709 research outputs found
Migratory shorebird adheres to Bergmannâs Rule by responding to environmental conditions through the annual lifecycle
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmannâs Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmannâs Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle
Migratory shorebird adheres to Bergmannâs Rule by responding to environmental conditions through the annual lifecycle
The inverse relationship between body size and environmental temperature is a widespread ecogeographic pattern. However, the underlying forces that produce this pattern are unclear in many taxa. Expectations are particularly unclear for migratory species, as individuals may escape environmental extremes and reorient themselves along the environmental gradient. In addition, some aspects of body size are largely fixed while others are environmentally flexible and may vary seasonally. Here, we used a long-term dataset that tracked multiple populations of the migratory piping plover Charadrius melodus across their breeding and non-breeding ranges to investigate ecogeographic patterns of phenotypically flexible (body mass) and fixed (wing length) size traits in relation to latitude (Bergmannâs Rule), environmental temperature (heat conservation hypothesis), and migratory distance. We found that body mass was correlated with both latitude and temperature across the breeding and non-breeding ranges, which is consistent with predictions of Bergmannâs Rule and heat conservation. However, wing length was correlated with latitude and temperature only on the breeding range. This discrepancy resulted from low migratory connectivity across seasons and the tendency for individuals with longer wings to migrate farther than those with shorter wings. Ultimately, these results suggest that wing length may be driven more by conditions experienced during the breeding season or tradeoffs related to migration, whereas body mass is modified by environmental conditions experienced throughout the annual lifecycle
Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions
We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb
superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson
junctions with high critical current densities, large normal resistance times
area products, high quality factors, and very good spatial uniformity. For
these junctions a transition from 0- to \pi-coupling is observed for a
thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The
magnetic field dependence of the \pi-coupled junctions demonstrates good
spatial homogeneity of the tunneling barrier and ferromagnetic interlayer.
Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane
anisotropy and large saturation magnetization, indicating negligible dead
layers at the interfaces. A careful analysis of Fiske modes provides
information on the junction quality factor and the relevant damping mechanisms
up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at
low frequencies, the damping is dominated by the finite surface resistance of
the junction electrodes at high frequencies. High quality factors of up to 30
around 200 GHz have been achieved. Our analysis shows that the fabricated
junctions are promising for applications in superconducting quantum circuits or
quantum tunneling experiments.Comment: 15 pages, 9 figure
Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior
Recent overwhelming evidences show that the sun strongly influences the
Earth's climate and environment. Moreover existence of life on this Earth
mainly depends upon the sun's energy. Hence, understanding of physics of the
sun, especially the thermal, dynamic and magnetic field structures of its
interior, is very important. Recently, from the ground and space based
observations, it is discovered that sun oscillates near 5 min periodicity in
millions of modes. This discovery heralded a new era in solar physics and a
separate branch called helioseismology or seismology of the sun has started.
Before the advent of helioseismology, sun's thermal structure of the interior
was understood from the evolutionary solution of stellar structure equations
that mimicked the present age, mass and radius of the sun. Whereas solution of
MHD equations yielded internal dynamics and magnetic field structure of the
sun's interior. In this presentation, I review the thermal, dynamic and
magnetic field structures of the sun's interior as inferred by the
helioseismology.Comment: To be published in the proceedings of the meeting "3rd International
Conference on Current Developments in Atomic, Molecular, Optical and Nano
Physics with Applications", December 14-16, 2011, New Delhi, Indi
The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour
Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
Neutrino masses: From fantasy to facts
Theory suggests the existence of neutrino masses, but little more. Facts are
coming close to reveal our fantasy: solar and atmospheric neutrino data
strongly indicate the need for neutrino conversions, while LSND provides an
intriguing hint. The simplest ways to reconcile these data in terms of neutrino
oscillations invoke a light sterile neutrino in addition to the three active
ones. Out of the four neutrinos, two are maximally-mixed and lie at the LSND
scale, while the others are at the solar mass scale. These schemes can be
distinguished at neutral-current-sensitive solar & atmospheric neutrino
experiments. I discuss the simplest theoretical scenarios, where the lightness
of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and
the generation of & all follow
naturally from the assumed lepton-number symmetry and its breaking. Although
the most likely interpretation of the present data is in terms of
neutrino-mass-induced oscillations, one still has room for alternative
explanations, such as flavour changing neutrino interactions, with no need for
neutrino mass or mixing. Such flavour violating transitions arise in theories
with strictly massless neutrinos, and may lead to other sizeable flavour
non-conservation effects, such as , conversion in
nuclei, unaccompanied by neutrino-less double beta decay.Comment: 33 pages, latex, 16 figures. Invited Talk at Ioannina Conference,
Symmetries in Intermediate High Energy Physics and its Applications, Oct.
1998, to be published by Springer Tracts in Modern Physics. Festschrift in
Honour of John Vergados' 60th Birthda
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Search for the associated production of a b quark and a neutral supersymmetric Higgs boson which decays to tau pairs
We report results from a search for production of a neutral Higgs boson in
association with a quark. We search for Higgs decays to pairs with
one subsequently decaying to a muon and the other to hadrons. The data
correspond to 2.7fb of \ppbar collisions recorded by the D0 detector
at TeV. The data are found to be consistent with background
predictions. The result allows us to exclude a significant region of parameter
space of the minimal supersymmetric model.Comment: Submitted to Phys. Rev. Letter
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- âŚ