79 research outputs found

    Atmospheric nutrient input to coastal areas: reducing the uncertainties

    Get PDF
    A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics.

    Contemporary carbon fluxes do not reflect the long-term carbon balance for an Atlantic blanket bog

    Get PDF
    Peatlands are one of the largest terrestrial stores of carbon. Carbon exchange in peatlands is often assessed solely by measurement of contemporary fluxes; however, these fluxes frequently indicate a much stronger sink strength than that measured by the rate of C accumulation in the peat profile over longer timescales. Here we compare profile-based measurements of C accumulation with the published net ecosystem C balance for the largest peatland area in Britain, the Flow Country of northern Scotland. We estimate the long-term rate of C accumulation to be 15.4 g C m−2 yr−1 for a site where a recent eddy covariance study has suggested contemporary C uptake more than six times greater (99.37 g C m−2 yr−1). Our estimate is supported by two further long-term C accumulation records from nearby sites which give comparable results. We demonstrate that a strong contemporary C sink strength may not equate to a strong long-term sink and explore reasons for this disparity. We recommend that contemporary C sequestration should be viewed in the context of the long-term ecological drivers, such as fires, ecohydrological feedbacks and the changing quality of litter inputs

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology

    Measurement of the W-boson mass in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370±7 (stat.)±11(exp. syst.) ±14(mod. syst.) MeV =80370±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W−bosons yields mW+−mW−=−29±28 MeV

    Analysis of the Effect of Race, Socioeconomic Status, and Center Size on Unrelated National Marrow Donor Program Donor Outcomes: Donor Toxicities Are More Common at Low-Volume Bone Marrow Collection Centers

    Get PDF
    Previous studies have shown that risks of collection-related pain and symptoms are associated with sex, body mass index (BMI), and age in unrelated donors undergoing collection at National Marrow Donor Program (NMDP) centers. We hypothesized that other important factors (race, socioeconomic status (SES), and number of procedures at the collection center) might affect symptoms in donors. We assessed outcomes in 2,726 bone marrow (BM) and 6,768 peripheral blood stem cell (PBSC) donors collected between 2004 and 2009. Pain/symptoms are reported as maximum levels over mobilization and collection (PBSC) or within 2 days of collection (BM) and at 1 week after collection. For PBSC donors, race and center volumes were not associated with differences in pain/symptoms at any time. PBSC donors with high SES levels reported higher maximum symptom levels 1 week post donation (p=0.017). For BM donors, black males reported significantly higher levels of pain (OR=1.90, CI=1.14-3.19, p=0.015). No differences were noted by SES groups. BM donors from low volume centers reported more toxicity (OR=2.09, CI=1.26-3.46, p=0.006). In conclusion, race and SES have a minimal effect on donation associated symptoms. However, donors from centers performing ≤1 BM collection every 2 months have more symptoms following BM donation. Approaches should be developed by registries and low volume centers to address this issue

    Transplant Physicians’ Attitudes on Candidacy for Allogeneic Hematopoietic Cell Transplantation (HCT) in Older Patients: The Need for a Standardized Geriatric Assessment (GA) Tool

    Get PDF
    Background Despite improvements in conditioning regimens and supportive care having expanded the curative potential of HCT, underutilization of HCT in older adults persists (Bhatt VR et al, BMT 2017). Therefore, we conducted a survey of transplant physicians (TP) to determine their perceptions of the impact of older age (≥60 years) on HCT candidacy and utilization of tools to gauge candidacy. Methods We conducted a 23-item, online cross-sectional survey of adult physicians recruited from the Center for International Blood and Marrow Transplant Research between May and July 2019. Results 175/770 (22.7%) TP completed the survey; majority of respondents were 41-60 years old, male, and practicing in a teaching hospital. Over 75% were at centers performing ≥50 HCT per year. When considering regimen intensity, most (96%, n=168) had an upper age limit (UAL) for using a myeloablative regimen (MAC), with only 29 physicians (17%) stating they would consider MAC for patients ≥70 years. In contrast, when considering a reduced intensity/non-myeloablative conditioning (RIC/NMA), 8%, (n=13), 54% (n=93), and 20% (n=35) stated that age 70, 75, and 80 years respectively would be the UAL to use this approach, with 18% (n=31) reporting no UAL. TP agreed that Karnofsky Performance Score (KPS) could exclude older pts for HCT, with 39.1% (n=66), 42.6% (n=72), and 11.4% (n=20) requiring KPS of ≥70, 80, and 90, respectively. The majority (n=92, 52.5%) indicated an HCT-comorbidity index threshold for exclusion, mostly ranging from ≥3 to ≥ 5. Almost all (89.7%) endorsed the need for a better health assessment of pre-HCT vulnerabilities to guide candidacy for pts ≥60 with varied assessments being utilized beyond KPS (Figure 1). However, the majority of centers rarely (33.1%) or never (45.7%) utilize a dedicated geriatrician/geriatric-oncologist to assess alloHCT candidates ≥60 yrs. The largest barriers to performing GA included uncertainty about which tools to use, lack of knowledge and training, and lack of appropriate clinical support staff (Figure 2). Approximately half (n=78, 45%) endorsed GA now routinely influences candidacy. Conclusions The vast majority of TP will consider RIC/NMA alloHCT for patients ≥70 years. However, there is heterogeneity in assessing candidacy. Incorporation of GA into a standardized and easily applied health assessment tool for risk stratification is an unmet need. The recently opened BMT CTN 1704 may aid in addressing this gap
    corecore