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Giant tortoise genomes provide insights into
longevity and age-related disease

Victor Quesada®', Sandra Freitas-Rodriguez'’®, Joshua Miller ©2', José G. Pérez-Silva®'?,
Zi-Feng Jiang3, Washington Tapia*®, Olaya Santiago-Fernandez', Diana Campos-iglesias’,
LukasF.K.Kuderna®?%?, Maud Quinzin?, Miguel G.Alvarez', Dido Carrero’, LucianoB. Beheregaray?,
JamesP.Gibbs®, Ylenia Chiari©, Scott Glaberman®1, Claudio Ciofi®™", Miguel Araujo-Voces',
Pablo Mayoral', Javier R. Arango', Isaac Tamargo-Gémez', David Roiz-Valle', Maria Pascual-Torner’,
BenjaminR.Evans®?, DanielleL.Edwards', Ryan C. Garrick™, Michael A.Russello©,

Nikos Poulakakis™, Stephen J. Gaughran?, Danny O.Rueda*, Gabriel Bretones’,

Tomas Marqués-Bonet ®571718 Kevin P. White3, Adalgisa Caccone®?* and Carlos L6pez-Otin®™*

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like
longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce.
Here, we describe a global analysis of the genomes of Lonesome George—the iconic last member of Chelonoidis abingdonii—and
the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both
unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory
mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased
lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide
important resources to help the efforts for restoration of giant tortoise populations.

ural selection to find genes and biochemical pathways related

to complex traits and processes. Multiple works have used
these techniques with the genomes of long-lived mammals to shed
light on the signalling and metabolic networks that might play a role
in regulating age-related conditions"’. Similar studies on unrelated
longevous organisms might unveil novel evolutionary strategies and
genetic determinants of ageing in different environments. In this
regard, giant tortoises constitute one of the few groups of vertebrates
with an exceptional longevity: in excess of 100years according to
some estimates.

In this manuscript, we report the genomic sequencing and
comparative genomic analysis of two long-lived giant tortoises:
Lonesome George—the last representative of Chelonoidis abingdo-
nii*, endemic to the island of Pinta (Galapagos Islands, Ecuador)—
and an individual of Aldabrachelys gigantea, endemic to the Aldabra
Atoll and the only extant species of giant tortoises in the Indian
Ocean’ (Fig. 1a). Unsupervised and supervised comparative analy-
ses of these genomic sequences add new genetic information on the

[ : omparative genomic analyses leverage the mechanisms of nat-

evolution of turtles, and provide novel candidate genes that might
underlie the extraordinary characteristics of giant tortoises, includ-
ing their gigantism and longevity.

Results and discussion
The genome of Lonesome George was sequenced using a combina-
tion of Illumina and PacBio platforms (Supplementary Section 1.1).
The assembled genome (CheloAbing 1.0) has a genomic size
of 2.3gigabases and contains 10,623 scaffolds with an N50 of
1.27megabases (Supplementary Section 1.1 and Supplementary
Tables 1-3). We also sequenced, with the Illumina platform, the
closely related tortoise A. gigantea at an average read depth of 28x.
These genomic sequences were aligned to CheloAbing 1.0.
TimeTree database estimations (http://www.timetree.org) indi-
cate that Galapagos and Aldabra giant tortoises shared a last com-
mon ancestor about 40 million years ago, while both diverged from
the human lineage more than 300 million years ago (Supplementary
Section 1.4). A preliminary analysis of demographic history using
the pairwise sequentially Markovian coalescent (PSMC)° model
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Fig. 1| Geographical and temporal distribution of giant tortoises. a, Satellite view of the Galapagos Islands (top; scale bar: 50 km) and Aldabra Atoll
(bottom left; scale bar: 10 km), and pictures of C. abingdonii (middle) and A. gigantea (bottom right). Both pictures are from http://eol.jsc.nasa.gov.

b, Demographic history of giant tortoises, inferred using a hidden Markov model approach as implemented in the PSMC model. The default mutation
rate (u) for humans of 2.5x 1078 and an average generation time (g) of 25 years were used in the calculations.

showed that while the effective population size of C. abingdonii
has been steadily declining for the past million years, with a slight
uptick about 90,000years ago, the population of Aldabra giant
tortoises experienced substantial fluctuations over this period
(Fig. 1b). Effective population size reconstructions for C. abingdonii
lose statistical power at the million-year time frame, probably due to
complete coalescence. In turn, this suggests that overall diversity in
these giant tortoises must have been low throughout many genera-
tions. Together, these results prompt us to propose that the popula-
tions of these insular giant tortoises were vulnerable at the time of
human discovery of the Galapagos Islands, probably elevating their
extinction risk.

Using homology searches with known gene sets from humans
and Pelodiscus sinensis (the Chinese soft-shell turtle), along with
RNA sequencing (RNA-Seq) data from C. abingdonii blood and an
A. gigantea granuloma, we automatically predicted a primary set of
27,208 genes from the genome assembly using the MAKER?2 algo-
rithm°®. We then performed pairwise alignments between each of the
primary predicted protein sequences and the UniProt databases for
humans and P. sinensis, whose annotated sequences show relatively
high quality when compared with data available for other turtles’.
Using alignments spanning at least 80% of the longest protein and
showing more than 60% identity, we constructed sets of protein fam-
ilies shared among these species. This preliminary analysis singled
out several protein families that seem to have undergone moderate

88

expansion in a common ancestor of C. abingdonii and A. gigantea.
Almost all of these expansions were also confirmed in the genome
of the related, long-lived tortoise Gopherus agassizii (Supplementary
Section 1.2 and Supplementary Table 4). Most of these genes have
been linked to exosome formation, suggesting that this process may
have been important in tortoise evolution.

We also interrogated the predicted gene set for evidence of
positive selection in giant tortoises. This analysis singled out
43 genes with evidence of giant-tortoise-specific positive selec-
tion (Supplementary Section 1.2, Supplementary Table 5 and
Supplementary Fig. 1). This list includes genes with known roles in
the dynamics of the tubulin cytoskeleton (TUBEI and TUBG1) and
intracellular vesicle trafficking (VPS35). Importantly, the analysis of
genes showing evidence of positive selection also includes AHSG
and FGF19, whose expression levels have been linked to successful
ageing in humans®. The role of both factors in metabolism regula-
tion”'—another hallmark of ageing'"'>—suggests that the specific
changes observed in these proteins may have arisen to accommo-
date the challenges that longevity poses on this system. The list
of genes with signatures of positive selection also features TDO2,
whose inhibition has been proposed to protect against age-related
diseases through regulation of tryptophan-mediated proteostasis'’.
In addition, we found evidence for positive selection affecting
several genes involved in immune system modulation, such as
MVK, IRAKIBP] and IL1R2. Taken together, these results identify
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proteostasis, metabolism regulation and immune response as key
processes during the evolution of giant tortoises via effects on lon-
gevity and resistance to infection.

Parallel to this automatic analysis, we used manually supervised
annotation on more than 3,000 genes selected a priori for a series of
hypothesis-driven studies on development, physiology, immunity,
metabolism, stress response, cancer susceptibility and longevity
(Supplementary Section 1.3 and Supplementary Fig. 2). We searched
for truncating variants, variants affecting known motifs and variants
whose human counterparts are related to known genetic diseases
(Supplementary Section 1.3 and Supplementary Table 6). These
variants were first confirmed with the RNA-Seq data. Then, more
than 100 of the most interesting variants in terms of putative func-
tional relevance were also validated by PCR amplification followed
by Sanger sequencing. To this end, we used a panel of genomic
DNA samples of 11 different species of giant tortoises endemic to
different islands from the Galapagos Archipelago (Supplementary
Section 1, Supplementary Table 7 and Supplementary Fig. 3).

The manually supervised annotation of development-related
genes showed the complete conservation of the Hox gene set among
giant tortoises, with the exception of HOXC3, which seems to have
been lost in the radiation of Archelosauria'*"® (Supplementary
Section 2, Supplementary Table 8 and Supplementary Fig. 4). BMP
and GDF gene families were also found to be conserved, although
the duplication event that gave rise to GDFI and GDF3 in mam-
mals did not occur in turtles, birds and crocodiles. In contrast, we
found a duplication of the ParaHox gene CDX4 in giant tortoises,
also present in other reptiles as well as avian reptiles (birds). This
annotation also showed the duplication of WNTII in turtles and
chickens (but not in the lizard Anolis carolinensis), and the specific
duplication of WNT4 in turtles. Given the roles of these duplicated
genes and their conservation in most vertebrate species, they could
prove to be useful candidates to study the morphological develop-
ment of turtles, particularly in relation to shell formation. Of note,
KDSR—one of the genes possibly under positive selection in giant
tortoises—has been linked to hyperkeratinization disorders'®. Also,
in this regard, we annotated 30 B-keratins in C. abingdonii, 26 of
which seem to be functional. These numbers are lower than those
previously reported for p-keratins in other turtles'. Finally, we did
not find in C. abingdonii or A. gigantea any functional orthologues
of genes specifically involved in tooth development (such as ENAM,
AMEL, AMBN, DSPP, KLK4 and MMP20). This finding confirms
a pattern in the evolutionary molecular mechanisms for tooth loss,
which seems to have been followed consistently and independently
across vertebrates. Taken together, these results offer multiple can-
didates to study developmental traits in tortoises (Supplementary
Section 2 and Supplementary Figs. 5-8).

In most species, the immune function is an evolutionary driver
that is under strong selective pressure and has important implica-
tions in ageing and disease'®. The specific components and func-
tionality of immune system components in Reptilia, however,
have not been extensively characterized beyond the major histo-
compatibility complex (MHC)"*. Our detailed analysis of 891
genes involved in immune function consistently found duplica-
tions affecting immunity genes in giant tortoises compared with
mammals (Supplementary Section 3, Supplementary Table 9 and
Supplementary Figs. 9-13). We found a genomic expansion of
PRF1 (encoding perforin) in giant tortoises and other turtles, com-
pared with chickens (one copy), A. carolinensis (two copies) and
most mammals (one copy). Both C. abingdonii and A. gigantea
possess 12 copies of this gene (validated by Sanger sequencing),
although three of them have been pseudogenized in C. abingdonii.
In addition, we detected and validated, by Sanger sequencing, an
expansion of the chymase locus, containing granzymes, in giant
tortoises (Supplementary Section 3.1 and Supplementary Fig. 10).
Both expansions are expected to affect cytotoxic T lymphocyte

and natural killer functions, which play important roles in defence
against both pathogens and cancer**>. Other concurrent expan-
sions involve APOBEC1, CAMP, CHIA and NLRP genes, which
participate in viral, microbial, fungal and parasite defence, respec-
tively. These results suggest that the innate immune system in
turtles, and especially in giant tortoises, may play a more relevant
role than in mammals, consistent with the less important role that
adaptive immunity seems to play’’. We found that class I and II
MHC genes probably underwent a duplication event in a common
ancestor between giant tortoises and painted turtles (Chrysemys
picta bellii). We also annotated 40 class III MHC genes, thus con-
firming the conservation of this cluster in giant tortoises. The
large number of MHC genes in giant tortoises is consistent with
the suggestion that ancestors of archosaurs and chelonians did
not possess a minimal essential MHC as found in the chicken
genome” (Supplementary Section 3.3, Supplementary Table 10 and
Supplementary Figs. 14-16).

Giant tortoises are at the upper end of the size scale for extant
Chelonii, and have often been used as an example of gigantism*. We
analysed a series of genes involved in size regulation in vertebrates,
most notably dogs (Supplementary Section 2, Supplementary
Table 8 and Supplementary Fig. 6). Our results on genes related to
growth hormone, the insulin-like growth factor (IGF) system and
stanniocalcins suggest that these genes are well conserved; there-
fore, additional size determinants may exist in giant tortoises.
As a complex phenotype, gigantism in tortoises is expected to be
caused by interactions between different genetic and environmen-
tal factors. An interesting finding in this regard is the presence of
several gene variants in tortoises (including G. agassizii) probably
affecting the activities of glucose metabolism genes, such as MIF
(p.N111C; expected to yield a locked trimer) and GSK3A (p.R272Q
in the activation loop). Given the roles of these positions in the
mammalian orthologues of these genes, tortoise-specific changes
could point to differences in the regulation of glucose intake and
tolerance (Supplementary Section 4, Supplementary Table 11, and
Supplementary Figs. 17 and 18). We also found expansions and
inactivations in other genes involved in energy metabolism. Thus,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—a glyco-
lytic enzyme with a key role in energy production, as well as in DNA
repair and apoptosis*'—is expanded in giant tortoises. Conversely,
the NLN gene encoding neurolysin is pseudogenized in tortoises.
The loss of this gene in mice has been related to improved glucose
uptake and insulin sensitivity”. Taken together, these results led us
to hypothesize that genomic variants affecting glucose metabolism
may have been a factor in the development of tortoises.

The analysis of genes related to the stress response has also high-
lighted several putative variants in giant tortoises affecting globins
and DNA repair factors (Supplementary Section 5, Supplementary
Tables 12 and 13, and Supplementary Figs. 19-22, 32 and 33). We
found that, despite living terrestrially, giant tortoises conserve the
hypoxia-related globin GbX*. Together with coelacanths, turtles,
including giant tortoises, are the only organisms known to possess
all eight different types of globins?’. Consistent with this, we found
in both giant tortoise genomes a variant in the transcription fac-
tor TP53 (p.S106E) that has been linked to hypoxia resistance in
some mammals and fishes?. The presence of the same residue in
Testudines strongly suggests a process of convergent evolution in
the adaptation to hypoxia, probably driven by an ancestral aquatic
environment, which left this footprint in the genomes of terrestrial
giant tortoises.

An important trait of large, long-lived vertebrates is their need
for tighter cancer protection mechanisms, as illustrated by Peto’s
paradox™*. In turn, this need for additional protection illustrates
the deep relationship and interdependence between cancer and
longevity (Fig. 2). Notably, tumours are believed to be very rare in
turtles®’. Therefore, we analysed more than 400 genes classified in
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a well-established census of cancer genes as oncogenes and tumour
suppressors™. Although most presented a highly conserved amino
acid sequence when compared with the sequences of other organ-
isms, we uncovered alterations in several tumourigenesis-related
genes (Fig. 2a, Supplementary Section 6, Supplementary Table 14
and Supplementary Figs. 23-29). First, we found that several puta-
tive tumour suppressors are expanded in turtles compared with
other vertebrates, including duplications in SMAD4, NF2, PML,
PTPNII and P2RY8. In addition, the aforementioned expansion
of PRF1, together with the tortoise-specific duplication of PRDM1,
suggests that immunosurveillance may be enhanced in turtles.
Likewise, we found giant-tortoise-specific duplications affecting
two putative proto-oncogenes—MYCN and SET. Notably, the SET
complex mediates oxidative stress responses induced by mitochon-
drial damage through the action of PRF1 and GZMA in cytotoxic
T lymphocyte- and natural killer-mediated cytotoxicity®. Taken
together, these results suggest that multiple gene copy-number
alterations may have influenced the mechanisms of spontaneous
tumour growth. Nevertheless, further studies are needed to evalu-
ate the genomic determinants of putative giant-tortoise-specific
cancer mechanisms.

Finally, we selected, for manually supervised annotation,
a set of 500 genes that may be involved in ageing modulation
(Supplementary Section 7 and Supplementary Table 15). The
extreme longevity of giant tortoises is expected to involve multiple
genes affecting different hallmarks of ageing''. We found several
alterations in the genomes of giant tortoises that may play a direct

role in six of them, and impinge on other ageing hallmarks and
processes, such as cancer progression® (Fig. 2b). First, we identi-
fied changes in three candidate factors (NEIL1, RMI2 and XRCC6)
related to the maintenance of genome integrity, a primary hallmark
of ageing'' (Fig. 3a). Thus, we found and validated a duplication
affecting NEILI, a key protein involved in the base-excision repair
process whose expression has been linked to extended lifespans in
several species”. Likewise, RMI2 is duplicated in tortoises, sug-
gesting an enhanced ability to resolve homologous recombination
intermediates to limit DNA crossover formation in cells*. In a pre-
liminary exploration of this hypothesis, we overexpressed NEILI
and RMI2 in HEK-293T cells and exposed the infected cells to
a sublethal dosage of H,O, or ultraviolet light, monitoring DNA
damage by western blot analysis at 24 and 48h after treatment. As
shown in Supplementary Figs. 22, 32 and 33, the expression of both
genes results in reduced levels of phosphorylated histone H2AX
and cleaved poly (ADP-ribose) polymerase (PARP), suggesting
reduced levels of DNA damage”. In turn, this result is consistent
with the hypothesis that NEIL1 and RMI2 levels may regulate the
strength of DNA repair mechanisms. Also in relation to DNA
repair mechanisms, we identified and validated a variant affecting
XRCC6—encoding a helicase involved in non-homologous end
joining of double-strand DNA breaks—which may affect a known
sumoylation site (p.K556R). This lysine is conserved in diverse
vertebrates but, notably, is changed in giant tortoises, and also in
the naked mole rat (p.K556N), the longest-lived rodent, which
suggests a putative process of convergent evolution (Fig. 3b). Since
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sumoylation is induced following DNA damage and plays a key
role in DNA repair response and multiple regulatory processes™,
this variant may reflect selective pressures acting on the regulation
of the repair of double-strand DNA breaks in long-lived organisms
(Supplementary Section 5.5).

Regarding telomere attrition—another primary hallmark of
ageing''—we uncovered in giant tortoises one variant in DCLRE1B
(p-R498C) potentially affecting its binding interface with telo-
meric repeat binding factor 2 (TERF2) (Fig. 3b and Supplementary
Section 7.2). This change, together with the aforementioned vari-
ants affecting DNA repair genes that may also impinge on telomere
dynamics™-*, highlights the relevance of telomere maintenance
as a regulatory mechanism of longevity in tortoises. Moreover, we
found changes potentially affecting proteostasis (Fig. 2a). We inde-
pendently found specific expansions of the elongation factor gene
EEFIAI in C. abingdonii, A. gigantea and G. agassizii, as described
with the automatic annotation. Importantly, overexpression of
EEF1A1 homologues in Drosophila melanogaster has been linked to
an increased lifespan in this species®.

Over time, nutrient sensing deregulation—another hallmark of
ageing—can result from alterations in metabolic control mecha-
nisms and signalling pathways'”. The aforementioned variant affect-
ing the activation loop of GSK3A (Supplementary Section 4.1),
which is present in C. abingdonii and all tested tortoises from the
Galapagos Islands and Aldabra Atoll, as well as their continental
outgroups, G. agassizii and C. picta bellii, may be involved in the
maintenance of glucose homoeostasis. Interestingly, the inhibi-
tion of GSK3 can extend lifespan in D. melanogaster®. Likewise,
the identified alterations in other giant tortoise genes implicated
in glucose metabolism, such as the aforementioned inactivation of

NLN, may provide interesting candidates to study nutrient sensing
in these long-lived species (Supplementary Section 7.4).

Regarding the mitochondrial function, we found two variants
(p-Q366M and p.M487T) potentially affecting the function of
ALDH2, a mitochondrial aldehyde dehydrogenase involved in
alcohol metabolism and lipid peroxidation, among other detoxifi-
cation processes*’. Notably, the p.Q366M variant, which may alter
the NAD-binding site of ALDH?2, is exclusively found in Galapagos
giant tortoises, but not in their continental close relative Chelonoidis
chilensis, nor in the more distantly related Aldabra or Agassiz’s tor-
toises. Thus, these changes could also alter the detoxification pro-
cess and contribute to pro-longevity mechanisms. Together with the
above described specific alterations in other genes of giant tortoises,
such as NLN and GAPDH, which encode enzymes associated with
mitochondrial functions**®, these variants may also impinge on
mitochondrial dysfunction, an antagonistic hallmark of ageing"
(Supplementary Section 7.5).

We have also found evidence in tortoises of some variants related
to altered intercellular communication (Supplementary Section 7.6
and Supplementary Fig. 30), an integrative hallmark of ageing''.
Thus, we have detected exclusively in C. abingdonii a prema-
ture stop codon affecting ITGAI (p.R990*), an essential integrin
involved in cell-matrix and cell-cell interactions. In addition, the
aforementioned variant affecting MIF is also expected to cause
the formation of inactivating interchain disulfide bonds, inhibit-
ing intracellular signalling cascades’. Moreover, MIF deficiency
reduces chronic inflammation in white adipose tissue and expands
lifespan, especially in response to caloric restriction®*. Finally,
we have annotated a specific variant in IGFIR that is expected to
affect the interaction between this receptor and the IGF1/2 growth
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Fig. 4 | Functional relevance of IGF1RN’2 in the IGF1 signalling pathway. a, Alignment of IGFIR around residue p.N724 in C. abingdonii, A. gigantea and
other representative species. The predicted electrostatic surfaces of human (top right) and modelled C. abingdonii (bottom right) IGFIR around the same
residue are shown for comparison. Negatively charged areas are depicted in red, while positively charged areas are depicted in blue. b, Western blot
analysis and densitometry quantification of the phospho-IGFIR (pIGFIR)/total IGFIR ratio at 5, 10 and 20 min intervals after IGF1 addition in HEK-293T
cells infected with pCDH, pCDH-IGF1IRYT and pCDH-IGF1RN"2#P plasmids. Bars indicate means +s.e.m. *P < 0.05, Fisher's least significant difference test
(n=3 independent experiments).

associated with human longevity™ opens the possibility that the
variant found in tortoises could also contribute to increasing the

factors™. Notably, a homology model of this region in IGFIR in
C. abingdonii suggests that position 724 is located at the surface of

the protein, and the presence of an aspartic acid residue changes the
local electrostatic field (Fig. 4a). The extended lifespan in different
species correlates with IGF signalling decrease®", which suggests
that this unique change in IGFIR may provide an attractive target to
study the cellular mechanisms underlying the exceptional lifespan
of these animals. To explore the functional consequences of differ-
ential IGF1 signalling caused by the p.N724D variant found in the
IGF1 receptor (IGFIR), we infected HEK-293T cells with pCDH,
pCDH-IGF1RY" and pCDH-IGF1RY*" plasmids. Cells express-
ing the mutant receptor showed an attenuation of IGF1 signalling,
compared with those expressing the wild-type protein, measured
as a significant reduction in the phosphorylation levels of IGFIR
at 5min (95% confidence interval of difference: 0.1119-1.5330,
t=2.454, P=0.026) and 10min (95% confidence interval of dif-
ference: 0.1991-1.6200, t=2.714, P=0.0153) after IGF1 treatment
(Fig. 4b, Supplementary Section 7.6.2 and Supplementary Fig. 31).
According to a two-way analysis of variance, the exogenous
IGF1R form accounted for 16.07% of total variation (F,,=20.91,
P=0.0102), while time accounted for 44.23% of total variation
(Fs,,=6.57, P=0.0071). Interestingly, we also found in tortoises
a short deletion in the coding region of IGF2R that results in the
loss of two amino acids. The fact that IGF2R variants have been

lifespan of these long-lived animals.

In summary, in this work, we report the preliminary charac-
terization of giant tortoise genomes. We complemented the auto-
matic annotation of genomes from two giant tortoise species with
a hypothesis-driven strategy using manually supervised annotation
of a large set of genes. The analysis of the resulting sequences offers
candidate genes and pathways that may underlie the extraordinary
characteristics of these iconic species, including their development,
gigantism and longevity. A better understanding of the processes
that we have studied may help to further elucidate the biology of
these species and therefore aid the ongoing efforts to conserve these
dwindling lineages. Lonesome George—the last representative of
C. abingdonii, and a renowned emblem of the plight of endangered
species—left a legacy including a story written in his genome whose
unveiling has just started.

Methods

Genome sequencing and assembly. We obtained DNA from a blood sample from
Lonesome George—the last member of C. abingdonii. This DNA was sequenced,
using the Illumina HiSeq 2000 platform, from a 180-base pair-insert paired-end
library, a 5-kilobase (kb)-insert mate-pair library and a 20-kb-insert mate-pair
library. These libraries were assembled with the AllPaths algorithm™ for a draft
genome containing 64,657 contigs with an N50 of 74kb. Then, we scaffolded the

92 NATURE ECOLOGY & EVOLUTION | VOL 3 | JANUARY 2019 | 87-95 | www.nature.com/natecolevol


http://www.nature.com/natecolevol

NATURE ECOLOGY & EVOLUTION

ARTICLES

contigs with SSPACE version 3.0 (ref. *°) using the long-insert mate-pair libraries.
Finally, we filled the gaps with PBJelly version 15.8.24 (ref. *°) using the reads
obtained from 18 BioPac cells. This step yielded 10,623 scaffolds with an N50

of 1.27 megabases, for a final assembly 2.3 gigabases long. Then, we soft-masked
repeated regions using RepeatMasker (http://www.repeatmasker.org) with a
database containing chordate repeated elements (included in the software) as

a reference. Additionally, we assessed the completeness of assembly by their
estimated gene content, using Benchmarking Universal Single-Copy Orthologs
(BUSCO version 3.0.0)”, which tested the status of a set of 2,586 vertebrata

genes from the comprehensive catalogue of orthologues™. We also performed
RNA-Seq from C. abingdonii blood and A. gigantea granuloma, and aligned

the resulting reads to the assembled genome using TopHat™ (version 2.0.14).
Finally, we obtained whole-genome data from A. gigantea with one Illumina

lane of a 180-base pair paired-end library. The resulting reads were aligned to the
C. abingdonii genome with BWA® (version 0.7.5a). Raw reads from C. abingdonii
were also aligned to the genome for manual curation of the results. All work on
field samples was conducted at Yale University under Institutional Animal Care and
Use Committee permit number 2016-10825, Galapagos Park Permit PC-75-16 and
Convention on International Trade in Endangered Species number 15US209142/9.

Genome annotation. Using the genome assembly of C. abingdonii and the
RNA-Seq reads from C. abingdonii and A. gigantea, we performed de novo
annotation with MAKER?2. The algorithm was also fed both human and P. sinensis
reference sequences, and performed two runs in a Microsoft Azure virtual machine
(Supplementary Table 16). In parallel, we used selected genes from the human
protein database in Ensembl as a reference to manually predict the corresponding
homologues in the genome of C. abingdonii using the BATI algorithm (Blast,
Annotate, Tune, Iterate)'. Briefly, this algorithm allows a user to annotate the
position and intron/exon boundaries of genes in novel genomes from tblastn
results. In addition, tblastn results are integrated to search for novel homologues
in the explored genome. Sequencing data have been deposited at the Sequence
Read Archive (https://www.ncbi.nlm.nih.gov/sra), with comments showing

which regions were filled with the BioPac reads and therefore may contain
frequent errors.

Effective population size changes and diversity. We reconstructed changes in

the effective population over time using the PSMC model’ in the following way:
the reads of both individuals were aligned to the reference assembly using bwa
mem (version 0.7.15-r1140). We then constructed pseudodiploid sequences using
variant calls generated with SAMtools and BCFtools®, requiring minimal base
and mapping qualities of 30. We additionally masked out any region with coverage
below 36 or above 216 for the C. abingdonii sample, and below 8 or above 52 for
the A. gigantea sample, as a function of their respective genome-wide average
coverage. The resulting sequences were used to run 100 PSMC bootstrap replicates
per individual, using the following parameters: -N25 -t15 -15 -p ‘4 +25*2+4+6.
The result was averaged and scaled to real time assuming a mutation rate (i) of
2.5%107* and a generation time (g) of 25 years.

Expansion of gene families. To detect expansion of gene families, we aligned
pairwise all the predicted proteins from the automatic annotation to the UniProt®
database of human proteins and the UniProt database of P. sinensis proteins

using BLAST®* (version 2.6.011). Then, we used in-house Perl scripts to group
these proteins in one-to-one, one-to-many and many-to-many orthologous
relationships. Only alignments spanning at least 80% of the longer protein, and
with more than 60% identities, were considered. Finally, we interrogated the
resulting database to find families with C. abingdonii-specific expansions and
curated the results manually. This way, we constructed extended orthology sets
that may contain more than one sequence per species. These sets recapitulate most
of the known families, although some of these families appear split according to
sequence similarity.

Phylogenetic, evolutionary and structural analyses. Next, we assessed evidence
for signatures of positive selection affecting the predicted set of genes. For this
purpose, we used databases from the human (Homo sapiens), mouse (Mus
musculus), dog (Canis lupus familiaris), gecko (Gekko japonicus), green anole
lizard (A. carolinensis), python snake (Python bivittatus), common garter snake
(Thamnophis sirtalis), Habu viper (Trimeresurus mucrosquamatus), budgerigar
(Melopsittacus undulatus), zebra finch (Taeniopygia guttata), flycatcher (Ficedula
albicollis), duck (Anas platyrhynchos), turkey (Meleagris gallopavo), chicken
(Gallus gallus), Chinese soft-shell turtle (P. sinensis), green sea turtle (Chelonia
mydas) and painted turtle (C. picta bellii) to generate pairwise alignments of all
available genes one by one. To this end, we used BLAST and simple in-house
Perl scripts (https://github.com/vqf/LG), which allowed us to group the genes
by identity (focusing only on those presenting one-to-one orthology). We then
discarded those groups in which there were more than three species missing
(always excluding those in which C. abingdonii was missing). This way, we
obtained 1,592 groups of sequences (similar to other studies). We then aligned
them with PRANK version 150803 using the codon model and analysed the
alignments with codeml from the PAML package®. To search for genes with

signatures of positive selection affecting genes specific to C. abingdonii, we
executed two different branch models—MO0, with a single w0 value (where @
represents the ratio of non-synonymous to synonymous substitutions) for all

the branches (nested), and M2a, with a foreground w2 value exclusive for

C. abingdonii and a background w1 value for all the other branches. As a control,
the second model was repeated using P. sinensis as the foreground branch.

Genes with a high 2 value (>1) and a low w1 value (w1 <0.2 and @1 ~@0) in
C. abingdonii, but not in P. sinensis (Supplementary Section 1.2 and
Supplementary Tables 5 and 17), were then considered to be under positive
selection. After this, we used the M8 model to assess the individual importance
of every site in these positively selected genes, obtaining a list of sites of special
interest in this evolutionary effect. These results were compared with those of
the Aldabra tortoise through alignments, to evaluate which of these important
residues were altered (Supplementary Table 18). Homology models were
performed with SWISS-MODEL® from the closest template available. The results
were inspected and rendered with DeepView version 4.0.1. Electric potentials
were calculated with DeepView using the Poisson-Boltzmann computation
method. Figures were generated with PovRay (http://povray.org).

Functional analyses. HEK-293T cells were infected with pCDH, pCDH-NEILI,
pCDH-RMI2 or pCDH-NEIL1 4+ pCDH-RMI2 in the case of repair studies, and
pCDH, pCDH-IGF1R"" or pCDH-IGF1RY*® in the case of IGFIR analyses.

For the repair studies, we isolated clones of infected HEK-293T cells with proper
expression levels of NEILI and RMI2. Cells were exposed to ultraviolet light
(20Jm™) or H,0, (500 pM) 24 and 48 h before being lysed in NP-40 lysis buffer
containing 50 mM Tris-HCI pH 7.4, 150 mM NaCl, 10mM EDTA pH8 and 1%
NP-40, and supplemented with protease inhibitor cocktail (cOmplete, EDTA-free;
Roche), as well as phosphatase inhibitors (PhosSTOP; Roche/NaF; Merck). For
the IGFIR variant analyses, cells were serum starved for 14 h, then treated with
100nM IGF1 for 5, 10 and 20 min before lysis in the same buffer. Equal amounts
of protein were resolved by 8 to 13% sodium dodecyl sulfate polyacrylamide

gel electrophoresis and transferred to PVDF membranes (GE Healthcare Life
Sciences). Membranes were blocked for 1h at room temperature with TBS-T
(0.1% Tween 20) containing 5% bovine serum albumin. Immunoblotting was
performed with primary antibodies diluted 1:500 to 1:1000 in TBS-T and 1% bovine
serum albumin and incubated overnight at 4°C. The primary antibodies used
were: anti-phospho-Histone H2AX (Ser139) (EMD Millipore; 05-636, clone
JBW301, lot 2854120), anti-PARP (Cell Signaling Technology; 95428, rabbit
polyclonal, lot 15), anti-FLAG (Cell Signaling Technology; 2368S, rabbit polyclonal,
lot 12), anti-IGF1R (Abcam; ab182408, clone EPR19322, lot GR312678-8), anti-
IGFIR (p Tyr1161) (Novus Biologicals; NB100-92555, rabbit polyclonal, lot CJ36131),
anti-B-actin (Sigma-Aldrich, A5441, clone AC-15, lot 014M4759) and anti-a-tubulin
(Sigma-Aldrich, T6074, clone B-5-1-2, lot 075M4823V). After washing with TBS-T,
membranes were incubated with secondary antibodies conjugated with IRDye
680RD (LI-COR Biosciences; 926-68071, polyclonal goat-anti-rabbit, lot
C41217-03; and 926-32220, polyclonal goat-anti-mouse, lot C00727-03) or

IRDye 800CW (LI-COR Biosciences; 926-32211, polyclonal goat-anti-rabbit, lot
C60113-05; and 926-32210, polyclonal goat-anti-mouse, lot C50316-03) for 1h at
room temperature. Protein bands were scanned on an Odyssey infrared scanner
(LI-COR Biosciences). Band intensities were quantified by Image] and used to
calculate the phospho-IGF1R/IGF1R ratio in the case of the IGF1R assay. In each
replicate, cells were infected independently. For the samples from ultraviolet
treatment, Flag (RMI2) was detected on the same samples used for the remaining
western blots shown in this panel, run in parallel on an identical blot. Similarly,
for the samples from H,0O, treatment, the western blots shown were carried out
with the same samples run in parallel in three identical blots (one for PARP

and actin, a second for Flag (NEIL1 and RMI2) and a third for pH2AX). Each
sample contained one replicate. Statistical comparisons consisted of two-way
analysis of variance performed using GraphPad Prism 7.0 software. Differences
were considered statistically significant when P <0.05. Effect sizes are expressed
as group sum-of-squares divided by the total sum-of-squares (R?). At each time
point, both groups were also compared with Fisher’s least significant difference
test (uncorrected; a=0.05).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Code availability. The scripts for manual annotation (BATI) can be accessed at
http://degradome.uniovi.es/downloads.html. Custom scripts used to produce
multiple alignments for positive selection and copy-number studies are freely
available at https://github.com/vqf/LG.

Data availability

Data supporting the findings of this study are available within the paper and its
Supplementary Information. Sequencing data have been deposited at the Sequence
Read Archive (https://www.ncbi.nlm.nih.gov/sra) with BioProject accession
number PRINA416050. The accession number of the assembled genomic sequence
is PKMU00000000. MAKER2-predicted protein sequences can be downloaded
from https://github.com/vqf/LG.
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Antibodies

Antibodies used The primary antibodies used were: anti-phospho-Histone H2AX (Ser139) (EMD Millipore, 05-636, clone JBW301, lot 2854120),
anti-PARP (Cell Signalling, 95425, rabbit polyclonal, lot 15), anti-FLAG (Cell Signalling, 2368S, rabbit polyclonal, lot 12), anti-IGF1R
(Abcam, ab182408, clone EPR19322, lot GR312678-8), anti-IGF1R (p Tyr1161) (Novus Biologicals, NB100-92555, rabbit
polyclonal, lot CJ36131), anti-B-actin (Sigma, A5441, clone AC-15, lot 014M4759) and anti-a-tubulin (Sigma, T6074, clone
B-5-1-2, lot 075M4823V).
The secondary antibodies used were:
LI-COR, IRDye 680RD, 926-68071, polyclonal goat-anti-rabbit, lot C41217-03
LI-COR, IRDye 680, 926-32220, polyclonal goat-anti-mouse, lot C00727-03
LI-COR, IRDye 800CW, 926-32211, polyclonal goat-anti-rabbit, lot C60113-05
LI-COR, IRDye 800CW, 926-32210, polyclonal goat-anti-mouse, lot C50316-03

Validation All antibodies used in this study were purchased from commercial companies, and they had been verified by the manufacturer.
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-Anti-phospho-Histone H2A.X (Ser139), clone JBW301 is a well published Mouse Monoclonal Antibody validated in ChlIP, ICC, IF,
WSB. This purified mAb is highly specific for phospho-Histone H2A.X (Ser139) also known as H2AXS139p.
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-PARP Antibody detects endogenous levels of full length PARP1 (116 kDa), as well as the large fragment (89 kDa) of PARP1
resulting from caspase cleavage. The antibody does not cross-react with related proteins or other PARP isoforms.

-DYKDDDDK Tag Antibody (Anti-Flag) detects exogenously expressed DYKDDDDK proteins in cells. The antibody recognizes the
DYKDDDDK peptide (the same epitope recognized by Sigma's Anti-FLAG® antibodies) fused to either the amino- or carboxy-
terminus of targeted proteins. The binding specificity of this antibody is NOT dependent on the presence of divalent metal
cations.

-Our Abpromise guarantee covers the use of ab182408 in the following tested applications: WB (1/1000 dilution). Detects a band
of approximately 100,200 kDa (predicted molecular weight: 156 kDa)...

-Anti-IGF1R (p Tyr1161): Validated by Western blot (WB) analysis of p-IGF-1R (Y1161) pAb in extracts from Hela cells.
-Anti-B-actin western blot validation: 1:5,000-1:10,000 using cultured human or chicken fibroblast cell extracts. Reacts against
guinea pig, canine, Hirudo medicinalis, feline, pig, carp, mouse, chicken, rabbit, sheep, rat, human and bovine orthologs. Does

not react against Dictyostelium discoideum.

-Anti-a-tubulin western blot validation: 0.25-0.5 ug/mL using total cell extract of human foreskin fibroblast cell line (FS11).
Species reactivity: human, Chlamydomonas, African green monkey, chicken, kangaroo rat, bovine, mouse, rat, sea urchin.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) ATCC
Authentication PCR-based microsatellite characterization was performed at the University of Oviedo.
Mycoplasma contamination Cell lines were not tested for mycoplasma contamination

Commonly misidentified lines HEK-293T cells are widely used for infection experiments. The identity of these cells was assessed by PCR-based
(See ICLAC register) microsatellite characterization

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involve laboratory animals.
Wild animals The study did not involve observations but did involve temporary captures of wild animals to extract blood samples.
Field-collected samples All work on field samples was conducted at Yale University under IACUC permit number 2016-10825, Galapagos Park Permit

PC-75-16 and CITES number 15US5209142/9
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