
  

European research activities towards a future DEMO gyrotron 
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Coordinated by the EUROfusion Consortium, several 
European research institutes are working on fusion tech-
nologies towards options for a European DEMOnstration 
Fusion Power Plant (FPP), as a single step between ITER 
and a commercial FPP, to deliver net electricity by mid of 
this century. One of the focus areas is the research on a 
proper Electron Cyclotron Resonance Heating (ECRH) 
and Current Drive (ECCD) system for which the fusion 
gyrotron is one of its major key components [1].  

A future FPP will probably require an ECCD operat-
ing frequency ranging from 170 GHz up to 240 GHz de-
pending on the DEMO baseline. An RF output power of 
significantly higher than 1 MW (target: 2 MW) and a 
total gyrotron efficiency better than 60% are required. 
Multi-purpose operation at multiples of the λ/2-resonance 
frequency of the vacuum window of the gyrotron, hence 
in leaps of about 30 GHz (e. g. 170 / 204 / 238 GHz) 
needs to be considered for plasma start-up, heating and 
current drive. Optionally for possible steering of the ab-
sorption layer the gyrotron shall allow a fast frequency 
tuning in steps of around 2–3 GHz. The R&D work 
within the EUROfusion work package “WP HCD EC 
Gyrotron R&D and Advanced Developments (AD)” is 
focusing on all of the named targets.  

Verification of the coaxial-cavity technology 

The coaxial-cavity gyrotron is a promising technol-
ogy for future multi-MW fusion gyrotrons [2]. In [3] a 
world record RF output power of 2.2 MW at short pulses 
(ms-range) was demonstrated. Nevertheless, the 2 MW 
coaxial-cavity technology, already considered for the first 
installation in ITER earlier [4], is still lacking its proof-
of-concept regarding long-pulse operation. Major con-
cerns are the proper alignment and thermal loading of the 
cavity wall and its inner conductor as well as the thermal 
loading of the collector. Its feasibility shall be finally 
demonstrated by upgrading the existing KIT 2 MW 
170 GHz short-pulse pre-prototype to pulse lengths up to 
1 s [5]. In parallel, work is ongoing in the field of ad-
vanced cooling concepts [6, 7]. Additionally, two new 
coaxial-cavity Magnetron Injection Guns (MIGs) are un-
der manufacturing. The first is employing an advanced 
emitter technology whose major element is a new non-

emissive coating. That will significantly reduce the veloc-
ity spread of the electrons at the emitter [8]. Secondly, a 
newly designed Inverse Magnetron Injection Gun (IMIG) 
will allow for a significant larger emitter radius and there-
fore increased output power at operating frequencies sig-
nificantly above 200 GHz by keeping the same or even 
smaller size of the bore hole of the gyrotron SC magnet [9].  

Studies towards a 240 GHz gyrotron 

A frequency up to 240 GHz was selected for the 
theoretical research work towards a future FPP, consider-
ing the requirements for “multi-purpose” and “fast fre-
quency step-tunable” operation at high-field tokamaks 
and for a wide range of RF beam steering. The coaxial-
cavity gyrotron technology, and, as a possible fallback 
solution, the conventional hollow-cavity gyrotron are 
under investigation. Both technologies were studied re-
garding to the maximum achievable output power versus 
efficiency and stability in operation due to tolerances. A 
generic design strategy was developed to find the opti-
mum operating mode for the two different cavity topolo-
gies [10]. Operating scenarios close to 2 MW for the co-
axial-cavity technology and around 1.5 MW for the con-
ventional cavity technology have been found in the theo-
retical analyses (ref. [11–14]).  

Advances in Window Technologies 

Fundamental for frequency-step tunable operation is 
the utilization of a proper broadband window technology. 
At KIT the CVD-Diamond Brewster-angle window is the 
favorite. The successful operation of a step-frequency 
tunable 1 MW short-pulse (ms) gyrotron with a syntheti-
cally manufactured diamond Brewster angle output win-
dow was demonstrated earlier [15]. Nevertheless, for 
future DEMO gyrotrons the development of diamond 
discs of larger size for higher power capabilities, ad-
vanced cooling and brazing technologies are mandatorily 
required and pushed forward at KIT [16, 17]. 

Towards a total efficiency of higher than 60% 

A DEMO gyrotron will require a total efficiency of 
above 60% to minimize the electrical power require-
ments, and, ultimately the recirculating power in the bal-
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ance of plant. Considering an interaction efficiency of 
typical 35% between the electron beam and the micro-
wave, a large fraction of the input energy remains in the 
spent electron beam. Up to 60% of the spent beam energy 
might be recovered by a single-stage depressed collector 
(SDC) which will lead to an overall gyrotron efficiency 
of about 50% in theoretically best case. An overall effi-
ciency of higher than 60% requires the use of advanced 
multi-stage depressed collectors (MDCs). Two concepts 
are under investigation [18] at KIT. In the first one, the 
gyrotron magnetic field is unwound utilizing well-
controlled non-adiabatic transitions, whereas in the second 
one, the electrons are sorted by an E × B drift [19–22].

Intelligent control systems for gyrotrons 

In future, intelligent control systems shall allow 
higher output powers of gyrotrons by reducing the neces-
sary safety margins, hence allowing for an operation 
close to the stability limits [23]. Firstly applied to the 
W7-X gyrotrons, a new control concept is under investi-
gation. The idea is to detect the stray radiation caused by 
the excitation of parasitic modes at the stability limits and 
to use that as an indicator for the operational stability of 
the W7-X gyrotrons. A feedback control system is under 
development. 

Advanced gyrotron tests environments 

In 2015, the final design review and procurement of 
the High-Voltage Power Supply (HV PS) for the new 
KIT FULGOR gyrotron teststand started [24]. FULGOR 
will allow CW operation of gyrotrons with a required 
input power of 5 (2nd phase: 10) MW DC. A 10.5 T SC 
magnet will allow the operation of gyrotrons up to  
240 GHz. That includes the upgrade of all the measure-
ments systems, which have been developed for verifica-
tion of the frequency spectrum, calorimetry and quasi-
optical transmission [25, 26].  
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