relative to the antenna axis
for various numbers N of director NPs (note that there is always a reflector). Beyond N = 10 the
radiation pattern does not improve further, as the number of NPs that the molecule can drive is
limited. Figure adapted with permission from [46]
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the forward direction, causing over 90 % of emission to be pointed in a forward
lobe of small opening angle (around 20o). This type of optical antenna could be
useful for creating single photon sources for secure quantum communication that
are integrated in networks of dielectric waveguides. The benefit for microscopy on
single molecules or single semiconductor nanocrystals, could be that fluorescence
into a narrow radiation cone yields one to two orders of magnitude better collection
efficiency, which would alleviate the need for expensive high NA microscope
objectives. In principle, the antennas could be cheaply printed on a substrate using
imprint nanolithography to replicate them from a lithographic master [47]. Thereby
plasmon array antennas could potentially be useful to realize microscopy substrates
that allow rapid fluorescence collection with cheap optics, and may improve the
brightness of single photon sources that are based on single emitters. That the
physics of Yagi-Uda plasmon antennas indeed works has been verified by Curto
et al. [48]. In this experiment, Yagi-Uda antennas were fabricated on a glass slide,
and one or a few quantum dots were lithographically grafted onto a single antenna
element. The radiation pattern was found to be strongly peaked in a forward lobe.
Due to the substrate, and contrary to the idealized calculation, this lobe is not,
however, along the antenna axis, but points into the substrate under a 45º angle.
While the structure factor for the Yagi-Uda antenna strongly peaks in the forward
direction along the antenna axis, it is not sufficiently peaked to overcome the fact
that on a substrate the single dipole radiation pattern is exceptionally strongly
peaked into the direction of the critical angle (45º downwards into the glass).

The Yagi-Uda antenna is just one example of the usefulness of NP clusters to
provide directivity to emission. Recently it has also been shown that 2D clusters of
particles, as well as 2D clusters of holes in metal films, can similarly impart
directionality on scattering and on emission by single fluorophores. The advantage
of 2D systems is that directivity enhancement perpendicular to the substrate on
which the cluster is deposited can be achieved, making such structures useful for
fluorescence enhancement in microscopy applications. In general, current efforts in
this direction use lithographically prepared structures because lithography allows to
make structures with controlled dimensions (down to 5 nm error) at the required
overall sizes that are approximately twice the wavelength (total size 1 or 2 μm). In
principle, assembly of linear chains of metal NPs with a single emitter at a con-
trolled location could also be possible using self-assembly techniques.

3.5.6 Lattices of Plasmonic Particles

Finally, we discuss infinite periodic lattices of plasmon scatterers. From our review
of finite plasmon NP clusters, it is evident that arraying multiple objects together
allows to sharpen resonances, shift resonances, and to obtain very high direction-
ality. In particular, we mention the possibility to enhance sensing and spectroscopy
through collective lattice resonances. The new physics in lattices compared to that
of finite clusters is the appearance of very sharp optical features that are well known
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in the physics of gratings as ‘Wood’s anomalies’ and ‘Rayleigh anomalies’. In the
context of plasmonics these types of effects have been studied both in systems
composed of metal particles in a transparent background, and in systems that
possess the inverse geometry, i.e. holes perforated in thin metal films. This second
case has opened the new field of ‘Extraordinary Optical Transmission’ spawned by
the pioneering work of Ebbesen [49], but falls outside the scope of this book. We
refer the reader to reviews on this subject [50, 51]. Here we discuss periodic arrays
of plasmon NPs, a subject first studied in detail by the groups of Schatz and Van
Duyne, and by Rivas et al. [52, 53].

The physics of two-dimensional periodic systems of NPs is best appreciated by
turning once again to a point dipole model. Suppose that we have a lattice of
identical NPs located on sites rpq ¼ pa1 þ qa2 where a1;2 are basis vector, and p, q
are both integers. If the lattice is illuminated under normal incidence, this will cause
all the polarizable particles to obtain the same dipole moment. This dipole moment is
once again given by the incident field, plus the field of all dipoles in the lattice, such
that (with hpq the angle between the induced moments p and the vectors rp � rq)

p ¼ a xð Þ Ein þ
X
p 6¼q

eikrpq
3 cos2 hpq � 1

4pe0r3pq
1� ikrpq
� �þ k2

sin2 hpq
4pe0rpq

" #
p

" #
: ð3:29Þ

This equation can be rewritten as

p ¼ A xð ÞEin;

with

A xð Þ ¼ 1
1=a xð Þ � S

; ð3:30Þ

i.e., as if we deal with a lattice of uncoupled particles, but with a renormalized
polarizability A xð Þthat is determined by interactions in the lattice quantified by the
lattice sum S

S ¼
X
p 6¼q

eikrpq
3 cos2 hpq � 1

4pe0r3pq
1� ikrpq
� �þ k2

sin2 hpq
4pe0rpq

" #
: ð3:31Þ

Note how the lattice sum S depends on the lattice geometry but not on any
property of the single NPs. In case of oblique incidence with parallel wave vector k|,in,
i.e. under angle θ = asin (|k|,in|/k), the phase factor eikrpq in the lattice summands is
further modified to read eikrpqþkk;inrpq . The lattice sum is not entirely trivial to calculate,
as it requires a technique borrowed from solid state physics called ‘Ewald lattice
summation’. Indeed, readers may recognize the lattice summations from the well-
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known summation of electrostatic dipole interactions that occurs in evaluating
Madelung constants.

An example of the measured extinction through a square grating of plasmon NPs
on a substrate is shown in Fig. 3.17 as a function of wavelength (2π/λ on the vertical
axis) and incidence angle (actually 2π/λsinθ) on the horizontal axis. Themeasurement
shows two distinct features. Firstly at around 680 nm wavelength (0.0092 rad/nm) a
broad almost angle independent band appears in which transmission is suppressed.
This band corresponds to the single NP resonance and is due to the resonance in α(ω).
Secondly, a narrow line crosses obliquely through the diagram. This narrow line is
contributed by the lattice sum S, and occurs exactly when the lattice allows diffraction
of the incident beam into a diffracted beam that lies in the lattice plane. Importantly,
the lattice sum is strongly structured near each of these diffraction conditions, and
furthermore is a complex quantity with both a real and an imaginary part. The real part
causes the resonances of the array, i.e., the collective hybridized mode frequencies, to
be shifted compared to the single NP plasmon resonance at each crossing between the
angle-independent plasmon band and the angle-dependent resonances in S. The
imaginary part of the lattice sum can cause a change in linewidth of the collective
lattice plasmon resonance. For lattices with pitch below half the wavelength, i.e.,
lattices so dense that no grating diffraction can occur, the radiative damping is typ-
ically larger than that of single scatterers. This is caused by coherently oscillating
dipoles that are in phase and are superradiantly damped, in analogy to the bright
plasmon modes of a dimer (Sect. 3.5.2).

Remarkably, under certain conditions the lattice sum can completely cancel the
radiative damping of the plasmon particle, giving rise to narrowing of resonance
features. The physics is that just prior to the emergence of a diffraction order, the
lattice supports a bound mode that is delocalized in 2D over the entire lattice, but
bound in the third dimension. Since a significant proportion of the electromagnetic

Fig. 3.17 Measured extinction for a lattice of plasmonic nanorods excited along their long axis as
a function of incidence angle (k// = 2π/λ sinθ) and incident wavelength. Panel B shows a cross cut
at normal incidence. Figure reprinted with permission from [53], Copyright (2009) by The
American Physical Society
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field energy resides just outside the metal NPs, the loss rate is even lower than the
Ohmic damping rate of the metal, giving rise to very sharp resonances.

Surface lattice resonances in 2D plasmonic arrays are pursued for a variety of
applications. In optical sensing, the sensitivity is often expressed as a figure-of-merit
(FOM) according to Eq. (3.21) that we defined for a single particle plasmon sensor.
The FOM is greatly boosted for arrays by the fact that resonance lines can have a
linewidth that is an order of magnitude below that of single NPs. Thereby 2D
plasmonic arrays are very suited to measure surface covering layers of analytes that
present a small index difference. In Sect. 3.4.4 we saw that single plasmon NP
sensing can even register the binding and unbinding of single proteins through a
resonance shift. In plasmon NP arrays this is fundamentally impossible, as one relies
on probing an extended area. Nonetheless, fractions of a monolayer of deposited
material can be in principle detected as a resonance shift.

Advantageously, large field enhancements outside the NP can be obtained due to
the collective lattice resonance effect. Indeed, the first pursuits of plasmon lattices
were focused on realizing substrates for reproducible SERS measurements. The
groups of Schatz and Van Duyne were among the first to propose that so-called
Fischer patterns, regularly used in the scanning probe microscopy community as
topographical calibration samples, could be used for this purpose. Fischer patterns
are obtained by first growing self-assembled hexagonally ordered close-packed
monolayers of colloidal NPs on a glass substrate, and subsequently evaporating
metal through the voids. Very reproducibly, a lattice of triangular particles with
sharp tips and arranged in a pattern with hexagonal symmetry inherited from the
colloidal lattice results. SERS signals from sub-monolayers of molecules (e.g. the
DNA base adenine in [54]) can be obtained reproducibly in this manner.

Plasmonic lattices have also attracted interest as structures to improve the in- and
outcoupling of light into high-index semiconductor structures. For instance, in the
large emerging technology of solid state lighting, materials such as GaN and InGaN
form the basis of powerful Light Emitting Diodes (LEDs). A significant problem in
such LEDs is that the light is generated in a layer with very high refractive index
(well above 2). Since the angle of incidence on the interface normal beyond which
total internal reflection of light occurs is small for high refractive indices, most of
the generated light is trapped, unless roughness or scattering layers are used to
improve light outcoupling. Diffractive plasmonic lattices can be easily fabricated
using for instance nano-imprint lithography on top of LED surfaces. The specific
angle- and wavelength dependent resonances of such surface texturing can then be
used to improve overall light extraction from LEDs for particular colors, as well as
causing a redistribution of emitted light into particular emission angles. These
strategies likewise extend to organic light emitting diode layers, where plasmon
lattices help to enhance spontaneous emission decay rates.

Conversely to the case of improving light emitting devices, plasmon lattices
have also been proposed for improving absorption of light by placing a lattice
directly on top of, e.g., silicon photodiodes. Owing to their ability to redirect light
via diffraction, plasmonic lattices increase the overall efficiency of thin photovoltaic
cells [55]. Also, by suitable engineering of the shape resonances of the individual
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particles narrowband color filter arrays have been fabricated directly onto the pixels
of CMOS camera devices [56].

3.6 Exercises

1. Drude model for silver:

(a) Calculate the plasma frequency from the electron density of silver.
(b) What is the Drude damping rate, given the conductivity of silver at DC?
(c) Prove that the polarizability of a silver sphere is a Lorentzian resonance.
(d) Prove that inclusion of radiation damping (3.16) is formally equivalent to

adding extra damping to the Ohmic damping. How large is the extra
damping term? Plot the linewidth of the resonance as a function of particle
diameter

(e) Prove that the optical theorem holds if you use the polarizability of Eq.
(3.16) in the limit of zero Ohmic damping: Scattering cross sec-
tion = extinction cross section

(f) Plot the “albedo”, as a function of particle size, using the damping rate
from (b), on resonance. The albedo (latin for “whiteness”) denotes the ratio
of scattering to extinction.

2. Silicon is a semiconductor that can be doped with both electrons and holes either
by implanting donor/acceptor species, or by creating carriers thermally.

(a) Suppose we consider n-type dopes silicon. What level of doping do we
need to obtain a plasma frequency of 1 THz? Is this level of doping
realistic?

(b) For what size of particle is the dipole approximation still reasonable?
(c) Plot the extinction cross section of an n-doped Si sphere with the doping

from (a) and the size from exercise (b).

3. The optical properties of gold nanorods (which can be synthesized in large
quantities in solution) are often approximated by assuming the shape to be
prolate spheroidal (semi-major axis a, two equal semi-minor axes b = c).

(a) Calculate the plasma frequency of gold. How does it compare to the
plasma frequency for silver found in (1a)?

(b) Plot the depolarization factors L1,2,3 in the range of aspect ratios 1…5.
What is the depolarization factor for an aspect ratio of 1, i.e. a sphere?

(c) Calculate the scattering and extinction cross sections of a prolate spheroid
with a = 30 nm and b = c = 10 nm, immersed in water (n = 1.33). Use the
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Drude dielectric function for gold without radiation damping (see the
caption of Fig. 3.1 for the relevant Drude parameters).

(d) How does the linewidth of this spheroid plasmon compare to the scattering
linewidth of the 80 nm spherical particle plotted in Fig. 3.2b? What causes
the broader linewidth for the sphere?

4. A single metal particle as a plasmonic biosensor.

(a) What determines the figure-of-merit (FOM) of a plasmon biosensor?
Which shape gold particle would have a higher FOM, a sphere or a prolate
spheroid with aspect ratio 4? Is the same true for silver?

(b) Assuming a Drude dielectric function, calculate the plasmon wavelength in
the scattering spectrum for a gold prolate spheroid immersed in water
(n = 1.33) with a semi-major axis of 20 nm and a semi-minor axis of 5 nm.
Repeat the calculation for the same spheroid immersed in ethanol
(n = 1.36).

(c) Calculate the FOM for this spheroid (Eq. 3.21).

5. Consider a dimer of two identically sized particles of volume V, at distance d.
We use a Lorentzian expression for the polarizability and consider longitudinal
coupling, as in Eq. 3.25

(a) Convince yourself that Eq. 3.25 is correct.
(b) In the text we set damping to zero to derive the resonances, and ignored

radiation damping. The resonances are found by taking the determinant of
the coupling matrix M (LHS of Eq. 3.25), and finding the roots. Here we
consider a simple method to judge resonances in hybridization including
damping. We use normalized units with ωSPR = 1, γOhmic = 0.01 ωSPR,
V = 0.1 (meaning V = 0.1(c/ωSPR)

3). Use a program such as Matlab,
Octave or Mathematica to plot 1/|det(M)| for various values of d between
λ/2π and 3λ/2π (i.e. d = 1 and 3 in normalized units) for frequencies from
0.5 ωSPR to 1.5 ωSPR. Explain the resulting diagrams. What is the width of
each peak?

(c) Now we introduce radiation damping through Eq. (3.16), which is
equivalent to replacing the damping rate γ with

cOhmic þ 2=3x2½VðxSPRÞ2=c3� ¼ xSPR½cOhmic þ 2=3 ðx=xSPRÞ2½VðxSPRÞ3=c3� :

In our normalized units this means γ is replaced by γ = 0.01 + 0.0667
(ω/ωSPR)

2. Again plot the absolute value of the inverse determinant. What
happens to the peak height and width compared to c?

(d) In Fig. 3.12, which plots the response of a dimer upon plane wave excita-
tion, the blueshifted mode is hardly visible. However, in (d), the blueshifted
mode appears as a very narrow strong peak. Why does the blue-shifted
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mode not appear in plane wave driving? Would it appear under other forms
of driving?
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