8 research outputs found

    Subsurface scientific exploration of extraterrestrial environments (MINAR 5): analogue science, technology and education in the Boulby Mine, UK

    Get PDF
    The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation

    Carpet as a Fuel in Cement Kilns

    No full text
    The use of carpet in cement kilns is a potential mechanism to build infrastructure for carpet recycling at a large scale. This presentation describes trials that were done at the EPA test kiln at Research Triangle Park. The trials focused on assessing the NO emissions and any associated polycyclic aromatic hydrocarbons (PAHs), or other products of incomplete combustion (PIC) emissions from burning Nylon 66 carpet. Preliminary analysis of the results showed that the conversion of nitrogen in the carpet to NO was only about 4-8% of the nitrogen content. There was only minimal increase in the emissions of benzene, PAHs, and other PICs. No mercury was detected from the combustion of the carpeting

    Emissions study of co-firing waste carpet in a rotary kiln

    No full text
    Abstract Post-consumer carpet represents a high volume, high energy content waste stream. As a fuel for co-firing in cement kilns, waste carpet, like waste tires, has potential advantages. Technological challenges to be addressed include assessing potential emissions, in particular NO emissions (from nylon fiber carpets), and optimizing the carpet feed system. This paper addresses the former. Results of pilot-scale rotary kiln experiments demonstrate the potential for using post-consumer waste carpet as a fuel in cement kilns. Continuous feeding of shredded carpet fiber and ground carpet backing, at rates of up to 30% of total energy input, resulted in combustion without transient puffs and with almost no increase in CO and other products of incomplete combustion as compared to kiln firing natural gas only. NO emissions increased with carpet waste co-firing due to the nitrogen content of nylon fiber. In these experiments with shredded fiber and finely ground backing, carpet nitrogen conversion to NO ranged from 3 to 8%. Conversion increased with enhanced mixing of the carpet material and air during combustion. Carpet preparation and feeding method are controlling factors in fuel N conversion.

    Regional Systems for Carpet Recycling

    No full text

    Update on Carpet As an Alternative Fuel for Cement Kilns

    No full text
    Cement kilns have a tremendous appetite for energy. Carpet has a relatively high value of energy content due to its high fraction of polymer material, and its calcium carbonate filler is a feed for cement kilns. This talk will focus on the progress that has been made towards solving the technical and economic issues surrounding the use of carpet as fuel for cement kilns as part of a regional system for recycling carpet

    Intelligent systems in process engineering: a review

    No full text
    corecore