156 research outputs found

    The Influence of Contrasting Microbial Lifestyles on the Pre-symbiotic Metabolite Responses of Eucalyptus grandis Roots

    Get PDF
    Plant roots co-inhabit the soil with a diverse consortium of microbes of which a number attempt to enter symbiosis with the plant. These microbes may be pathogenic, mutualistic, or commensal. Hence, the health and survival of plants is heavily reliant on their ability to perceive different microbial lifestyles and respond appropriately. Emerging research suggests that there is a pivotal role for plant root secondary metabolites in responding to microbial colonization. However, it is largely unknown if plants are able to differentiate between microbes of different lifestyles and respond differently during the earliest stages of pre-symbiosis (i.e., prior to physical contact). In studying plant responses to a range of microbial isolates, we questioned: (1) if individual microbes of different lifestyles and species caused alterations to the plant root metabolome during pre-symbiosis, and (2) if these early metabolite responses correlate with the outcome of the symbiotic interaction in later phases of colonization.We compared the changes of the root tip metabolite profile of the model tree Eucalyptus grandis during pre-symbiosis with two isolates of a pathogenic fungus (Armillaria luteobubalina), one isolate of a pathogenic oomycete (Phytophthora cinnamomi), two isolates of an incompatible mutualistic fungus (Suillus granulatus), and six isolates of a compatible mutualistic fungus (Pisolithus microcarpus). Untargeted metabolite profiling revealed predominantly positive root metabolite responses at the pre-symbiosis stage, prior to any observable phenotypical changes of the root tips. Metabolite responses in the host tissue that were specific to each microbial species were identified. A deeper analysis of the root metabolomic profiles during pre-symbiotic contact with six strains of P. microcarpus showed a connection between these early metabolite responses in the root with later colonization success. Further investigation using isotopic tracing revealed a portion of metabolites found in root tips originated from the fungus. RNA-sequencing also showed that the plant roots undergo complementary transcriptomic reprogramming in response to the fungal stimuli. Taken together, our results demonstrate that the early metabolite responses of plant roots are partially selective toward the lifestyle of the interacting microbe, and that these responses can be crucial in determining the outcome of the interaction

    How journal rankings can suppress interdisciplinary research. A comparison between Innovation Studies and Business & Management

    Get PDF
    This study provides quantitative evidence on how the use of journal rankings can disadvantage interdisciplinary research in research evaluations. Using publication and citation data, it compares the degree of interdisciplinarity and the research performance of a number of Innovation Studies units with that of leading Business & Management schools in the UK. On the basis of various mappings and metrics, this study shows that: (i) Innovation Studies units are consistently more interdisciplinary in their research than Business & Management schools; (ii) the top journals in the Association of Business Schools' rankings span a less diverse set of disciplines than lower-ranked journals; (iii) this results in a more favourable assessment of the performance of Business & Management schools, which are more disciplinary-focused. This citation-based analysis challenges the journal ranking-based assessment. In short, the investigation illustrates how ostensibly 'excellence-based' journal rankings exhibit a systematic bias in favour of mono-disciplinary research. The paper concludes with a discussion of implications of these phenomena, in particular how the bias is likely to affect negatively the evaluation and associated financial resourcing of interdisciplinary research organisations, and may result in researchers becoming more compliant with disciplinary authority over time.Comment: 41 pages, 10 figure

    The influence of contrasting microbial lifestyles on the pre-symbiotic metabolite responses of Eucalyptus grandis roots

    Full text link
    © 2019 Wong, Lutz, Natera, Wang, Ng, Grigoriev, Martin, Roessner, Anderson and Plett. Plant roots co-inhabit the soil with a diverse consortium of microbes of which a number attempt to enter symbiosis with the plant. These microbes may be pathogenic, mutualistic, or commensal. Hence, the health and survival of plants is heavily reliant on their ability to perceive different microbial lifestyles and respond appropriately. Emerging research suggests that there is a pivotal role for plant root secondary metabolites in responding to microbial colonization. However, it is largely unknown if plants are able to differentiate between microbes of different lifestyles and respond differently during the earliest stages of pre-symbiosis (i.e., prior to physical contact). In studying plant responses to a range of microbial isolates, we questioned: (1) if individual microbes of different lifestyles and species caused alterations to the plant root metabolome during pre-symbiosis, and (2) if these early metabolite responses correlate with the outcome of the symbiotic interaction in later phases of colonization. We compared the changes of the root tip metabolite profile of the model tree Eucalyptus grandis during pre-symbiosis with two isolates of a pathogenic fungus (Armillaria luteobubalina), one isolate of a pathogenic oomycete (Phytophthora cinnamomi), two isolates of an incompatible mutualistic fungus (Suillus granulatus), and six isolates of a compatible mutualistic fungus (Pisolithus microcarpus). Untargeted metabolite profiling revealed predominantly positive root metabolite responses at the pre-symbiosis stage, prior to any observable phenotypical changes of the root tips. Metabolite responses in the host tissue that were specific to each microbial species were identified. A deeper analysis of the root metabolomic profiles during pre-symbiotic contact with six strains of P. microcarpus showed a connection between these early metabolite responses in the root with later colonization success. Further investigation using isotopic tracing revealed a portion of metabolites found in root tips originated from the fungus. RNA-sequencing also showed that the plant roots undergo complementary transcriptomic reprogramming in response to the fungal stimuli. Taken together, our results demonstrate that the early metabolite responses of plant roots are partially selective toward the lifestyle of the interacting microbe, and that these responses can be crucial in determining the outcome of the interaction

    Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress

    Get PDF
    To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with 13C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes

    High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit

    Get PDF
    Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway

    Metabolic profiling of Arabidopsis thaliana epidermal cells

    Get PDF
    Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo

    Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    Get PDF
    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

    Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration

    Get PDF
    Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice

    Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender

    Get PDF
    Summary. Objective. ADHD is frequently accompanied by motor coordination problems. However, the co-occurrence of poor motor performance has received less attention in research than other coexisting problems in ADHD. The underlying mechanisms of this association remain unclear. Therefore, we investigated the prevalence of motor coordination problems in a large sample of children with ADHD, and the relationship between motor coordination problems and inattentive and hyperactive/impulsive symptoms. Furthermore, we assessed whether the association between ADHD and motor coordination problems was comparable across ages and was similar for both genders. Method. We investigated 486 children with ADHD and 269 normal controls. Motor coordination problems were rated by parents (Developmental Coordination Disorder Questionnaire) and teachers (Groningen Motor Observation Scale). Results. Parents and teachers reported motor coordination problems in about one third of children with ADHD. Problems of fine and gross motor skills, coordination skills and motor control were all related to inattentive rather than hyperactive/impulsive symptoms. Relative to controls, motor coordination problems in ADHD were still present in teenagers according to parents; the prevalence diminished somewhat according to teachers. Boys and girls with ADHD were comparably affected, but motor performance in controls was better in girls than in boys. Conclusions. Motor coordination problems were reported in one third of children with ADHD and affected both boys and girls. These problems were also apparent in adolescents with ADHD. Clinicians treating children with ADHD should pay attention to co-occurring motor coordination problems because of the high prevalence and the negative impact of motor coordination problems on daily life
    corecore