1,822 research outputs found

    Multivariate discrimination and the Higgs + W/Z search

    Get PDF
    A systematic method for optimizing multivariate discriminants is developed and applied to the important example of a light Higgs boson search at the Tevatron and the LHC. The Significance Improvement Characteristic (SIC), defined as the signal efficiency of a cut or multivariate discriminant divided by the square root of the background efficiency, is shown to be an extremely powerful visualization tool. SIC curves demonstrate numerical instabilities in the multivariate discriminants, show convergence as the number of variables is increased, and display the sensitivity to the optimal cut values. For our application, we concentrate on Higgs boson production in association with a W or Z boson with H -> bb and compare to the irreducible standard model background, Z/W + bb. We explore thousands of experimentally motivated, physically motivated, and unmotivated single variable discriminants. Along with the standard kinematic variables, a number of new ones, such as twist, are described which should have applicability to many processes. We find that some single variables, such as the pull angle, are weak discriminants, but when combined with others they provide important marginal improvement. We also find that multiple Higgs boson-candidate mass measures, such as from mild and aggressively trimmed jets, when combined may provide additional discriminating power. Comparing the significance improvement from our variables to those used in recent CDF and DZero searches, we find that a 10-20% improvement in significance against Z/W + bb is possible. Our analysis also suggests that the H + W/Z channel with H -> bb is also viable at the LHC, without requiring a hard cut on the W/Z transverse momentum.Comment: 41 pages, 5 tables, 29 figure

    Renal impairment in a rural African antiretroviral programme

    Get PDF
    Background: There is little knowledge regarding the prevalence and nature of renal impairment in African populations initiating antiretroviral treatment, nor evidence to inform the most cost effective methods of screening for renal impairment. With the increasing availability of the potentially nephrotixic drug, tenofovir, such information is important for the planning of antiretroviral programmes Methods: (i) Retrospective review of the prevalence and risk factors for impaired renal function in 2189 individuals initiating antiretroviral treatment in a rural African setting between 2004 and 2007 (ii) A prospective study of 149 consecutive patients initiating antiretrovirals to assess the utility of urine analysis for the detection of impaired renal function. Severe renal and moderately impaired renal function were defined as an estimated GFR of ≤ 30 mls/min/1.73 m2 and 30–60 mls/min/1.73 m2 respectively. Logistic regression was used to determine odds ratio (OR) of significantly impaired renal function (combining severe and moderate impairment). Co-variates for analysis were age, sex and CD4 count at initiation. Results: (i) There was a low prevalence of severe renal impairment (29/2189, 1.3% 95% C.I. 0.8–1.8) whereas moderate renal impairment was more frequent (287/2189, 13.1% 95% C.I. 11.6–14.5) with many patients having advanced immunosuppression at treatment initiation (median CD4 120 cells/μl). In multivariable logistic regression age over 40 (aOR 4.65, 95% C.I. 3.54–6.1), male gender (aOR 1.89, 95% C.I. 1.39–2.56) and CD4<100 cells/ul (aOR 1.4, 95% C.I. 1.07–1.82) were associated with risk of significant renal impairment (ii) In 149 consecutive patients, urine analysis had poor sensitivity and specificity for detecting impaired renal function. Conclusion: In this rural African setting, significant renal impairment is uncommon in patients initiating antiretrovirals. Urine analysis alone may be inadequate for identification of those with impaired renal function where resources for biochemistry are limited

    Fast Protection-Domain Crossing in the CHERI Capability-System Architecture

    Get PDF
    Capability Hardware Enhanced RISC Instructions (CHERI) supplement the conventional memory management unit (MMU) with instruction-set architecture (ISA) extensions that implement a capability system model in the address space. CHERI can also underpin a hardware-software object-capability model for scalable application compartmentalization that can mitigate broader classes of attack. This article describes ISA additions to CHERI that support fast protection-domain switching, not only in terms of low cycle count, but also efficient memory sharing with mutual distrust. The authors propose ISA support for sealed capabilities, hardware-assisted checking during protection-domain switching, a lightweight capability flow-control model, and fast register clearing, while retaining the flexibility of a software-defined protection-domain transition model. They validate this approach through a full-system experimental design, including ISA extensions, a field-programmable gate array prototype (implemented in Bluespec SystemVerilog), and a software stack including an OS (based on FreeBSD), compiler (based on LLVM), software compartmentalization model, and open-source applications.This work is part of the CTSRD and MRC2 projects sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 and FA8750-11-C-0249. We also acknowledge the Engineering and Physical Sciences Research Council (EPSRC) REMS Programme Grant [EP/K008528/1], the EPSRC Impact Acceleration Account [EP/K503757/1], EPSRC/ARM iCASE studentship [13220009], Microsoft studentship [MRS2011-031], the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, and Google, Inc.This is the author accepted manuscript. The final version of the article can be found at: http://ieeexplore.ieee.org/document/7723791

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Shrinking and Splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide

    No full text
    International audienceClimate, and in particular **the spatial pattern of precipitation, is thought to affect* *the topographic and tectonic evolution of mountain belts through erosion. Numerical model simulations of landscape erosion controlled **by horizontal tectonic motion or orographic precipitation result in the asymmetric topography that characterizes most natural mountain belts, and in a continuous migration of the main drainage divide. The effects of such a migration have, however, been challenging to observe in natural settings. Here I document the effects of a lateral precipitation gradient on a landscape undergoing constant uplift in a laboratory modelling experiment. In the experiment, the drainage divide migrates towards the drier, leeward side of the mountain range, causing the drainage basins on the leeward side to shrink and split into* *smaller basins. This mechanism results in a progressively increasing number of drainage basins on the leeward side of the mountain range as the divide migrates, such that the expected relationship between the spacing of drainage basins and the location of the main drainage divide is maintained. I propose that this mechanism could clarify the drainage divide migration and topographic asymmetry found in active orogenic mountain ranges, as exemplified by the Aconquija Range of Argentin

    ruvA Mutants that resolve Holliday junctions but do not reverse replication forks

    Get PDF
    RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism

    Get PDF
    The Hsp90 chaperone is a central node of protein homeostasis activating a large number of diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies define distinct conformational states of the mechanistic core implying structural changes that have not yet been observed in solution. Here, we engineered one-nanometer fluorescence probes based on photo-induced electron transfer into yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement are mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilizes the lid of apo Hsp90, suggesting an early role in the catalytic cycle

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore