2,687 research outputs found

    Observations on degenerate saddle point problems

    Full text link
    We investigate degenerate saddle point problems, which can be viewed as limit cases of standard mixed formulations of symmetric problems with large jumps in coefficients. We prove that they are well-posed in a standard norm despite the degeneracy. By wellposedness we mean a stable dependence of the solution on the right-hand side. A known approach of splitting the saddle point problem into separate equations for the primary unknown and for the Lagrange multiplier is used. We revisit the traditional Ladygenskaya--Babu\v{s}ka--Brezzi (LBB) or inf--sup condition as well as the standard coercivity condition, and analyze how they are affected by the degeneracy of the corresponding bilinear forms. We suggest and discuss generalized conditions that cover the degenerate case. The LBB or inf--sup condition is necessary and sufficient for wellposedness of the problem with respect to the Lagrange multiplier under some assumptions. The generalized coercivity condition is necessary and sufficient for wellposedness of the problem with respect to the primary unknown under some other assumptions. We connect the generalized coercivity condition to the positiveness of the minimum gap of relevant subspaces, and propose several equivalent expressions for the minimum gap. Our results provide a foundation for research on uniform wellposedness of mixed formulations of symmetric problems with large jumps in coefficients in a standard norm, independent of the jumps. Such problems appear, e.g., in numerical simulations of composite materials made of components with contrasting properties.Comment: 8 page

    Angles Between Infinite Dimensional Subspaces with Applications to the Rayleigh-Ritz and Alternating Projectors Methods

    Get PDF
    We define angles from-to and between infinite dimensional subspaces of a Hilbert space, inspired by the work of E. J. Hannan, 1961/1962 for general canonical correlations of stochastic processes. The spectral theory of selfadjoint operators is used to investigate the properties of the angles, e.g., to establish connections between the angles corresponding to orthogonal complements. The classical gaps and angles of Dixmier and Friedrichs are characterized in terms of the angles. We introduce principal invariant subspaces and prove that they are connected by an isometry that appears in the polar decomposition of the product of corresponding orthogonal projectors. Point angles are defined by analogy with the point operator spectrum. We bound the Hausdorff distance between the sets of the squared cosines of the angles corresponding to the original subspaces and their perturbations. We show that the squared cosines of the angles from one subspace to another can be interpreted as Ritz values in the Rayleigh-Ritz method, where the former subspace serves as a trial subspace and the orthogonal projector of the latter subspace serves as an operator in the Rayleigh-Ritz method. The Hausdorff distance between the Ritz values, corresponding to different trial subspaces, is shown to be bounded by a constant times the gap between the trial subspaces. We prove a similar eigenvalue perturbation bound that involves the gap squared. Finally, we consider the classical alternating projectors method and propose its ultimate acceleration, using the conjugate gradient approach. The corresponding convergence rate estimate is obtained in terms of the angles. We illustrate a possible acceleration for the domain decomposition method with a small overlap for the 1D diffusion equation.Comment: 22 pages. Accepted to Journal of Functional Analysi

    Angles between subspaces and their tangents

    Full text link
    Principal angles between subspaces (PABS) (also called canonical angles) serve as a classical tool in mathematics, statistics, and applications, e.g., data mining. Traditionally, PABS are introduced via their cosines. The cosines and sines of PABS are commonly defined using the singular value decomposition. We utilize the same idea for the tangents, i.e., explicitly construct matrices, such that their singular values are equal to the tangents of PABS, using several approaches: orthonormal and non-orthonormal bases for subspaces, as well as projectors. Such a construction has applications, e.g., in analysis of convergence of subspace iterations for eigenvalue problems.Comment: 15 pages, 1 figure, 2 tables. Accepted to Journal of Numerical Mathematic

    Edge-enhancing Filters with Negative Weights

    Full text link
    In [DOI:10.1109/ICMEW.2014.6890711], a graph-based denoising is performed by projecting the noisy image to a lower dimensional Krylov subspace of the graph Laplacian, constructed using nonnegative weights determined by distances between image data corresponding to image pixels. We~extend the construction of the graph Laplacian to the case, where some graph weights can be negative. Removing the positivity constraint provides a more accurate inference of a graph model behind the data, and thus can improve quality of filters for graph-based signal processing, e.g., denoising, compared to the standard construction, without affecting the costs.Comment: 5 pages; 6 figures. Accepted to IEEE GlobalSIP 2015 conferenc

    Concentrator of laser energy for thin vapour cloud production near a surface

    Get PDF
    A novel scheme is presented for production of a thin (<1<1 mm) uniform vapor layer over a large surface area (>100>100 cm2^2) by pulsed laser ablation of a solid surface. Instead of dispersing the laser energy uniformly over the surface, a modified Fabry-Perot interferometer is employed to concentrate the laser energy in very narrow closely-spaced concentric rings. This approach may be optimized to minimum total laser energy for the desired vapor density. Furthermore, since the vapor is produced from a small fraction of the total surface area, the local ablation depth is large, which minimized the fraction of surface contamination in the vapor. Key words: laser evaporation, thin gas layer formation.Comment: 8 pages, 2 figure

    Large scale ab initio calculations based on three levels of parallelization

    Full text link
    We suggest and implement a parallelization scheme based on an efficient multiband eigenvalue solver, called the locally optimal block preconditioned conjugate gradient LOBPCG method, and using an optimized three-dimensional (3D) fast Fourier transform (FFT) in the ab initio}plane-wave code ABINIT. In addition to the standard data partitioning over processors corresponding to different k-points, we introduce data partitioning with respect to blocks of bands as well as spatial partitioning in the Fourier space of coefficients over the plane waves basis set used in ABINIT. This k-points-multiband-FFT parallelization avoids any collective communications on the whole set of processors relying instead on one-dimensional communications only. For a single k-point, super-linear scaling is achieved for up to 100 processors due to an extensive use of hardware optimized BLAS, LAPACK, and SCALAPACK routines, mainly in the LOBPCG routine. We observe good performance up to 200 processors. With 10 k-points our three-way data partitioning results in linear scaling up to 1000 processors for a practical system used for testing.Comment: 8 pages, 5 figures. Accepted to Computational Material Scienc

    Sparse preconditioning for model predictive control

    Full text link
    We propose fast O(N) preconditioning, where N is the number of gridpoints on the prediction horizon, for iterative solution of (non)-linear systems appearing in model predictive control methods such as forward-difference Newton-Krylov methods. The Continuation/GMRES method for nonlinear model predictive control, suggested by T. Ohtsuka in 2004, is a specific application of the Newton-Krylov method, which uses the GMRES iterative algorithm to solve a forward difference approximation of the optimality equations on every time step.Comment: 6 pages, 5 figures, to appear in proceedings of the American Control Conference 2016, July 6-8, Boston, MA, USA. arXiv admin note: text overlap with arXiv:1509.0286

    Preconditioned warm-started Newton-Krylov methods for MPC with discontinuous control

    Full text link
    We present Newton-Krylov methods for efficient numerical solution of optimal control problems arising in model predictive control, where the optimal control is discontinuous. As in our earlier work, preconditioned GMRES practically results in an optimal O(N)O(N) complexity, where NN is a discrete horizon length. Effects of a warm-start, shifting along the predictive horizon, are numerically investigated. The~method is tested on a classical double integrator example of a minimum-time problem with a known bang-bang optimal control.Comment: 8 pages, 10 figures, to appear in Proceedings SIAM Conference on Control and Its Applications, July 10-12, 2017, Pittsburgh, PA, US

    Preconditioned Spectral Clustering for Stochastic Block Partition Streaming Graph Challenge

    Full text link
    Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is demonstrated to efficiently solve eigenvalue problems for graph Laplacians that appear in spectral clustering. For static graph partitioning, 10-20 iterations of LOBPCG without preconditioning result in ~10x error reduction, enough to achieve 100% correctness for all Challenge datasets with known truth partitions, e.g., for graphs with 5K/.1M (50K/1M) Vertices/Edges in 2 (7) seconds, compared to over 5,000 (30,000) seconds needed by the baseline Python code. Our Python code 100% correctly determines 98 (160) clusters from the Challenge static graphs with 0.5M (2M) vertices in 270 (1,700) seconds using 10GB (50GB) of memory. Our single-precision MATLAB code calculates the same clusters at half time and memory. For streaming graph partitioning, LOBPCG is initiated with approximate eigenvectors of the graph Laplacian already computed for the previous graph, in many cases reducing 2-3 times the number of required LOBPCG iterations, compared to the static case. Our spectral clustering is generic, i.e. assuming nothing specific of the block model or streaming, used to generate the graphs for the Challenge, in contrast to the base code. Nevertheless, in 10-stage streaming comparison with the base code for the 5K graph, the quality of our clusters is similar or better starting at stage 4 (7) for emerging edging (snowballing) streaming, while the computations are over 100-1000 faster.Comment: 6 pages. To appear in Proceedings of the 2017 IEEE High Performance Extreme Computing Conference. Student Innovation Award Streaming Graph Challenge: Stochastic Block Partition, see http://graphchallenge.mit.edu/champion
    corecore