24 research outputs found

    Phosphodiesterase 2 Protects against Catecholamine-induced Arrhythmias and Preserves Contractile Function after Myocardial Infarction

    Get PDF
    International audienceRationale: Phosphodiesterase 2 is a dual substrate esterase, which has the unique property to be stimulated by cGMP, but primarily hydrolyzes cAMP. Myocardial phosphodiesterase 2 is upregulated in human heart failure, but its role in the heart is unknown.Objective: To explore the role of phosphodiesterase 2 in cardiac function, propensity to arrhythmia, and myocardial infarction.Methods and Results: Pharmacological inhibition of phosphodiesterase 2 (BAY 60–7550, BAY) led to a significant positive chronotropic effect on top of maximal ÎČ-adrenoceptor activation in healthy mice. Under pathological conditions induced by chronic catecholamine infusions, BAY reversed both the attenuated ÎČ-adrenoceptor–mediated inotropy and chronotropy. Conversely, ECG telemetry in heart-specific phosphodiesterase 2-transgenic (TG) mice showed a marked reduction in resting and in maximal heart rate, whereas cardiac output was completely preserved because of greater cardiac contraction. This well-tolerated phenotype persisted in elderly TG with no indications of cardiac pathology or premature death. During arrhythmia provocation induced by catecholamine injections, TG animals were resistant to triggered ventricular arrhythmias. Accordingly, Ca2+-spark analysis in isolated TG cardiomyocytes revealed remarkably reduced Ca2+ leakage and lower basal phosphorylation levels of Ca2+-cycling proteins including ryanodine receptor type 2. Moreover, TG demonstrated improved cardiac function after myocardial infarction.Conclusions: Endogenous phosphodiesterase 2 contributes to heart rate regulation. Greater phosphodiesterase 2 abundance protects against arrhythmias and improves contraction force after severe ischemic insult. Activating myocardial phosphodiesterase 2 may, thus, represent a novel intracellular antiadrenergic therapeutic strategy protecting the heart from arrhythmia and contractile dysfunction

    Differentiation of high-latitude and polar marine faunas in a greenhouse world

    Get PDF
    Aim The aim was to investigate those factors that influenced the differentiation of high-latitude and polar marine faunas on both ecological and evolutionary time-scales. Can a focus on a greenhouse world provide some important clues? Location World-wide, but with particular emphasis on the evolution of Antarctic marine faunas. Time period Early Cenozoic era and present day. Major taxa studied Mollusca, especially Neogastropoda. Methods The Early Cenozoic global radiation of one of the largest extant marine clades, Neogastropoda, was examined, and detailed comparisons were made between two tropical localities and Antarctica. High- to low-latitude faunal differentiation was assessed using SĂžrensen's dissimilarity index, and component species in each of the three faunas were assigned to 29 families and family groups. Relative diversity distributions were fitted to these three faunas and two modern ones to assess the contrast in evenness between high- and low-latitude assemblages. Results By the Middle Eocene, a distinct high-latitude neogastropod fauna had evolved in Antarctica. In addition, the distribution of species within families in this fauna is statistically significantly less even than that in the tropics. Indeed, there is no detectable difference in the scale of this separation from that seen today. Exactly as in the modern fauna, Middle Eocene Antarctic neogastropods are dominated by a small number of trophic generalist groups. Main conclusions As the hyperdiverse Neogastropoda clade radiated globally through the Early Cenozoic, it differentiated into distinct high- and low-latitude components. The fact that it did so in a greenhouse world strongly suggests that something else besides temperature was involved in this process. The predominance of generalist feeding types in the Antarctic fossil faunas is linked to the phenomenon of a seasonally pulsed food supply, exactly as it is today. Seasonality in primary productivity may act as a fundamental control on the evolution of large-scale biodiversity pattern

    Die Rolle von Phosphodiesterase 2 in der Herzfrequenz-Regulation und im Angiotensin-induziertem kardialen Remodeling

    No full text
    Hintergrund: Die Herzinsuffizienz ist ein internistisches Krankheitsbild, welches weltweit eines der höchsten MorbiditĂ€ten und MortalitĂ€ten aufweist. Trotz etablierter Behandlungsmethoden sterben mehr als die HĂ€lfte der Patienten innerhalb der ersten fĂŒnf Jahren nach Diagnosestellung. Zur pharmakologischen Therapie gehören in erster Linie die Betablocker, welche durch kompetitive Hemmung am ÎČ- Adrenorezeptor die ÎČ- Signalkaskade und somit die sympathische Wirkung am Herzen reduzieren. Gleichzeitig wird durch die Hemmung die Anzahl an ÎČ- Adrenorezeptoren erhöht, wodurch die RezeptorsensitivitĂ€t insgesamt herabgesetzt wird. Zudem verhindern sie ein Remodeling der Ventrikel, fĂŒhren zu einer verbesserten myokardialen Energie- und Calciumnutzung, sowie zu einer Reduzierung von kardialen Arrhythmien. Aufgrund ihres Nebenwirkungsspektrums - Hypotonie, Bradykardie und erektile Dysfunktion - tolerieren nur wenige Patienten eine wirksame Dosis des Medikamentes. Fragestellung: Die Phosphodiesterasen stellen einen von mehreren Regulatoren der ÎČ-Signalkaskade dar, indem sie deren Second Messenger cAMP hydrolysieren und die Sympathikusaktivierung drosseln. In vorangegangenen Studien im Menschen ist die PDE2 bei einer Herzinsuffizienz hochreguliert. Gleichzeitig bildet die PDE2 eine Verbindung zum NO – sGC – cGMP – Signalweg, da sie als einzige PDE von cGMP allosterisch aktiviert werden kann und infolgedessen vermehrt cAMP hydrolysiert. PDE2 ist ein entscheidendes Enzym im negativen cross talk von der cAMP und cGMP Signalkaskade. Diese Arbeit untersucht die Funktion der PDE2 in der chronischen Herzinsuffizienz. Inwieweit zeigen sich vermehrt Rhythmusstörungen bei einem Mausgenotyp, dessen PDE2 ĂŒberexprimiert vorliegt, im Gegensatz zum Wildtyp? Wie reagiert die transgene Maus auf adrenergen Stress? Und abschließend, schĂŒtzt eine ĂŒberexprimierte PDE2 vor einer Angiotensin II- induzierten kardialen Hypertrophie? Methoden: Nach Genotypisierung der MĂ€use mit Hilfe von PCR Testung der Schwanzspitzen konnte mittels transthorakaler Echokardiographie die Morphologie des Herzens (Durchmesser der Ventrikelwand und des Ventrikels selbst) festgestellt und somit die Herzleistung (Ejektionsfraktion, systolisches und diastolisches Volumen) und das Herzgewicht errechnet werden. Zur dauerhaften Ableitung der HerzaktivitĂ€t wurden den MĂ€usen (n = 7) pectoral telemetrische Transmitter implantiert, um die HerzfrequenzvariabilitĂ€t und Arrhythmien (Salven, Extrasystolen, ventrikulĂ€re Tachykardien) abzuleiten. Zur Arrhythmieprovokation wurde den MĂ€usen (n = 4) Ivabradin und Isoproterenol intraperitoneal verabreicht. Zur Provokation einer Kardiohypertrophie erhielten die Wildtyp (WT, n = 9) und transgenen MĂ€use (TG, n = 10) mittels einer im zerviko-thorakalen RĂŒckenbereich implantierten osmotischen Minipumpe fĂŒr 14 bzw. 28 Tage Angiotensin II. Die Herzparameter zur Messung einer Hypertrophie wurden mittels transthorakaler Echokardiographie alle 7 Tage fĂŒr maximal 28 Tage erfasst. Zudem wurden die Herzgewichte nach Tötung der MĂ€use mittels vorausgehender Isoflurannarkose und anschließendem Genickbruch durch sofortiges Wiegen der Organe erlangt. Verglichen wurden die Ergebnisse der fĂŒr 14 und der fĂŒr 28 Tage dem Angiotensin II ausgesetzten Tieren. Post mortem wurden die Herzen der MĂ€use nach Trennung der Ventrikel von den Vorhöfen kryokonserviert und das Ventrikelgewebe zur proteinchemischen Analyse mechanisch aufgeschlossen. Der zentrifugierte Überstand wurde fĂŒr die Proteinbestimmung nach Bradford zur Erlangung der Proteinkonzentration verwendet. Im Anschluss erfolgte zur GrĂ¶ĂŸenselektion der Proteine eine Gelelektrophorese mit anschließendem Western Blotting zum Nachweis der Proteine. Zur Auswertung und Vergleichbarkeit der Ergebnisse wurden die Proteinlevel auf das Kardiomyozyten-spezifische Calsequestrin normiert. Ergebnisse: Bei ĂŒberexprimierter PDE2 bestand eine grundsĂ€tzlich niedrigere Herzfrequenz mit erhaltender chronotroper AdaptionsfĂ€higkeit und kompensatorisch erhöhter KontraktilitĂ€t. Zudem war bei den TG- MĂ€use die HerzfrequenzvariabilitĂ€t höher als bei den WT. Es zeigte sich kein Anhalt fĂŒr eine Beeinflussung des HCN-Kanals durch die erhöhte PDE2. Bei vermehrter Stimulation der ÎČ-adrenergen Rezeptoren bestand kein signifikanter Unterschied in der Zunahme der Herzfrequenz, jedoch prĂ€sentierten sich deutlich weniger ventrikulĂ€re Extrasystolen und Arrhythmien bei den TG- MĂ€usen als bei den WT- MĂ€usen. Bei den durch stete Ang. II-Applikation hypertrophierten Herzen stellte sich ĂŒber die Zeit eine Zunahme der Herzfrequenz bei sowohl den WT- als auch den TG- MĂ€usen dar, bei gleichzeitig aufrecht erhaltener linksventrikulĂ€rer Funktion. Es zeigte sich ebenfalls bei beiden eine noch bestehende ÎČ-adrenerge RezeptorsensibilitĂ€t, vor allem bezĂŒglich der Ejektionsfraktion. Von PKA- bzw. CaMKII-abhĂ€ngige Zielproteine wiesen bei beiden PhĂ€notypen keine vermehrte Phosphorylierung auf. Schlussfolgerung: Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass die PDE2 als Cross Link zwischen der cGMP- und der cAMP-Signalkaskade bei Überexpression Ă€hnlich wie ein Betablocker die Herzfrequenz reduziert ohne die Herzleistung zu beintrĂ€chtigen. Sie schĂŒtzte vor Arrhythmien und zeigte bei einer Kardiohypertrophie dennoch eine bestehende ÎČ-adrenerge RezeptorsensibilitĂ€t. Ein Schutz vor einer kardialen Hypertrophie bei den PDE2- ĂŒberexprimierten MĂ€usen konnte in dieser Arbeit nicht nachgewiesen werden. Klinische Daten zeigen eine Hochregulation der PDE2 bei herzinsuffizienten Patienten. Ob eine Überstimulation der PDE2 in vivo und somit eine Zunahme der cAMP- Hydrolyse tatsĂ€chlich kardioprotektiv in der terminalen Herzinsuffizienz ist - oder sogar davor - bedarf noch weiterer Forschung.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis V AbkĂŒrzungsverzeichnis VI 1 Einleitung 1 1.1 Herzinsuffizienz 1 1.1.1 Epidemiologie 1 1.1.2 Ätiologie 2 1.1.3 Pathophysiologie 3 1.2 Behandlung der Herzinsuffizienz 4 1.2.1 Medikamentöse Behandlung 5 1.2.1.1 ACE-Hemmer und AT1-Antagonisten 5 1.2.1.2 Betablocker 5 1.2.1.3 Ivabradin 6 1.3 Wirkungen des vegetativen Nervensystems am Herzen 7 1.3.1 Physiologie der kardialen ÎČ-adrenergen Signalkaskade 7 1.3.2 Kompartimentierung in Kardiomyozyten 8 1.4 Physiologie der Phosphodiesterasen 9 1.4.1 Cyclisches Guanosinmonophosphat 9 1.4.2 Die Subtypen der Phosphodiesterasen 10 1.4.3 Die Interaktion von cGMP und cAMP 14 1.4.4 Die PDE2 in der Herzinsuffizienz 16 1.5 Vordaten 17 1.5.1 Überexpression von PDE2 im Mausmodell 17 1.6 Ziele dieser Arbeit 18 2 Material und Methoden 20 2.1 Herkunft und Gewinnung der Wildtyp- und transgenen MĂ€use 20 2.1.1 Tierhaltung und Tötung 20 2.1.2 Genotypisierung der MĂ€use 20 2.2 Echokardiographie zur Messung der kardiologischen Parameter 21 2.3 Einbau der telemetrischen Transmitter 24 2.4 Aufzeichnung des EKG 25 2.5 Einbau der osmotischen Minipumpen 25 2.6 Herzentnahme bei MĂ€usen 26 2.7 Proteinchemische Methode 26 2.7.1 Aufschluss des Herzgewebes zur proteinchemischen Analyse 26 2.7.2 Proteinbestimmung nach Bradford 27 2.7.3 SDS-PAGE 28 2.7.4 Transfer der Proteine auf Membranen (Westernblot) 29 2.7.5 Auftragen der Antikörper auf die Membranen 30 2.7.6 Aufnahmen 32 2.8 Statistische Auswertungen 32 3 Ergebnisse 33 3.1 Charakterisierung der Herzfunktion bei PDE2-Überexpression mittels EKG 33 3.1.1 Zirkadiane Messung der Herzfrequenz und AktivitĂ€t 33 3.1.2 HerzfrequenzvariabilitĂ€t 35 3.1.3 Autonome Herzfunktion unter Ivabradin 36 3.1.4 Arrhythmieprovokation mit Isoproterenol 37 3.2 Die Rolle von PDE2 im Angiotensin II- induzierten kardialen Remodeling 41 3.2.1 Grundcharakterisierung der Herzfunktion bei niedriger PDE2- Überexpression mittels Echokardiographie 41 3.2.2 Auswirkung erhöhter PDE2-Spiegel nach chronischer Angiotensin II Applikation 43 3.3 Auswertung der Western Blots der PDE2A3-4808 MĂ€use 49 4 Diskussion 54 4.1 Phosphodiesterase 2 reguliert die Herzfrequenz 54 4.2 Phosphodiesterase 2 schĂŒtzt vor ventrikulĂ€ren Arrhythmien 55 4.3 Phosphodiesterase 2 im kardialen Remodeling 56 4.4 Limitation der Überexpression durch zellulĂ€re Kompartimentierung 58 4.5 Diskussion der Methodik und Bewertung der Ergebnisse 58 4.6 Ausblick: PDE2 als Downstream Target fĂŒr Beta-Adrenorezeptor-Blockade? 59 5 Zusammenfassung/ Summary 61 5.1 Zusammenfassung 61 5.2 Summary 63 6 Anhang 66 6.1 Puffer 70 7 Literaturverzeichnis 72Background: Congestive heart failure is a medical condition, which has one of the highest morbidity and mortality rates worldwide. Despite having established treatments, more than half of the patients die within the five years after diagnosis. First-line pharmacological therapy includes beta-blockers. By competitive inhibition at the ÎČ-adrenoreceptor, they reduce the ÎČ-signal cascade and thus the sympathetic effect on the heart. Simultaneously, this inhibition increases the number of ÎČ-adrenoreceptors, which then reduces the sensitivity of the receptors. Additionally, beta-blockers prevent remodeling of the ventricles, lead to improved myocardial energy and calcium utilization, and reduce the risk of cardiac arrhythmias. Due to its side effects – such as hypotension, bradycardia, and erectile dysfunction – only few patients tolerate an effective dose of the drug. Hypothesis: Phosphodiesterases are one of several regulators of the ÎČ- signaling cascade. They hydrolyze their second messenger cAMP and reduce sympathetic activation. Previous studies in humans showed an upregulated PDE2 in heart failure. PDE2 is a special PDE, since it forms a connection between the ÎČ adrenergic and the NO – sGC – cGMP signaling pathway. It is the only PDE, which is activated by cGMP allosterically. As a result, PDE2 increasingly hydrolyzes cAMP. Therefore, PDE2 is a key enzyme in the negative cross talk of the cAMP and cGMP signaling cascade. This thesis investigates the function of PDE2 in chronic heart failure. Are there increased cardiac arrhythmias in mice, which have an overexpressed PDE2, in comparison to wild type mice? How do these mice react to adrenergic stress? And finally, does an overexpressed PDE2 protect against an Angiotensin II-induced cardiac hypertrophy? Methods: After genotyping the mice’s tail tips with the help of PCR tests, the morphology of the heart (diameter of the ventricular wall and the ventricle itself) could be determined with the help of transthoracic echocardiography. With this data, the cardiac output (ejection fraction, systolic and diastolic volume) and the heart weight were calculated. To record cardiac activity permanently, telemetric transmitters were implanted pectoral in the mice (n = 7), in order to gain heart rate variability and arrhythmia data (salvos, extrasystoles, ventricular tachycardias). To provoke the arrhythmia, mice (n = 4) were intraperitoneally administered ivabradine and isoproterenol. To provoke cardiac hypertrophy, the wild type (WT, n = 9) and transgenic mice (TG, n = 10) received angiotensin II using osmotic minipumps, implanted in the cervicothoracic back area for 14 or 28 days. The cardiac parameters for hypertrophy were measured using transthoracic echocardiography every 7 days, recorded for a maximum of 28 days. In addition, each heart was weighted immediately after killing the mice using isoflurane anesthesia and subsequent neck fracture. The results of the animals exposed to angiotensin II for 14 and 28 days were compared. After separating the ventricles from the atria, the hearts of the mice were cryopreserved, and the ventricular tissue was mechanically crushed for protein-chemical analysis. The centrifuged supernatant was used for Bradford protein determination to identify the protein concentration. Following this, a gel electrophoresis and Western blotting took place to detect and to determine the size of the proteins. To evaluate and to compare the results, protein levels were calibrated to the cardiomyocyte specific Calsequestrin. Results: Overexpression of PDE2 resulted in a fundamentally lower heart rate with preserved chronotropic adaptability and compensatory increased contractility. In addition, the TG mice showed a higher heart rate variability than the WT mice. There were no signs of influence on the HCN channel by the increased PDE2. With intensified stimulation of the ÎČ-adrenergic receptors, there was no significant difference in the increase in heart rate, but significantly fewer ventricular extrasystoles and arrhythmias in the TG mice than in the WT mice. Over time, the hypertrophic hearts, induced by Angiotensin II, showed an increased heart rate with preserved left ventricular function within both the WT and the TG mice. Nevertheless, both still showed an unspoiled sensitivity of the ÎČ-receptors, especially in regard of the ejection fraction. Both PKA- or CaMKII-dependent target proteins did not show an increased phosphorylation in neither of the phenotypes. Conclusion: As a summary, this thesis demonstrates that an overexpression of PDE2 as a cross link between the cGMP and cAMP signaling cascade reduces the heart rate similar to a beta blocker, without affecting the cardiac output. PDE2 prevented arrhythmias and still showed existing ÎČ-adrenergic receptor sensitivity in cardiac hypertrophy. This thesis could not show a protection against cardiac hypertrophy within the transgenic mice. Clinical data show upregulation of PDE2 in heart failure patients. Whether overstimulation of PDE2 in vivo and a consecutive increase in cAMP hydrolysis is actually cardioprotective in end-stage heart failure - or even before - requires further research.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis V AbkĂŒrzungsverzeichnis VI 1 Einleitung 1 1.1 Herzinsuffizienz 1 1.1.1 Epidemiologie 1 1.1.2 Ätiologie 2 1.1.3 Pathophysiologie 3 1.2 Behandlung der Herzinsuffizienz 4 1.2.1 Medikamentöse Behandlung 5 1.2.1.1 ACE-Hemmer und AT1-Antagonisten 5 1.2.1.2 Betablocker 5 1.2.1.3 Ivabradin 6 1.3 Wirkungen des vegetativen Nervensystems am Herzen 7 1.3.1 Physiologie der kardialen ÎČ-adrenergen Signalkaskade 7 1.3.2 Kompartimentierung in Kardiomyozyten 8 1.4 Physiologie der Phosphodiesterasen 9 1.4.1 Cyclisches Guanosinmonophosphat 9 1.4.2 Die Subtypen der Phosphodiesterasen 10 1.4.3 Die Interaktion von cGMP und cAMP 14 1.4.4 Die PDE2 in der Herzinsuffizienz 16 1.5 Vordaten 17 1.5.1 Überexpression von PDE2 im Mausmodell 17 1.6 Ziele dieser Arbeit 18 2 Material und Methoden 20 2.1 Herkunft und Gewinnung der Wildtyp- und transgenen MĂ€use 20 2.1.1 Tierhaltung und Tötung 20 2.1.2 Genotypisierung der MĂ€use 20 2.2 Echokardiographie zur Messung der kardiologischen Parameter 21 2.3 Einbau der telemetrischen Transmitter 24 2.4 Aufzeichnung des EKG 25 2.5 Einbau der osmotischen Minipumpen 25 2.6 Herzentnahme bei MĂ€usen 26 2.7 Proteinchemische Methode 26 2.7.1 Aufschluss des Herzgewebes zur proteinchemischen Analyse 26 2.7.2 Proteinbestimmung nach Bradford 27 2.7.3 SDS-PAGE 28 2.7.4 Transfer der Proteine auf Membranen (Westernblot) 29 2.7.5 Auftragen der Antikörper auf die Membranen 30 2.7.6 Aufnahmen 32 2.8 Statistische Auswertungen 32 3 Ergebnisse 33 3.1 Charakterisierung der Herzfunktion bei PDE2-Überexpression mittels EKG 33 3.1.1 Zirkadiane Messung der Herzfrequenz und AktivitĂ€t 33 3.1.2 HerzfrequenzvariabilitĂ€t 35 3.1.3 Autonome Herzfunktion unter Ivabradin 36 3.1.4 Arrhythmieprovokation mit Isoproterenol 37 3.2 Die Rolle von PDE2 im Angiotensin II- induzierten kardialen Remodeling 41 3.2.1 Grundcharakterisierung der Herzfunktion bei niedriger PDE2- Überexpression mittels Echokardiographie 41 3.2.2 Auswirkung erhöhter PDE2-Spiegel nach chronischer Angiotensin II Applikation 43 3.3 Auswertung der Western Blots der PDE2A3-4808 MĂ€use 49 4 Diskussion 54 4.1 Phosphodiesterase 2 reguliert die Herzfrequenz 54 4.2 Phosphodiesterase 2 schĂŒtzt vor ventrikulĂ€ren Arrhythmien 55 4.3 Phosphodiesterase 2 im kardialen Remodeling 56 4.4 Limitation der Überexpression durch zellulĂ€re Kompartimentierung 58 4.5 Diskussion der Methodik und Bewertung der Ergebnisse 58 4.6 Ausblick: PDE2 als Downstream Target fĂŒr Beta-Adrenorezeptor-Blockade? 59 5 Zusammenfassung/ Summary 61 5.1 Zusammenfassung 61 5.2 Summary 63 6 Anhang 66 6.1 Puffer 70 7 Literaturverzeichnis 7

    Die Rolle von Phosphodiesterase 2 in der Herzfrequenz-Regulation und im Angiotensin-induziertem kardialen Remodeling

    No full text
    Hintergrund: Die Herzinsuffizienz ist ein internistisches Krankheitsbild, welches weltweit eines der höchsten MorbiditĂ€ten und MortalitĂ€ten aufweist. Trotz etablierter Behandlungsmethoden sterben mehr als die HĂ€lfte der Patienten innerhalb der ersten fĂŒnf Jahren nach Diagnosestellung. Zur pharmakologischen Therapie gehören in erster Linie die Betablocker, welche durch kompetitive Hemmung am ÎČ- Adrenorezeptor die ÎČ- Signalkaskade und somit die sympathische Wirkung am Herzen reduzieren. Gleichzeitig wird durch die Hemmung die Anzahl an ÎČ- Adrenorezeptoren erhöht, wodurch die RezeptorsensitivitĂ€t insgesamt herabgesetzt wird. Zudem verhindern sie ein Remodeling der Ventrikel, fĂŒhren zu einer verbesserten myokardialen Energie- und Calciumnutzung, sowie zu einer Reduzierung von kardialen Arrhythmien. Aufgrund ihres Nebenwirkungsspektrums - Hypotonie, Bradykardie und erektile Dysfunktion - tolerieren nur wenige Patienten eine wirksame Dosis des Medikamentes. Fragestellung: Die Phosphodiesterasen stellen einen von mehreren Regulatoren der ÎČ-Signalkaskade dar, indem sie deren Second Messenger cAMP hydrolysieren und die Sympathikusaktivierung drosseln. In vorangegangenen Studien im Menschen ist die PDE2 bei einer Herzinsuffizienz hochreguliert. Gleichzeitig bildet die PDE2 eine Verbindung zum NO – sGC – cGMP – Signalweg, da sie als einzige PDE von cGMP allosterisch aktiviert werden kann und infolgedessen vermehrt cAMP hydrolysiert. PDE2 ist ein entscheidendes Enzym im negativen cross talk von der cAMP und cGMP Signalkaskade. Diese Arbeit untersucht die Funktion der PDE2 in der chronischen Herzinsuffizienz. Inwieweit zeigen sich vermehrt Rhythmusstörungen bei einem Mausgenotyp, dessen PDE2 ĂŒberexprimiert vorliegt, im Gegensatz zum Wildtyp? Wie reagiert die transgene Maus auf adrenergen Stress? Und abschließend, schĂŒtzt eine ĂŒberexprimierte PDE2 vor einer Angiotensin II- induzierten kardialen Hypertrophie? Methoden: Nach Genotypisierung der MĂ€use mit Hilfe von PCR Testung der Schwanzspitzen konnte mittels transthorakaler Echokardiographie die Morphologie des Herzens (Durchmesser der Ventrikelwand und des Ventrikels selbst) festgestellt und somit die Herzleistung (Ejektionsfraktion, systolisches und diastolisches Volumen) und das Herzgewicht errechnet werden. Zur dauerhaften Ableitung der HerzaktivitĂ€t wurden den MĂ€usen (n = 7) pectoral telemetrische Transmitter implantiert, um die HerzfrequenzvariabilitĂ€t und Arrhythmien (Salven, Extrasystolen, ventrikulĂ€re Tachykardien) abzuleiten. Zur Arrhythmieprovokation wurde den MĂ€usen (n = 4) Ivabradin und Isoproterenol intraperitoneal verabreicht. Zur Provokation einer Kardiohypertrophie erhielten die Wildtyp (WT, n = 9) und transgenen MĂ€use (TG, n = 10) mittels einer im zerviko-thorakalen RĂŒckenbereich implantierten osmotischen Minipumpe fĂŒr 14 bzw. 28 Tage Angiotensin II. Die Herzparameter zur Messung einer Hypertrophie wurden mittels transthorakaler Echokardiographie alle 7 Tage fĂŒr maximal 28 Tage erfasst. Zudem wurden die Herzgewichte nach Tötung der MĂ€use mittels vorausgehender Isoflurannarkose und anschließendem Genickbruch durch sofortiges Wiegen der Organe erlangt. Verglichen wurden die Ergebnisse der fĂŒr 14 und der fĂŒr 28 Tage dem Angiotensin II ausgesetzten Tieren. Post mortem wurden die Herzen der MĂ€use nach Trennung der Ventrikel von den Vorhöfen kryokonserviert und das Ventrikelgewebe zur proteinchemischen Analyse mechanisch aufgeschlossen. Der zentrifugierte Überstand wurde fĂŒr die Proteinbestimmung nach Bradford zur Erlangung der Proteinkonzentration verwendet. Im Anschluss erfolgte zur GrĂ¶ĂŸenselektion der Proteine eine Gelelektrophorese mit anschließendem Western Blotting zum Nachweis der Proteine. Zur Auswertung und Vergleichbarkeit der Ergebnisse wurden die Proteinlevel auf das Kardiomyozyten-spezifische Calsequestrin normiert. Ergebnisse: Bei ĂŒberexprimierter PDE2 bestand eine grundsĂ€tzlich niedrigere Herzfrequenz mit erhaltender chronotroper AdaptionsfĂ€higkeit und kompensatorisch erhöhter KontraktilitĂ€t. Zudem war bei den TG- MĂ€use die HerzfrequenzvariabilitĂ€t höher als bei den WT. Es zeigte sich kein Anhalt fĂŒr eine Beeinflussung des HCN-Kanals durch die erhöhte PDE2. Bei vermehrter Stimulation der ÎČ-adrenergen Rezeptoren bestand kein signifikanter Unterschied in der Zunahme der Herzfrequenz, jedoch prĂ€sentierten sich deutlich weniger ventrikulĂ€re Extrasystolen und Arrhythmien bei den TG- MĂ€usen als bei den WT- MĂ€usen. Bei den durch stete Ang. II-Applikation hypertrophierten Herzen stellte sich ĂŒber die Zeit eine Zunahme der Herzfrequenz bei sowohl den WT- als auch den TG- MĂ€usen dar, bei gleichzeitig aufrecht erhaltener linksventrikulĂ€rer Funktion. Es zeigte sich ebenfalls bei beiden eine noch bestehende ÎČ-adrenerge RezeptorsensibilitĂ€t, vor allem bezĂŒglich der Ejektionsfraktion. Von PKA- bzw. CaMKII-abhĂ€ngige Zielproteine wiesen bei beiden PhĂ€notypen keine vermehrte Phosphorylierung auf. Schlussfolgerung: Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass die PDE2 als Cross Link zwischen der cGMP- und der cAMP-Signalkaskade bei Überexpression Ă€hnlich wie ein Betablocker die Herzfrequenz reduziert ohne die Herzleistung zu beintrĂ€chtigen. Sie schĂŒtzte vor Arrhythmien und zeigte bei einer Kardiohypertrophie dennoch eine bestehende ÎČ-adrenerge RezeptorsensibilitĂ€t. Ein Schutz vor einer kardialen Hypertrophie bei den PDE2- ĂŒberexprimierten MĂ€usen konnte in dieser Arbeit nicht nachgewiesen werden. Klinische Daten zeigen eine Hochregulation der PDE2 bei herzinsuffizienten Patienten. Ob eine Überstimulation der PDE2 in vivo und somit eine Zunahme der cAMP- Hydrolyse tatsĂ€chlich kardioprotektiv in der terminalen Herzinsuffizienz ist - oder sogar davor - bedarf noch weiterer Forschung.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis V AbkĂŒrzungsverzeichnis VI 1 Einleitung 1 1.1 Herzinsuffizienz 1 1.1.1 Epidemiologie 1 1.1.2 Ätiologie 2 1.1.3 Pathophysiologie 3 1.2 Behandlung der Herzinsuffizienz 4 1.2.1 Medikamentöse Behandlung 5 1.2.1.1 ACE-Hemmer und AT1-Antagonisten 5 1.2.1.2 Betablocker 5 1.2.1.3 Ivabradin 6 1.3 Wirkungen des vegetativen Nervensystems am Herzen 7 1.3.1 Physiologie der kardialen ÎČ-adrenergen Signalkaskade 7 1.3.2 Kompartimentierung in Kardiomyozyten 8 1.4 Physiologie der Phosphodiesterasen 9 1.4.1 Cyclisches Guanosinmonophosphat 9 1.4.2 Die Subtypen der Phosphodiesterasen 10 1.4.3 Die Interaktion von cGMP und cAMP 14 1.4.4 Die PDE2 in der Herzinsuffizienz 16 1.5 Vordaten 17 1.5.1 Überexpression von PDE2 im Mausmodell 17 1.6 Ziele dieser Arbeit 18 2 Material und Methoden 20 2.1 Herkunft und Gewinnung der Wildtyp- und transgenen MĂ€use 20 2.1.1 Tierhaltung und Tötung 20 2.1.2 Genotypisierung der MĂ€use 20 2.2 Echokardiographie zur Messung der kardiologischen Parameter 21 2.3 Einbau der telemetrischen Transmitter 24 2.4 Aufzeichnung des EKG 25 2.5 Einbau der osmotischen Minipumpen 25 2.6 Herzentnahme bei MĂ€usen 26 2.7 Proteinchemische Methode 26 2.7.1 Aufschluss des Herzgewebes zur proteinchemischen Analyse 26 2.7.2 Proteinbestimmung nach Bradford 27 2.7.3 SDS-PAGE 28 2.7.4 Transfer der Proteine auf Membranen (Westernblot) 29 2.7.5 Auftragen der Antikörper auf die Membranen 30 2.7.6 Aufnahmen 32 2.8 Statistische Auswertungen 32 3 Ergebnisse 33 3.1 Charakterisierung der Herzfunktion bei PDE2-Überexpression mittels EKG 33 3.1.1 Zirkadiane Messung der Herzfrequenz und AktivitĂ€t 33 3.1.2 HerzfrequenzvariabilitĂ€t 35 3.1.3 Autonome Herzfunktion unter Ivabradin 36 3.1.4 Arrhythmieprovokation mit Isoproterenol 37 3.2 Die Rolle von PDE2 im Angiotensin II- induzierten kardialen Remodeling 41 3.2.1 Grundcharakterisierung der Herzfunktion bei niedriger PDE2- Überexpression mittels Echokardiographie 41 3.2.2 Auswirkung erhöhter PDE2-Spiegel nach chronischer Angiotensin II Applikation 43 3.3 Auswertung der Western Blots der PDE2A3-4808 MĂ€use 49 4 Diskussion 54 4.1 Phosphodiesterase 2 reguliert die Herzfrequenz 54 4.2 Phosphodiesterase 2 schĂŒtzt vor ventrikulĂ€ren Arrhythmien 55 4.3 Phosphodiesterase 2 im kardialen Remodeling 56 4.4 Limitation der Überexpression durch zellulĂ€re Kompartimentierung 58 4.5 Diskussion der Methodik und Bewertung der Ergebnisse 58 4.6 Ausblick: PDE2 als Downstream Target fĂŒr Beta-Adrenorezeptor-Blockade? 59 5 Zusammenfassung/ Summary 61 5.1 Zusammenfassung 61 5.2 Summary 63 6 Anhang 66 6.1 Puffer 70 7 Literaturverzeichnis 72Background: Congestive heart failure is a medical condition, which has one of the highest morbidity and mortality rates worldwide. Despite having established treatments, more than half of the patients die within the five years after diagnosis. First-line pharmacological therapy includes beta-blockers. By competitive inhibition at the ÎČ-adrenoreceptor, they reduce the ÎČ-signal cascade and thus the sympathetic effect on the heart. Simultaneously, this inhibition increases the number of ÎČ-adrenoreceptors, which then reduces the sensitivity of the receptors. Additionally, beta-blockers prevent remodeling of the ventricles, lead to improved myocardial energy and calcium utilization, and reduce the risk of cardiac arrhythmias. Due to its side effects – such as hypotension, bradycardia, and erectile dysfunction – only few patients tolerate an effective dose of the drug. Hypothesis: Phosphodiesterases are one of several regulators of the ÎČ- signaling cascade. They hydrolyze their second messenger cAMP and reduce sympathetic activation. Previous studies in humans showed an upregulated PDE2 in heart failure. PDE2 is a special PDE, since it forms a connection between the ÎČ adrenergic and the NO – sGC – cGMP signaling pathway. It is the only PDE, which is activated by cGMP allosterically. As a result, PDE2 increasingly hydrolyzes cAMP. Therefore, PDE2 is a key enzyme in the negative cross talk of the cAMP and cGMP signaling cascade. This thesis investigates the function of PDE2 in chronic heart failure. Are there increased cardiac arrhythmias in mice, which have an overexpressed PDE2, in comparison to wild type mice? How do these mice react to adrenergic stress? And finally, does an overexpressed PDE2 protect against an Angiotensin II-induced cardiac hypertrophy? Methods: After genotyping the mice’s tail tips with the help of PCR tests, the morphology of the heart (diameter of the ventricular wall and the ventricle itself) could be determined with the help of transthoracic echocardiography. With this data, the cardiac output (ejection fraction, systolic and diastolic volume) and the heart weight were calculated. To record cardiac activity permanently, telemetric transmitters were implanted pectoral in the mice (n = 7), in order to gain heart rate variability and arrhythmia data (salvos, extrasystoles, ventricular tachycardias). To provoke the arrhythmia, mice (n = 4) were intraperitoneally administered ivabradine and isoproterenol. To provoke cardiac hypertrophy, the wild type (WT, n = 9) and transgenic mice (TG, n = 10) received angiotensin II using osmotic minipumps, implanted in the cervicothoracic back area for 14 or 28 days. The cardiac parameters for hypertrophy were measured using transthoracic echocardiography every 7 days, recorded for a maximum of 28 days. In addition, each heart was weighted immediately after killing the mice using isoflurane anesthesia and subsequent neck fracture. The results of the animals exposed to angiotensin II for 14 and 28 days were compared. After separating the ventricles from the atria, the hearts of the mice were cryopreserved, and the ventricular tissue was mechanically crushed for protein-chemical analysis. The centrifuged supernatant was used for Bradford protein determination to identify the protein concentration. Following this, a gel electrophoresis and Western blotting took place to detect and to determine the size of the proteins. To evaluate and to compare the results, protein levels were calibrated to the cardiomyocyte specific Calsequestrin. Results: Overexpression of PDE2 resulted in a fundamentally lower heart rate with preserved chronotropic adaptability and compensatory increased contractility. In addition, the TG mice showed a higher heart rate variability than the WT mice. There were no signs of influence on the HCN channel by the increased PDE2. With intensified stimulation of the ÎČ-adrenergic receptors, there was no significant difference in the increase in heart rate, but significantly fewer ventricular extrasystoles and arrhythmias in the TG mice than in the WT mice. Over time, the hypertrophic hearts, induced by Angiotensin II, showed an increased heart rate with preserved left ventricular function within both the WT and the TG mice. Nevertheless, both still showed an unspoiled sensitivity of the ÎČ-receptors, especially in regard of the ejection fraction. Both PKA- or CaMKII-dependent target proteins did not show an increased phosphorylation in neither of the phenotypes. Conclusion: As a summary, this thesis demonstrates that an overexpression of PDE2 as a cross link between the cGMP and cAMP signaling cascade reduces the heart rate similar to a beta blocker, without affecting the cardiac output. PDE2 prevented arrhythmias and still showed existing ÎČ-adrenergic receptor sensitivity in cardiac hypertrophy. This thesis could not show a protection against cardiac hypertrophy within the transgenic mice. Clinical data show upregulation of PDE2 in heart failure patients. Whether overstimulation of PDE2 in vivo and a consecutive increase in cAMP hydrolysis is actually cardioprotective in end-stage heart failure - or even before - requires further research.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis V AbkĂŒrzungsverzeichnis VI 1 Einleitung 1 1.1 Herzinsuffizienz 1 1.1.1 Epidemiologie 1 1.1.2 Ätiologie 2 1.1.3 Pathophysiologie 3 1.2 Behandlung der Herzinsuffizienz 4 1.2.1 Medikamentöse Behandlung 5 1.2.1.1 ACE-Hemmer und AT1-Antagonisten 5 1.2.1.2 Betablocker 5 1.2.1.3 Ivabradin 6 1.3 Wirkungen des vegetativen Nervensystems am Herzen 7 1.3.1 Physiologie der kardialen ÎČ-adrenergen Signalkaskade 7 1.3.2 Kompartimentierung in Kardiomyozyten 8 1.4 Physiologie der Phosphodiesterasen 9 1.4.1 Cyclisches Guanosinmonophosphat 9 1.4.2 Die Subtypen der Phosphodiesterasen 10 1.4.3 Die Interaktion von cGMP und cAMP 14 1.4.4 Die PDE2 in der Herzinsuffizienz 16 1.5 Vordaten 17 1.5.1 Überexpression von PDE2 im Mausmodell 17 1.6 Ziele dieser Arbeit 18 2 Material und Methoden 20 2.1 Herkunft und Gewinnung der Wildtyp- und transgenen MĂ€use 20 2.1.1 Tierhaltung und Tötung 20 2.1.2 Genotypisierung der MĂ€use 20 2.2 Echokardiographie zur Messung der kardiologischen Parameter 21 2.3 Einbau der telemetrischen Transmitter 24 2.4 Aufzeichnung des EKG 25 2.5 Einbau der osmotischen Minipumpen 25 2.6 Herzentnahme bei MĂ€usen 26 2.7 Proteinchemische Methode 26 2.7.1 Aufschluss des Herzgewebes zur proteinchemischen Analyse 26 2.7.2 Proteinbestimmung nach Bradford 27 2.7.3 SDS-PAGE 28 2.7.4 Transfer der Proteine auf Membranen (Westernblot) 29 2.7.5 Auftragen der Antikörper auf die Membranen 30 2.7.6 Aufnahmen 32 2.8 Statistische Auswertungen 32 3 Ergebnisse 33 3.1 Charakterisierung der Herzfunktion bei PDE2-Überexpression mittels EKG 33 3.1.1 Zirkadiane Messung der Herzfrequenz und AktivitĂ€t 33 3.1.2 HerzfrequenzvariabilitĂ€t 35 3.1.3 Autonome Herzfunktion unter Ivabradin 36 3.1.4 Arrhythmieprovokation mit Isoproterenol 37 3.2 Die Rolle von PDE2 im Angiotensin II- induzierten kardialen Remodeling 41 3.2.1 Grundcharakterisierung der Herzfunktion bei niedriger PDE2- Überexpression mittels Echokardiographie 41 3.2.2 Auswirkung erhöhter PDE2-Spiegel nach chronischer Angiotensin II Applikation 43 3.3 Auswertung der Western Blots der PDE2A3-4808 MĂ€use 49 4 Diskussion 54 4.1 Phosphodiesterase 2 reguliert die Herzfrequenz 54 4.2 Phosphodiesterase 2 schĂŒtzt vor ventrikulĂ€ren Arrhythmien 55 4.3 Phosphodiesterase 2 im kardialen Remodeling 56 4.4 Limitation der Überexpression durch zellulĂ€re Kompartimentierung 58 4.5 Diskussion der Methodik und Bewertung der Ergebnisse 58 4.6 Ausblick: PDE2 als Downstream Target fĂŒr Beta-Adrenorezeptor-Blockade? 59 5 Zusammenfassung/ Summary 61 5.1 Zusammenfassung 61 5.2 Summary 63 6 Anhang 66 6.1 Puffer 70 7 Literaturverzeichnis 7

    The influence of surface clinker on the crustal structures and dynamics of 'a'ā lava flows.

    Get PDF
    Surface structures on 'a'ā and blocky lavas reflect the internal flow dynamics during emplacement and also influence the dynamics of developing flows. To investigate the effects of brittle, clinkery 'a'ā flow crusts on flow dynamics and surface structures, we conducted sand and silicone laboratory experiments that simulated the advance of lava into a preexisting channelized flow with a surface crust. Experiments carried out with relatively thin crusts produced apparently ductile surface deformation structures, while thick crusts behaved dominantly in a brittle manner. Increased crustal thickness led to increased strength under compression but favored more disruption under tension, as the flow core welled up through tensile fractures, entraining crustal material. At lava flow fronts, upwelling and entrainment would increase heat losses by radiation and advection, respectively, resulting in a positive‐feedback cooling loop. Fracturing caused heterogeneous crustal distribution near the flow front, which resulted in lobate flow advance, despite the absence of the viscoelastic layer that has previously been inferred as the primary control on flow advance and lobe formation. We therefore conclude that the influence of a purely brittle crust on the dynamics and surface morphologies of lava flows is more significant than often thought. All of the surface structures produced in the experiments have been observed on lavas or glaciers and many also on landslides and debris flows, suggesting the results can assist in the understanding of a range of natural flows

    \u3cem\u3eMexfusus Rotundicostatus\u3c/em\u3e, A New Genus and Species of Neogastropod from the Late Cretaceous of southern Mexico

    No full text
    Mexfusus rotundicostatus new genus and species is a neogastropod of uncertain affinities from the Late Cretaceous (Early Maastrichtian) Mexcala Formation of southern Mexico. It is characterized by strong, rounded, axial ribs, fine spinelets at the intersection of axial ribs and sharp spiral cords, subsutural cord, strong simple spiral cords, and an apparently smooth, glazed columellar lip. A possible second species is Peristernia conica Riedel, 1932 from the Coniacian of Cameroon

    On the Existence of Low-Mass Dark Matter and its Direct Detection

    No full text
    Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic Microwave Background (CMB). This indirect evidence implies that DM accounts for as much as 84.5% of all matter in our Universe, yet it has so far evaded all attempts at direct detection, leaving such confirmation and the consequent discovery of its nature as one of the biggest challenges in modern physics. Here we present a novel form of low-mass DM χ that would have been missed by all experiments so far. While its large interaction strength might at first seem unlikely, neither constraints from particle physics nor cosmological/astronomical observations are sufficient to rule out this type of DM, and it motivates our proposal for direct detection by optomechanics technology which should soon be within reach, namely, through the precise position measurement of a levitated mesoscopic particle which will be perturbed by elastic collisions with χ particles. We show that a recently proposed nanoparticle matter-wave interferometer, originally conceived for tests of the quantum superposition principle, is sensitive to these collisions, too

    Methane sources feeding cold seeps on the shelf and upper continental slope off central Oregon, USA

    Get PDF
    We report on a bathymetric mapping and remotely operated vehicle surveys along the 100–600 m region offshore Oregon from 43°50?N to 44°18?N. We interpret our results in light of available geophysical data, published geotectonic models, and analogous observations of fluid venting and carbonate deposition from 44°30?N to 45°00?N. The methane seepage is defined by juxtaposition of a young prism, where methane is generated by bacterial activity and its release is modulated by gas hydrate dynamics, against older sequences that serve as a source of thermogenic hydrocarbons that vent in the shelf. We hypothesize that collision of a buried ridge with the Siletz Terrane results in uplift of gas hydrate bearing sediments in the oncoming plate and that the resulting decrease in pressure leads to gas hydrate dissociation and methane exolution, which, in turn, may facilitate slope failure. Oxidation of the released methane results in precipitation of carbonates that are imaged as high backscatter along a 550 ± 60 m benthic corridor
    corecore