1,060 research outputs found

    The fossil record of evolution: Data on diversification and extinction

    Get PDF
    Understanding of the evolution of complex life, and of the roles that changing terrestrial and extraterrestrial environments played in life's history, is dependent upon synthetic knowledge of the fossil record. Paleontologists have been describing fossils for more that two centuries. However, much of this information is dispersed in monographs and journal articles published throughout the world. Over the past several years, this literature was surveyed, and a data base on times of origination and extinction of fossil genera was compiled. The data base, which now holds approximately 32,000 genera, covers all taxonomic groups of marine animals, incorporates the most recent taxonomic assignments, and uses a detailed global time framework that can resolve originations and extinctions to intervals averaging three million years in duration. These data can be used to compile patterns of global biodiversity, measure rates of taxic evolution, and test hypotheses concerning adaptive radiations, mass extinctions, etc. Thus far, considerable effort was devoted to using the data to test the hypothesis of periodicity of mass extinction. Rates of extinction measured from the data base have also been used to calibrate models of evolutionary radiations in marine environments. It was observed that new groups, or clades of animals (i.e., orders and classes) tend to reach appreciable diversity first in nearshore environments and then to radiate in more offshore environments; during decline, these clades may disappear from the nearshore while persisting in offshore, deep water habitats. These observations have led to suggestions that there is something special about stressful or perturbed environments that promotes the evolution of novel kinds of animals that can rapidly replace their predecessors. The numerical model that is being investigated to study this phenomenon treats environments along onshore-offshore gradients as if they were discrete habitats. Other aspects of this investigation are presented

    The fossil record of evolution: Data on diversification and extinction

    Get PDF
    The two principle efforts include: (1) a compilation of a synoptic, mesoscale data base on times of origination and extinction of animal genera in the oceans over the last 600 million years of geologic time; and (2) an analysis of statistical patterns in these data that relate to the diversification of complex life and to the occurrence of mass extinctions, especially those that might be associated with extraterrestrial phenomena. The data base is unique in its taxonomic scope and detail and in its temporal resolution. It is a valuable resource for investigating evolutionary expansions and extinctions of complex life

    Dynamics of clade diversification on the morphological hypercube

    Full text link
    Understanding the relationship between taxonomic and morphological changes is important in identifying the reasons for accelerated morphological diversification early in the history of animal phyla. Here, a simple general model describing the joint dynamics of taxonomic diversity and morphological disparity is presented and applied to the data on the diversification of blastozoans. I show that the observed patterns of deceleration in clade diversification can be explicable in terms of the geometric structure of the morphospace and the effects of extinction and speciation on morphological disparity without invoking major declines in the size of morphological transitions or taxonomic turnover rates. The model allows testing of hypotheses about patterns of diversification and estimation of rates of morphological evolution. In the case of blastozoans, I find no evidence that major changes in evolutionary rates and mechanisms are responsible for the deceleration of morphological diversification seen during the period of this clade's expansion. At the same time, there is evidence for a moderate decline in overall rates of morphological diversification concordant with a major change (from positive to negative values) in the clade's growth rate.Comment: 8 pages, Latex, 2 postscript figures, submitted to Proc.R.Soc.Lond.

    Nemesis Reconsidered

    Full text link
    The hypothesis of a companion object (Nemesis) orbiting the Sun was motivated by the claim of a terrestrial extinction periodicity, thought to be mediated by comet showers. The orbit of a distant companion to the Sun is expected to be perturbed by the Galactic tidal field and encounters with passing stars, which will induce variation in the period. We examine the evidence for the previously proposed periodicity, using two modern, greatly improved paleontological datasets of fossil biodiversity. We find that there is a narrow peak at 27 My in the cross-spectrum of extinction intensity time series between these independent datasets. This periodicity extends over a time period nearly twice that for which it was originally noted. An excess of extinction events are associated with this periodicity at 99% confidence. In this sense we confirm the originally noted feature in the time series for extinction. However, we find that it displays extremely regular timing for about 0.5 Gy. The regularity of the timing compared with earlier calculations of orbital perturbation would seem to exclude the Nemesis hypothesis as a causal factor.Comment: 10 pages, 2 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The evidence for and against astronomical impacts on climate change and mass extinctions: A review

    Full text link
    Numerous studies over the past 30 years have suggested there is a causal connection between the motion of the Sun through the Galaxy and terrestrial mass extinctions or climate change. Proposed mechanisms include comet impacts (via perturbation of the Oort cloud), cosmic rays and supernovae, the effects of which are modulated by the passage of the Sun through the Galactic midplane or spiral arms. Supposed periodicities in the fossil record, impact cratering dates or climate proxies over the Phanerozoic (past 545 Myr) are frequently cited as evidence in support of these hypotheses. This remains a controversial subject, with many refutations and replies having been published. Here I review both the mechanisms and the evidence for and against the relevance of astronomical phenomena to climate change and evolution. This necessarily includes a critical assessment of time series analysis techniques and hypothesis testing. Some of the studies have suffered from flaws in methodology, in particular drawing incorrect conclusions based on ruling out a null hypothesis. I conclude that there is little evidence for intrinsic periodicities in biodiversity, impact cratering or climate on timescales of tens to hundreds of Myr. Furthermore, Galactic midplane and spiral arm crossings seem to have little or no impact on biological or climate variation above background level. (truncated)Comment: 51 pages, 7 figures, 140 references. To appear in the International Journal of Astrobiology. For hyperref version with full resolution figures see http://www.mpia-hd.mpg.de/homes/calj/astimpact_ija.pd

    The fossil record of early tetrapods: worker effort and the end-Permian mass extinction

    Get PDF
    It is important to understand the quality of the fossil record of early tetrapods (Tetrapoda, minus Lissamphibia and Amniota) because of their key role in the transition of vertebrates from water to land, their dominance of terrestrial faunas for over 100 million years of the late Palaeozoic and earlyMesozoic, and their variable fates during the end−Permian mass extinction. The first description of an early tetrapod dates back to 1824, and since then discoveries have occurred at a rather irregular pace, with peaks and troughs corresponding to some of the vicissitudes of human history through the past two centuries. As expected, the record is dominated by the well−sampled sedimentary basins of Europe and North America, but finds from other continents are increasing rapidly. Comparisons of snapshots of knowledge in 1900, 1950, and 2000 show that discovery of new species has changed the shape of the species−level diversification curve, contrary to earlier studies of family−level taxa. There is, however, little evidence that taxon counts relate to research effort (as counted by numbers of publications), and there are no biasing effects associated with differential study of different time intervals through the late Palaeozoic and Mesozoic. In fact, levels of effort are apparently not related to geological time, with no evidence that workers have spent more time on more recent parts of the record. In particular, the end−Permian mass extinction was investigated to determine whether diversity changes through that interval might reflect worker effort: it turns out that most records of early tetrapod taxa (when corrected for duration of geological series) occur in the Lower Triassic

    Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record

    Get PDF
    Medvedev and Melott (2007) have suggested that periodicity in fossil biodiversity may be induced by cosmic rays which vary as the Solar System oscillates normal to the galactic disk. We re-examine the evidence for a 62 million year (Myr) periodicity in biodiversity throughout the Phanerozoic history of animal life reported by Rohde & Mueller (2005), as well as related questions of periodicity in origination and extinction. We find that the signal is robust against variations in methods of analysis, and is based on fluctuations in the Paleozoic and a substantial part of the Mesozoic. Examination of origination and extinction is somewhat ambiguous, with results depending upon procedure. Origination and extinction intensity as defined by RM may be affected by an artifact at 27 Myr in the duration of stratigraphic intervals. Nevertheless, when a procedure free of this artifact is implemented, the 27 Myr periodicity appears in origination, suggesting that the artifact may ultimately be based on a signal in the data. A 62 Myr feature appears in extinction, when this same procedure is used. We conclude that evidence for a periodicity at 62 Myr is robust, and evidence for periodicity at approximately 27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio

    Entropic Sampling and Natural Selection in Biological Evolution

    Full text link
    With a view to connecting random mutation on the molecular level to punctuated equilibrium behavior on the phenotype level, we propose a new model for biological evolution, which incorporates random mutation and natural selection. In this scheme the system evolves continuously into new configurations, yielding non-stationary behavior of the total fitness. Further, both the waiting time distribution of species and the avalanche size distribution display power-law behaviors with exponents close to two, which are consistent with the fossil data. These features are rather robust, indicating the key role of entropy

    A model of macro-evolution as a branching process based on innovations

    Full text link
    We introduce a model for the evolution of species triggered by generation of novel features and exhaustive combination with other available traits. Under the assumption that innovations are rare, we obtain a bursty branching process of speciations. Analysis of the trees representing the branching history reveals structures qualitatively different from those of random processes. For a tree with n leaves, the average distance of leaves from root scales as (log n)^2 to be compared to log n for random branching. The mean values and standard deviations for the tree shape indices depth (Sackin index) and imbalance (Colless index) of the model are compatible with those of real phylogenetic trees from databases. Earlier models, such as the Aldous' branching (AB) model, show a larger deviation from data with respect to the shape indices.Comment: 16 pages, 8 figures, 1 table, v2: minor corrections and addition
    • 

    corecore