425 research outputs found

    Mineralogy and geochemistry of oil sands froth treatment tailings: Implications for acid generation and metal(loid) release

    Get PDF
    Copyright © 2019 Elsevier Ltd. All rights reserved.This research was supported by the Natural Sciences and Engineering Council of Canada (NSERC) and Syncrude Canada Ltd. through the Industrial Research Chairs Grants program (Grant No. IRCPJ 450684−13). Additional support for CJV was provided by the NSERC Canadian Graduate Scholarships – Master’s (NSERC CGS-M) Program.Peer ReviewedFroth treatment tailings (FTT) are one of three principal tailings streams generated during bitumen extraction at oil sands mines in northern Alberta, Canada. Unlike the coarse tailings and fluid fine tailings, FTT are enriched in sulfide-minerals content and exhibit the potential for acid generation and metal(loid) leaching. However, the mineralogical and geochemical characteristics of this sulfide-bearing tailings stream remain poorly constrained. We examined samples of fresh FTT (n = 3) and partially-weathered FTT collected from a sub-aerial beach deposit (n = 15). X-ray diffraction revealed that weathering-resistant silicates, phyllosilicates, and oxides dominated (85 ± 7.3 wt. %) the FTT mineral assemblage, while sulfides (6.2 ± 3.6 wt. %) and carbonates (8.9 ± 4.3 wt. %) were relatively minor phases. Pyrite [FeS2] was the principal sulfide in all samples, while minor amounts of marcasite [FeS2] occurred only in beach samples. Sulfide mineral textures were highly variable and included euhedral to subhedral pyrite crystals, discrete and clustered pyrite framboids, and marcasite replacements of pyrite framboids. Siderite [FeCO3] accounted for 55 to 90 % of all carbonates, while dolomite [CaMg(CO3)2], calcite [CaCO3] and ankerite [Ca(Fe,Mg,Mn)(CO3)2] accounted for the remainder. Statistical analysis of bulk geochemical compositions suggested that environmentally-relevant metal(loid)s, including As, Cu, Co, Fe, Mn, Ni, Pb and Zn, were likely associated with sulfides, carbonates and, to a lesser extent, phyllosilicates. Electron probe microanalyses revealed a wide range of As, Cu, Co, Mn, Ni and Zn concentrations in pyrite, with As and Cu concentrations elevated in framboids. Rare earth elements (REEs), Th and U also occurred at elevated concentrations and statistical analyses suggest they are associated with zircon and, potentially, monazite and xenotime. Static acid-base accounting (ABA) tests indicated that all FTT samples are potentially acid generating. Our study describes the mineralogical and geochemical characteristics of oil sands FTT, and indicates that oxidative weathering has the potential to generate acidic drainage containing elevated dissolved concentrations of several metal(loid)s

    Aqueous- and solid-phase molybdenum geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada

    Get PDF
    Copyright © 2018 Elsevier Ltd. All rights reserved.Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Syncrude Canada Ltd. through the NSERC Industrial Research Chairs program (Grant No. IRCPJ-450684-13). A portion of the research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, NSERC, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research.Peer ReviewedFluid petroleum coke generated at oil sands operations in the Athabasca Oil Sands Region of northern Alberta, Canada, contains elevated concentrations of molybdenum (Mo) and other metals including nickel (Ni) and vanadium (V). Solid-phase Mo concentrations in fluid petroleum coke are typically 10 to 100 times lower than V and Ni, yet dissolved Mo concentrations in associated pore waters are often comparable with these metals. We collected pore water and solids from fluid petroleum coke deposits in the AOSR to examine geochemical controls on Mo mobility. Dissolved Mo concentrations increased with depth below the water table, reaching maxima of 1.4 to 2.2 mg L-1, within a mixing zone between slightly acidic and oxic meteoric water and mildly alkaline and anoxic oil sands process-affected water (OSPW). Dissolved Mo concentrations decreased slightly with depth below the mixing zone. X-ray absorption spectroscopy revealed that Mo(VI) and Mo(IV) species were present in coke solids. The Mo(VI) occurred as tetrahedrally coordinated MoO42- adsorbed via inner- and outer-sphere complexation, and was coordinated in an environment similar to Fe-(hydr)oxide surface complexes. The OSPW likely promoted desorption of outer-sphere Mo(VI) complexes, resulting in higher dissolved Mo concentrations in the mixing zone. The principal Mo(IV) species was MoS2, which originated as a catalyst added upstream of the fluid coking process. Although MoS2 is likely stable under anoxic conditions below the mixing zone, oxidative weathering in the presence of meteoric water may promote long-term Mo release

    Structural Incorporation of Sorbed Molybdate during Iron(II)-Induced Transformation of Ferrihydrite and Goethite under Advective Flow Conditions

    Get PDF
    Copyright © 2020 American Chemical SocietyFunding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant held by MBJL (Grant RGPIN-2014-06589). Additional training support for K.Q. was provided by the NSERC Collaborative Research and Training Experience (CREATE) program (Grant CREAT-449124-2014). A portion of the research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, NSERC, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research.Peer ReviewedAqueous Fe(II) can induce recrystallization of ferrihydrite and goethite [α‑FeOOH] to their more crystalline or molecularly homogenous counterparts. Despite common association with these and other Fe(III) (oxyhydr)oxides, relationships between Fe(II)-induced transformation and Mo mobility remain poorly constrained. We conducted laboratory column experiments to examine repartitioning of sorbed Mo during Fe(II)-induced transformation of ferrihydrite and goethite under advective flow conditions. We first pumped (~0.25 L d−1) artificial groundwater containing 0.1 mM MoO42− and buffered to pH 6.5 through columns packed with ferrihydrite- and goethite-coated sand until > 90 % Mo breakthrough was observed. Extended X-ray absorption fine structure (EXAFS) spectroscopy shows that initial MoO42− attenuation resulted from inner sphere complexation of MoO4 tetrahedra at ferrihydrite and goethite surfaces. We then pumped Mo-free anoxic artificial groundwater containing 0.2 mM or 2.0 mM Fe(II) through the columns until effluent Mo concentrations remained < 0.005 mM. Raman spectroscopy shows that Fe(II) introduction induced transformation of both ferrihydrite and goethite to lepidocrocite. Additionally, Fe(II) introduction mobilized 4 to 34 % of sorbed Mo and total mass release was greater for (i) ferrihydrite compared to goethite columns and (ii) low Fe(II) compared to high Fe(II) influent. Effluent pH decreased to ~5.8 for columns receiving the high Fe(II) influent and returned to pH 6.5 after 5 to 10 pore volumes. EXAFS spectroscopy indicates that structural incorporation of MoO6 octahedra into neoformed phases contributes to Mo retention during Fe(II) induced transformation. Our results offer new insight into Mo repartitioning during Fe(II)-induced transformation of Fe(III) (oxyhydr)oxides and, more generally, controls on Mo mobility in geohydrologic systems

    Tracing molybdenum attenuation in mining environments using molybdenum stable isotopes

    Get PDF
    Molybdenum contamination is a concern in mining regions worldwide. Better understanding of processes controlling Mo mobility in mine wastes is critical for assessing potential impacts and developing water-quality management strategies associated to this element. Here, we used Mo stable isotope (δ98/95Mo) analyses to investigate geochemical controls on Mo mobility within a tailings management facility (TMF) featuring oxic and anoxic environments. These isotopic analyses were integrated with X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and aqueous chemical data. Dissolved Mo concentrations were inversely correlated with δ98/95Mo values such that enrichment of heavy Mo isotopes in solution reflected attenuation processes. Inner-sphere complexation of Mo(VI) with ferrihydrite was the primary driver of Mo removal and was accompanied by a circa 1 ‰ isotope fractionation. Limited Mo attenuation and isotope fractionation was observed in Fe(II)- and Mo-rich anoxic TMF seepage, while attenuation and isotope fractionation were greatest during discharge and oxidation of this seepage after discharge into a pond where Fe-(oxyhydr)oxide precipitation promoted Mo sorption. Overall, this study highlights the role of sorption onto Fe-(oxyhydr)oxides in attenuating Mo in oxic environments, a process which can be traced by Mo isotope analyses

    Comparing the efficacy in reducing brain injury of different neuroprotective agents following neonatal hypoxia-ischemia in newborn rats: a multi-drug randomized controlled screening trial

    Get PDF
    Intrapartum hypoxia-ischemia leading to neonatal encephalopathy (NE) results in significant neonatal mortality and morbidity worldwide, with > 85% of cases occurring in low- and middle-income countries (LMIC). Therapeutic hypothermia (HT) is currently the only available safe and effective treatment of HIE in high-income countries (HIC); however, it has shown limited safety or efficacy in LMIC. Therefore, other therapies are urgently required. We aimed to compare the treatment effects of putative neuroprotective drug candidates following neonatal hypoxic-ischemic (HI) brain injury in an established P7 rat Vannucci model. We conducted the first multi-drug randomized controlled preclinical screening trial, investigating 25 potential therapeutic agents using a standardized experimental setting in which P7 rat pups were exposed to unilateral HI brain injury. The brains were analysed for unilateral hemispheric brain area loss after 7 days survival. Twenty animal experiments were performed. Eight of the 25 therapeutic agents significantly reduced brain area loss with the strongest treatment effect for Caffeine, Sonic Hedgehog Agonist (SAG) and Allopurinol, followed by Melatonin, Clemastine, ß-Hydroxybutyrate, Omegaven, and Iodide. The probability of efficacy was superior to that of HT for Caffeine, SAG, Allopurinol, Melatonin, Clemastine, ß-hydroxybutyrate, and Omegaven. We provide the results of the first systematic preclinical screening of potential neuroprotective treatments and present alternative single therapies that may be promising treatment options for HT in LMIC

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN
    corecore