6 research outputs found

    Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers -- role of estrogen receptor and HER2 reactivation

    Get PDF
    Introduction: The human epidermal growth factor receptor 2 (HER2)-targeted therapies trastuzumab (T) and lapatinib (L) show high efficacy in patients with HER2-positive breast cancer, but resistance is prevalent. Here we investigate resistance mechanisms to each drug alone, or to their combination using a large panel of HER2-positive cell lines made resistant to these drugs. Methods: Response to L + T treatment was characterized in a panel of 13 HER2-positive cell lines to identify lines that were de novo resistant. Acquired resistant lines were then established by long-term exposure to increasing drug concentrations. Levels and activity of HER2 and estrogen receptor (ER) pathways were determined by qRT-PCR, immunohistochemistry, and immunoblotting assays. Cell growth, proliferation, and apoptosis in parental cells and resistant derivatives were assessed in response to inhibition of HER or ER pathways, either pharmacologically (L, T, L + T, or fulvestrant) or by using siRNAs. Efficacy of combined endocrine and anti-HER2 therapies was studied in vivo using UACC-812 xenografts. Results: ER or its downstream products increased in four out of the five ER+/HER2+ lines, and was evident in one of the two intrinsically resistant lines. In UACC-812 and BT474 parental and resistant derivatives, HER2 inhibition by T reactivated HER network activity to promote resistance. T-resistant lines remained sensitive to HER2 inhibition by either L or HER2 siRNA. With more complete HER2 blockade, resistance to L-containing regimens required the activation of a redundant survival pathway, ER, which was up-regulated and promoted survival via various Bcl2 family members. These L-and L + T-resistant lines were responsive to fulvestrant and to ER siRNA. However, after prolonged treatment with L, but not L + T, BT474 cells switched from depending on ER as a survival pathway, to relying again on the HER network (increased HER2, HER3, and receptor ligands) to overcome L's effects. The combination of endocrine and L + T HER2-targeted therapies achieved complete tumor regression and prevented development of resistance in UACC-812 xenografts. Conclusions: Combined L + T treatment provides a more complete and stable inhibition of the HER network. With sustained HER2 inhibition, ER functions as a key escape/survival pathway in ER-positive/HER2-positive cells. Complete blockade of the HER network, together with ER inhibition, may provide optimal therapy in selected patients

    Neuroimaging the consciousness of self: Review, and conceptual-methodological framework

    Get PDF
    We review neuroimaging research investigating self-referential processing (SRP), that is, how we respond to stimuli that reference ourselves, prefaced by a lexical-thematic analysis of words indicative of “self-feelings”. We consider SRP as occurring verbally (V-SRP) and non-verbally (NV-SRP), both in the controlled, “top-down” form of introspective and interoceptive tasks, respectively, as well as in the “bottom-up” spontaneous or automatic form of “mind wandering” and “body wandering” that occurs during resting state. Our review leads us to outline a conceptual and methodological framework for future SRP research that we briefly apply toward understanding certain psychological and neurological disorders symptomatically associated with abnormal SRP. Our discussion is partly guided by William James’ original writings on the consciousness of self

    Different mechanisms for resistance to trastuzumab versus lapatinib in her2- positive breast cancers - role of estrogen receptor and her2 reactivation

    No full text
    Introduction: The human epidermal growth factor receptor 2 (HER2)-targeted therapies trastuzumab (T) and lapatinib (L) show high efficacy in patients with HER2-positive breast cancer, but resistance is prevalent. Here we investigate resistance mechanisms to each drug alone, or to their combination using a large panel of HER2-positive cell lines made resistant to these drugs. Methods: Response to L + T treatment was characterized in a panel of 13 HER2-positive cell lines to identify lines that were de novo resistant. Acquired resistant lines were then established by long-term exposure to increasing drug concentrations. Levels and activity of HER2 and estrogen receptor (ER) pathways were determined by qRT-PCR, immunohistochemistry, and immunoblotting assays. Cell growth, proliferation, and apoptosis in parental cells and resistant derivatives were assessed in response to inhibition of HER or ER pathways, either pharmacologically (L, T, L + T, or fulvestrant) or by using siRNAs. Efficacy of combined endocrine and anti-HER2 therapies was studied in vivo using UACC-812 xenografts. Results: ER or its downstream products increased in four out of the five ER+/HER2+ lines, and was evident in one of the two intrinsically resistant lines. In UACC-812 and BT474 parental and resistant derivatives, HER2 inhibition by T reactivated HER network activity to promote resistance. T-resistant lines remained sensitive to HER2 inhibition by either L or HER2 siRNA. With more complete HER2 blockade, resistance to L-containing regimens required the activation of a redundant survival pathway, ER, which was up-regulated and promoted survival via various Bcl2 family members. These L-and L + T-resistant lines were responsive to fulvestrant and to ER siRNA. However, after prolonged treatment with L, but not L + T, BT474 cells switched from depending on ER as a survival pathway, to relying again on the HER network (increased HER2, HER3, and receptor ligands) to overcome L\u27s effects. The combination of endocrine and L + T HER2-targeted therapies achieved complete tumor regression and prevented development of resistance in UACC-812 xenografts. Conclusions: Combined L + T treatment provides a more complete and stable inhibition of the HER network. With sustained HER2 inhibition, ER functions as a key escape/survival pathway in ER-positive/HER2-positive cells. Complete blockade of the HER network, together with ER inhibition, may provide optimal therapy in selected patients

    Identity in bipolar disorder: Self-worth and achievement

    No full text
    This article considers self and self-concept in bipolar disorder. Bipolar disorder, defined on the basis of manic symptoms, is a highly debilitating psychopathology. It is heavily grounded in biology but symptom course is still very responsive to psychological and social forces in the lives of persons who have the disorder. This review assumes an overall view of the self that is typical of personality psychology: self as traits, self as goals and aspirations, and ongoing efforts to attain those goals. In this review, we will discuss two different facets of self and identity in bipolar disorder. First, we review a body of goal pursuit literature suggesting that persons with bipolar disorder endorse heightened ambitions for attaining goals and recognition from others. Second, we will review multiple findings which suggest that among persons with bipolar disorder, self-worth depends on measurable success in an extreme way. We will consider how the intersection of these two themes may lead to unique identity challenges for people with bipolar disorder, drawing from self-report, behavioral, and neuroscience findings to critically examine this viewpoint
    corecore