86 research outputs found

    Biological invasions as burdens to primary economic sectors

    Get PDF
    Many human-introduced alien species economically impact industries worldwide. Management prioritisation and coordination efforts towards biological invasions are hampered by a lack of comprehensive quantification of costs to key economic sectors. Here, we quantify and estimate global invasion costs to seven major sectors and unravel the introduction pathways of species causing these costs — focusing mainly on primary economic sectors: agriculture, fisheries and forestry. From 1970 to 2020, costs reported in the InvaCost database as pertaining to Agriculture, Fisheries, and Forestry totaled 509bn,509 bn, 1.3 bn, and 134bn,respectively(in2017UnitedStatesdollars).Pathwaysofcostlyspecieswerediverse,arisingpredominantlyfromculturalandagriculturalactivities,throughunintentionalcontaminantswithtrade,andoftenimpacteddifferentsectorsthanthoseforwhichspecieswereinitiallyintroduced.CoststoAgriculturewerepervasiveandgreatestinatleast37134 bn, respectively (in 2017 United States dollars). Pathways of costly species were diverse, arising predominantly from cultural and agricultural activities, through unintentional contaminants with trade, and often impacted different sectors than those for which species were initially introduced. Costs to Agriculture were pervasive and greatest in at least 37 % (n = 46/123) of the countries assessed, with the United States accumulating the greatest costs for primary sectors (365 bn), followed by China (101bn),andAustralia(101 bn), and Australia (36 bn). We further identified 19 countries highly economically reliant on Agriculture, Fisheries, and Forestry that are experiencing massive economic impacts from biological invasions, especially in the Global South. Based on an extrapolation to fill cost data gaps, we estimated total global costs ranging from at least 5171,400bnforAgriculture,517–1,400 bn for Agriculture, 5.7–6.5 bn for Fisheries, and 142768bnforForestry,evidencingsubstantialunderreportingintheForestrysectorinparticular.Burgeoningglobalinvasioncostschallengesustainabledevelopmentandhighlighttheneedforimprovedmanagementactiontoreducefutureimpactsonindustry.Significance:Withrapidlyrisingbiologicalinvasionrates,efficientmanagementiscriticalforeconomicandenvironmentalimpactmitigation.Specifically,improvedquantificationoftheeconomiccostofbiologicalinvasionstotheworldsprimaryeconomicsectorscouldprovidecrucialinformationforpolicymakerswhomustprioritiseactionstolimitongoingandfutureimpacts.Weshowthatsince1970,over142–768 bn for Forestry, evidencing substantial underreporting in the Forestry sector in particular. Burgeoning global invasion costs challenge sustainable development and highlight the need for improved management action to reduce future impacts on industry. Significance: With rapidly rising biological invasion rates, efficient management is critical for economic and environmental impact mitigation. Specifically, improved quantification of the economic cost of biological invasions to the world's primary economic sectors could provide crucial information for policymakers who must prioritise actions to limit ongoing and future impacts. We show that since 1970, over 600 bn in impacts has been incurred across Agriculture, Fisheries and Forestry, with the largest share reported in Agriculture. We further identify 19 countries, which rely heavily on primary sectors, facing comparatively high impacts from invasions, requiring urgent action. However, gaps in cost reporting across invasive taxa and countries suggest that these impacts are grossly underestimated. Proactive prioritisation by policymakers is needed to mitigate future impacts to primary sectors.</p

    Climatic Factors Driving Invasion of the Tiger Mosquito (Aedes albopictus) into New Areas of Trentino, Northern Italy

    Get PDF
    Background:The tiger mosquito (Aedes albopictus), vector of several emerging diseases, is expanding into more northerly latitudes as well as into higher altitudes in northern Italy. Changes in the pattern of distribution of the tiger mosquito may affect the potential spread of infectious diseases transmitted by this species in Europe. Therefore, predicting suitable areas of future establishment and spread is essential for planning early prevention and control strategies.Methodology/Principal Findings:To identify the areas currently most suitable for the occurrence of the tiger mosquito in the Province of Trento, we combined field entomological observations with analyses of satellite temperature data (MODIS Land Surface Temperature: LST) and human population data. We determine threshold conditions for the survival of overwintering eggs and for adult survival using both January mean temperatures and annual mean temperatures. We show that the 0°C LST threshold for January mean temperatures and the 11°C threshold for annual mean temperatures provide the best predictors for identifying the areas that could potentially support populations of this mosquito. In fact, human population density and distance to human settlements appear to be less important variables affecting mosquito distribution in this area. Finally, we evaluated the future establishment and spread of this species in relation to predicted climate warming by considering the A2 scenario for 2050 statistically downscaled at regional level in which winter and annual temperatures increase by 1.5 and 1°C, respectively.Conclusions/Significance:MODIS satellite LST data are useful for accurately predicting potential areas of tiger mosquito distribution and for revealing the range limits of this species in mountainous areas, predictions which could be extended to an European scale. We show that the observed trend of increasing temperatures due to climate change could facilitate further invasion of Ae. albopictus into new areas. © 2011 Roiz et al.Peer Reviewe

    A case for systematic quality management in mosquito control programmes in Europe

    Get PDF
    The recent spread of invasive mosquito species, such as Aedes albopictus and the seasonal sporadic transmission of autochthonous cases of arboviral diseases (e.g., dengue, chikungunya, Zika) in temperate areas, such as Europe and North America, highlight the importance of effective mosquito-control interventions to reduce not only nuisance, but also major threats for public health. Local, regional, and even national mosquito control programs have been established in many countries and are executed on a seasonal basis by either public or private bodies. In order for these interventions to be worthwhile, funding authorities should ensure that mosquito control is (a) planned by competent scientific institutions addressing the local demands, (b) executed following the plan that is based on recommended and effective methods and strategies, (c) monitored regularly by checking the efficacy of the implemented actions, (d) evaluated against the set of targets, and (e) regularly improved according to the results of the monitoring. Adherence to these conditions can only be assured if a formal quality management system is adopted and enforced that ensures the transparency of effectiveness of the control operation. The current paper aims at defining the two components of this quality management system, quality assurance and quality control for mosquito control programs with special emphasis on Europe, but applicable over temperate areas

    Non-English languages enrich scientific knowledge : The example of economic costs of biological invasions

    Get PDF
    We contend that the exclusive focus on the English language in scientific researchmight hinder effective communication between scientists and practitioners or policymakerswhose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages. We compared it with equivalent data from English documents (i.e., the InvaCost database, the most up-to-date repository of invasion costs globally). The comparison of both databases (similar to 7500 entries in total) revealed that non-English sources: (i) capture a greater amount of data than English sources alone (2500 vs. 2396 cost entries respectively); (ii) add 249 invasive species and 15 countries to those reported by English literature, and (iii) increase the global cost estimate of invasions by 16.6% (i.e., US$ 214 billion added to 1.288 trillion estimated fromthe English database). Additionally, 2712 cost entries - not directly comparable to the English database - were directly obtained frompractitioners, revealing the value of communication between scientists and practitioners. Moreover, we demonstrated how gaps caused by overlooking non-English data resulted in significant biases in the distribution of costs across space, taxonomic groups, types of cost, and impacted sectors. Specifically, costs from Europe, at the local scale, and particularly pertaining to management, were largely under-represented in the English database. Thus, combining scientific data from English and non-English sources proves fundamental and enhances data completeness. Considering non-English sources helps alleviate biases in understanding invasion costs at a global scale. Finally, it also holds strong potential for improving management performance, coordination among experts (scientists and practitioners), and collaborative actions across countries. Note: non-English versions of the abstract and figures are provided in Appendix S5 in 12 languages. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/ by/4.0/).Peer reviewe

    AVIS de l'ANSES relatif à " l'évaluation du rapport bénéfice risque des pratiques de lutte anti-vectorielle habituellement mises en oeuvre pour lutter contre la dengue, dans le contexte actuel de confinement global "

    Get PDF
    Dans le contexte de la gestion de crise liée à l'épidémie de Covid-19 en France, l'Anses a été saisie en urgence le 14 avril 2020 par la Direction Générale de la Santé pour réaliser l'expertise suivante : " Évaluation du rapport bénéfice-risque des pratiques de lutte anti-vectorielle habituellement mises en oeuvre pour lutter contre la dengue, dans le contexte actuel de confinement global "

    Metabarcoding: A Powerful Yet Still Underestimated Approach for the Comprehensive Study of Vector-Borne Pathogen Transmission Cycles and Their Dynamics

    Get PDF
    The implementation of sustainable control strategies aimed at disrupting the transmission of vector-borne pathogens requires a comprehensive knowledge of the vector ecology in the different eco-epidemiological contexts, as well as the local pathogen transmission cycles and their dynamics. However, even when focusing only on one specific vector-borne disease, achieving this knowledge is highly challenging, as the pathogen may exhibit a high genetic diversity and multiple vector species or subspecies and host species may be involved. In addition, the development of the pathogen and the vectorial capacity of the vectors may be affected by their midgut and/or salivary gland microbiome. The recent advent of Next-Generation Sequencing (NGS) technologies has brought powerful tools that can allow for the simultaneous identification of all these essential components, although their potential is only just starting to be realized. We present a metabarcoding approach that can facilitate the description of comprehensive host-pathogen networks, integrate important microbiome and coinfection data, identify at-risk situations, and disentangle the transmission cycles of vector-borne pathogens. This powerful approach should be generalized to unravel the transmission cycles of any pathogen and their dynamics, which in turn will help the design and implementation of sustainable, effective, and locally adapted control strategies

    Giant tortoise genomes provide insights into longevity and age-related disease

    Get PDF
    © 2018, The Author(s), under exclusive licence to Springer Nature Limited. Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George—the iconic last member of Chelonoidis abingdonii—and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations

    Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes:findings from the ENIGMA Epigenetics Working Group

    Get PDF
    DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia
    corecore