255 research outputs found

    Automated Generation of High-Order Modes for Tests of Quasi-Optical Systems of Gyrotrons for W7-X Stellarator

    Get PDF
    A test system for the verification of the quasi-optical converter system is vital in the gyrotron development. For this reason, an automated measurement setup has been developed and is benchmarked with the TE28,8_{28,8} mode operating in the cavities of the gyrotrons of W7-X with a high purity of about 95 % and a counter-rotating amount of about 0.3 %. The time duration for the mode generator adjustment has been reduced to two days for this mode. After a successful mode excitation, the quasi-optical mode converter, consisting of a launcher and three mirrors, is measured having a vectorial Gaussian mode content of 97 %

    Weak localization and electron-electron interactions in Indium-doped ZnO nanowires

    Full text link
    Single crystal ZnO nanowires doped with indium are synthesized via the laser-assisted chemical vapor deposition method. The conductivity of the nanowires is measured at low temperatures in magnetic fields both perpendicular and parallel to the wire axes. A quantitative fit of our data is obtained, consistent with the theory of a quasi-one-dimensional metallic system with quantum corrections due to weak localization and electron-electron interactions. The anisotropy of the magneto-conductivity agrees with theory. The two quantum corrections are of approximately equal magnitude with respective temperature dependences of T^-1/3 and T^-1/2. The alternative model of quasi-two-dimensional surface conductivity is excluded by the absence of oscillations in the magneto-conductivity in parallel magnetic fields.Comment: 13 pages, Corrected forma

    Short-pulse frequency stabilization of a MW-class ECRH gyrotron at W7-X for CTS diagnostic

    Get PDF
    At the Wendelstein 7-X stellarator, a 174 GHz Collective Thomson Scattering (CTS) diagnostic will be implemented. One of the 140 GHz Electron Cyclotron Resonance Heating (ECRH) gyrotrons will be operated at around 174 GHz in a higher cavity mode, using it as source for the CTS mm-wave probing beam. To prevent any damage to the CTS receiver, a notch filter cuts out the high-power gyrotron signal at the entrance of the receiver. The bandwidth of the gyrotron signal determines the notch filter bandwidth. First proof-of-principle experiments on frequency stabilization were conducted on W7-X ECRH gyrotrons employing Phase-Locked Loop techniques. The gyrotron output frequency was controlled with the accelerating voltage, which is applied between the anode and cathode of the gyrotron diode-type Magnetron Injection Gun. Frequency stabilization experiments with 10 ms pulses were conducted at the gyrotron nominal frequency of 140 GHz as well as at 174 GHz. It is concluded that the gyrotron frequency could be stabilized for at least 3 ms at 140 GHz and 8 ms at 174 GHz. In the frequency spectrum, a clear main peak of the gyrotron frequency at 140 GHz with a full -15 dB linewidth of below 500 Hz was achieved

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Phenotypic variation of larks along an aridity gradient:Are desert birds more flexible?

    Get PDF
    We investigated interindividual variation and intra-individual phenotypic flexibility in basal metabolic rate (BMR), total evaporative water loss (TEWL), body temperature (T-b), the minimum dry heat transfer coefficient (h), and organ and muscle size of five species of larks geographically distributed along an aridity gradient. We exposed all species to constant environments of 15degreesC or 35degreesC, and examined to what extent interspecific differences in physiology can be attributed to acclimation. We tested the hypothesis that birds from deserts display larger intra-individual phenotypic flexibility and smaller intern individual variation than species from mesic areas.Larks from arid areas had lower BMR, TEWL, and h, but did not have internal organ, sizes different from birds from mesic habitats. BMR of 15degreesC-acclimated birds was 18.0%, 29.1%, 12.2%, 25.3%, and 4.7% higher than of 35degreesC-acclimated Hoopoe Larks, Dunn's Larks, Spike-heeled Larks, Skylarks, and Woodlarks, respectively. TEWL of 15degreesC-acclimated Hoopoe Larks exceeded values for 35degreesC-acclimated individuals by 23% but did not differ between 15degreesC- and 35degreesC-acclimated individuals in the other species. The dry heat transfer coefficient was increased in 15degreesC-acclimated individuals of Skylarks and Dunn's Larks, but not in the. other species. Body temperature was on average 0.4degreesC +/- 0.15degreesC (mean +/- 1 SEM) lower in 15degreesC-acclimated individuals of all species. Increased food intake in 15degreesC-acclimated birds stimulated enlargement of intestine (26.9-38.6%), kidneys (9.8-24.4%), liver (16.5-27.2%), and. stomach (22.0-31.6%). The pectoral muscle increased in 15degreesC-acclimated Spike-heeled Larks and Skylarks, remained unchanged in Hoopoe Larks, and decreased in 15degreesC-acclimated Woodlarks and Dunn's Larks. We conclude that the degree of intra-individual flexibility varied between physiological traits and among species, but that acclimation does not account for interspecific differences in BMR, TEWL, and h in larks. We found no general support for the hypothesis that species from desert environments display larger intra-individual phenotypic flexibility than those from mesic areas.The coefficient of variation of larks acclimated to their natural environment was smaller in species from and areas than in species from mesic areas for mass-corrected BMR and surface-specific h, but not for mass-corrected TEWL. The high repeatabilities of BMR, TEWL, and h in several species indicated a within-individual consistency on which natural selection could operate.</p

    Designing Cathodes and Cathode Active Materials for Solid State Batteries

    Get PDF
    Solid state batteries SSBs currently attract great attention as a potentially safe electrochemical high energy storage concept. However, several issues still prevent SSBs from outperforming today s lithium ion batteries based on liquid electrolytes. One major challenge is related to the design of cathode active materials CAMs that are compatible with the superionic solid electrolytes SEs of interest. This perspective, gives a brief overview of the required properties and possible challenges for inorganic CAMs employed in SSBs, and describes state of the art solutions. In particular, the issue of tailoring CAMs is structured into challenges arising on the cathode , particle , and interface level, related to microstructural, chemo mechanical, and electro chemical interplay of CAMs with SEs, and finally guidelines for future CAM development for SSBs are propose
    corecore